Module \#12: Summations

Rosen $5^{\text {th }}$ ed., §3.2
~19 slides, ~1 lecture

Summation Notation

- Given a series $\left\{a_{n}\right\}$, an integer lower bound (or limit) $j \geq 0$, and an integer upper bound $k \geq j$, then the summation of $\left\{a_{n}\right\}$ from j to k is written and defined as follows:

$$
\sum_{i=j}^{k} a_{i}: \equiv a_{j}+a_{j+1}+\ldots+a_{k}
$$

- Here, i is called the index of summation.

Generalized Summations

- For an infinite series, we may write:

$$
\sum_{i=j}^{\infty} a_{i}: \equiv a_{j}+a_{j+1}+\ldots
$$

- To sum a function over all members of a set $X=\left\{x_{1}, x_{2}, \ldots\right\}: \quad \sum_{x \in X} f(x): \equiv f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots$
- Or, if $X=\{x \mid P(x)\}, \stackrel{\sum^{x \in X}}{\text { w }}$ we may just write:

$$
\sum_{P(x)} f(x): \equiv f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots
$$

Simple Summation Example

$$
\begin{aligned}
\sum_{i=2}^{4} i^{2}+1 & =\left(2^{2}+1\right)+\left(3^{2}+1\right)+\left(4^{2}+1\right) \\
& =(4+1)+(9+1)+(16+1) \\
& =5+10+17 \\
& =32
\end{aligned}
$$

More Summation Examples

- An infinite series with a finite sum:

$$
\sum_{i=0}^{\infty} 2^{-i}=2^{0}+2^{-1}+\ldots=1+\frac{1}{2}+\frac{1}{4}+\ldots=2
$$

- Using a predicate to define a set of elements to sum over:

$$
\sum x^{2}=2^{2}+3^{2}+5^{2}+7^{2}=4+9+25+49=87
$$

$(x$ is prime $) \wedge$
$x<10$

Summation Manipulations

- Some handy identities for summations:

$$
\sum c f(x)=c \sum f(x)
$$

$$
\sum_{x} f(x)+g(x)=\left(\sum_{x} f(x)\right)+\sum_{x} g(x)
$$

(Application of commutativity.)

$$
\sum_{i=j}^{k} f(i)=\sum_{i=j+n}^{k+n} f(i-n)
$$

(Index shifting.)

More Summation Manipulations

- Other identities that are sometimes useful:

$$
\begin{array}{ll}
\sum_{i=j}^{k} f(i)=\left(\sum_{i=j}^{m} f(i)\right)+\sum_{i=m+1}^{k} f(i) & \text { if } j \leq m<k \\
\sum_{i=j}^{k} f(i)=\sum_{i=0}^{k-j} f(k-i) & \text { (Series splitting.) } \\
\sum_{i=0}^{2 k} f(i)=\sum_{i=0}^{k} f(2 i)+f(2 i+1) & \text { (Order reversal.) }
\end{array}
$$

Example: Impress Your Friends

- Boast, "I'm so smart; give me any 2-digit number n, and I'll add all the numbers from 1 to n in my head in just a few seconds."
- I.e., Evaluate the summation:

- There is a simple closed-form formula for the result, discovered by Euler at age 12!

Euler’s Trick, Illustrated

- Consider the sum:

- $n / 2$ pairs of elements, each pair summing to $n+1$, for a total of $(n / 2)(n+1)$.

Symbolic Derivation of Trick

$$
\begin{aligned}
\sum_{i=1}^{n} i & \left.\left.=\sum_{i=1}^{2 k} i=\sum_{i=1}^{k} i\right)+\sum_{i=1(k+1)}^{(i)}=\left(\sum_{i=1}^{k} i\right)+\sum_{i=0}^{-(k+1)}(i)+(k+1)\right) \\
& \left.=\left(\sum_{i=1}^{k} i\right)+\sum_{i=0}^{n-(k+1)}(n-(k+1)-i)+(k+1)\right) \\
& =\left(\sum_{i=1}^{k} i\right)+\sum_{i=0}^{n-(k+1)}\left(n-(i)=\left(\sum_{i=1}^{k} i\right)+\sum_{i=1}^{n-1}(n-(i-1))\right. \\
& =\left(\sum_{i=1}^{k} i\right)+\sum_{i=1}^{n-k}(n+1-i)=\left(\sum_{i=1}^{k} i\right)+\sum_{i=1}^{k}(n+1-i)=\ldots
\end{aligned}
$$

Concluding Euler’s Derivation

$$
\begin{aligned}
\sum_{i=1}^{n} i & \left.=\left(\sum_{i=1}^{k}(i)+\sum_{i=1}^{k} n+1-i\right)=\sum_{i=1}^{k}(i)+n+1(-i)\right) \\
& \left.=n_{=1}^{n} n+1\right)=(n+1)=(n+1) \\
& =n(n+1) / 2
\end{aligned}
$$

- So, you only have to do 1 easy multiplication in your head, then cut in half.
- Also works for odd n (prove this at home).

Example: Geometric Progression

- A geometric progression is a series of the form $a, a r, a r^{2}, a r^{3}, \ldots, a r^{k}$, where $a, r \in \mathbf{R}$.
- The sum of such a series is given by:

$$
S=\sum_{i=0}^{k} a r^{i}
$$

- We can reduce this to closed form via clever manipulation of summations...

Geometric Sum Derivation

- Here

$$
\begin{aligned}
S & =\sum_{i=0}^{n} a r^{i} \\
r S & =\left(\sum_{i=0}^{n} a r^{i}=\sum_{i=0}^{n} a r^{i}=\sum_{i=0}^{n} a r r^{i}=\sum_{i=0}^{n} a r^{1} r^{i}\right. \\
& \left.=\sum_{i=0}^{n} a r^{1-i}\right)=\sum_{i=1}^{n+1} a r^{1-(i-1)}=\sum_{i=n+1}^{n+1} a r^{i} \\
& =\left(\sum_{i=1}^{n} a r^{i}+\sum_{i=1}^{n+1} a r^{i}=\left(\sum_{i=1}^{n} a r^{i}\right)+a r^{n+1}=\ldots\right.
\end{aligned}
$$

Module \#12 - Summations

Derivation example cont...

$$
r S=\left(\sum_{i=1}^{n} a r^{i}\right)+a r^{n+1}=\left(a r^{0}-a r^{0}\right)+\left(\sum_{i=1}^{n} a r^{i}\right)+a r^{n+1}
$$

Concluding long derivation...

$$
\begin{aligned}
r S & =S+a\left(r^{n+1}-1\right) \\
r S-S & =a\left(r^{n+1}-1\right) \\
S(r-1) & =a\left(r^{n+1}-1\right) \\
S & =a\left(\frac{r^{n+1}-1}{r-1}\right) \quad \text { when } r \neq 1 \\
\text { When } r & =1, S=\sum_{i=0}^{n} a r^{i}=\sum_{i=0}^{n} a 1^{i}=\sum_{i=0}^{n} a \cdot 1=(n+1) a
\end{aligned}
$$

Nested Summations

- These have the meaning you'd expect.

$$
\begin{aligned}
\sum_{i=1}^{4} \sum_{j=1}^{3} i j & =\sum_{i=1}^{4}\left(\sum_{j=1}^{3} i j\right)=\sum_{i=1}^{4} i\left(\sum_{j=1}^{3} j\right)=\sum_{i=1}^{4} i(1+2+3) \\
& =\sum_{i=1}^{4} 6 i=6 \sum_{i=1}^{4} i=6(1+2+3+4) \\
& =6 \cdot 10=60
\end{aligned}
$$

- Note issues of free vs. bound variables, just like in quantified expressions, integrals, etc.

Some Shortcut Expressions

$$
\begin{aligned}
\sum_{k=0}^{n} a r^{k} & =a\left(r^{n+1}-1\right) /(r-1), r \neq 1 & & \text { Geometric series. } \\
\sum_{k=1}^{n} k & =n(n+1) / 2 & & \text { Euler's trick. } \\
\sum_{k=1}^{n} k^{2} & =n(n+1)(2 n+1) / 6 & & \text { Quadratic series. } \\
\sum_{k=1}^{n} k^{3} & =n^{2}(n+1)^{2} / 4 & &
\end{aligned}
$$

Using the Shortcuts

- Example: Evaluate $\sum_{k=50}^{100} k^{2}$.
- Use series splitting.
- Solve for desired

$$
\sum_{k=1}^{100} k^{2}=\left(\sum_{k=1}^{49} k^{2}\right)+\sum_{k=50}^{100} k^{2}
$$ summation.

- Apply quadratic series rule.

$$
\sum_{k=50}^{100} k^{2}=\left(\sum_{k=1}^{100} k^{2}\right)-\sum_{k=1}^{49} k^{2}
$$

- Evaluate.

$$
\begin{aligned}
& =\frac{100 \cdot 101 \cdot 201}{6}-\frac{49 \cdot 50 \cdot 99}{6} \\
& =338,350-40,425 \\
& =297,925 .
\end{aligned}
$$

Summations: Conclusion

- You need to know:
- How to read, write \& evaluate summation expressions like:

$$
\sum_{i=j}^{k} a_{i} \quad \sum_{i=j}^{\infty} a_{i} \quad \sum_{x \in X} f(x) \quad \sum_{P(x)} f(x)
$$

- Summation manipulation laws we covered.
- Shortcut closed-form formulas, \& how to use them.

