

Summation Notation

Given a series {a_n}, an integer lower bound (or limit) j≥0, and an integer upper bound k≥j, then the summation of {a_n} from j to k is written and defined as follows:

$$\sum_{i=j}^{k} a_i \coloneqq a_j + a_{j+1} + \dots + a_k$$

• Here, *i* is called the *index of summation*.

Generalized Summations

- For an infinite series, we may write: $\sum_{i=j}^{\infty} a_i \coloneqq a_j + a_{j+1} + \dots$
- To sum a function over all members of a set $X = \{x_1, x_2, ...\}$: $\sum_{x_1} f(x) \coloneqq f(x_1) + f(x_2) + ...$
- Or, if $X = \{x | P(x)\}$, we may just write: $\sum_{P(x)} f(x) \coloneqq f(x_1) + f(x_2) + \dots$

Simple Summation Example

 $\sum i^2 + 1 = (2^2 + 1) + (3^2 + 1) + (4^2 + 1)$ i=2= (4+1) + (9+1) + (16+1)= 5 + 10 + 17= 32

More Summation Examples

- An infinite series with a finite sum: $\sum_{i=0}^{\infty} 2^{-i} = 2^0 + 2^{-1} + \dots = 1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$
- Using a predicate to define a set of elements to sum over:

$$\sum_{\substack{(x \text{ is prime}) \land \\ x < 10}} x^2 = 2^2 + 3^2 + 5^2 + 7^2 = 4 + 9 + 25 + 49 = 87$$

Module #12 - Summations **Summation Manipulations** • Some handy identities for summations: $\sum cf(x) = c\sum f(x)$ (Distributive law.) (Application $\sum_{x} f(x) + g(x) = \left(\sum_{x} f(x)\right) + \sum_{x} g(x)$ of commutativity.) $\sum^{k} f(i) = \sum^{k+n} f(i-n)$ (Index shifting.) i=i+n

More Summation Manipulations

- Other identities that are sometimes useful:
- $\sum_{i=j}^{k} f(i) = \left(\sum_{i=j}^{m} f(i)\right) + \sum_{i=m+1}^{k} f(i) \quad \text{if } j \le m < k$ (Series splitting.) $\sum_{i=j}^{k} f(i) = \sum_{i=0}^{k-j} f(k-i) \quad \text{(Order reversal.)}$ $\sum_{i=0}^{2k} f(i) = \sum_{i=0}^{k} f(2i) + f(2i+1) \quad \text{(Grouping.)}$

Example: Impress Your Friends

- Boast, "I'm so smart; give me any 2-digit number *n*, and I'll add all the numbers from 1 to *n* in my head in just a few seconds."
- *I.e.*, Evaluate the summation:
- There is a simple closed-form formula for the result, discovered by Euler at age 12!

(c)2001-2003, Michael P. Frank

Leonhard Euler (1707-1783)

Euler's Trick, Illustrated

- Consider the sum: 1+2+...+(n/2)+((n/2)+1)+...+(n-1)+n n+1 n+1 n+1n+1
- n/2 pairs of elements, each pair summing to n+1, for a total of (n/2)(n+1).

Symbolic Derivation of Trick

2008-08-09

Concluding Euler's Derivation

$$\sum_{i=1}^{n} i = \left(\sum_{i=1}^{k} i\right) + \sum_{i=1}^{k} (n+1-i) = \sum_{i=1}^{k} (i+n+1-i)$$
$$= \sum_{i=1}^{k} (n+1) = k(n+1) = \frac{n}{2}(n+1)$$
$$= n(n+1)/2$$

- So, you only have to do 1 easy multiplication in your head, then cut in half.
- Also works for odd *n* (prove this at home).

Example: Geometric Progression

- A geometric progression is a series of the form $a, ar, ar^2, ar^3, ..., ar^k$, where $a, r \in \mathbf{R}$.
- The sum of such a series is given by:

$$S = \sum_{i=0}^{k} ar^{i}$$

• We can reduce this to *closed form* via clever manipulation of summations...

Geometric Sum Derivation

2008-08-09

(c)2001-2003, Michael P. Frank

13

Derivation example cont...

Concluding long derivation...

$$rS = S + a(r^{n+1} - 1)$$

$$rS - S = a(r^{n+1} - 1)$$

$$S(r-1) = a(r^{n+1} - 1)$$

$$S = a\left(\frac{r^{n+1} - 1}{r - 1}\right) \quad \text{when } r \neq 1$$

When $r = 1, S = \sum_{i=0}^{n} ar^{i} = \sum_{i=0}^{n} a1^{i} = \sum_{i=0}^{n} a \cdot 1 = (n+1)a$

2008-08-09

Nested Summations

- These have the meaning you'd expect. $\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} \left(\sum_{j=1}^{3} ij \right) = \sum_{i=1}^{4} i \left(\sum_{j=1}^{3} j \right) = \sum_{i=1}^{4} i (1+2+3)$ $= \sum_{i=1}^{4} 6i = 6 \sum_{i=1}^{4} i = 6(1+2+3+4)$ $= 6 \cdot 10 = 60$
- Note issues of free vs. bound variables, just like in quantified expressions, integrals, etc.

Some Shortcut Expressions

$$\sum_{k=0}^{n} ar^{k} = a(r^{n+1}-1)/(r-1), r \neq 1$$
 Geometric series.
$$\sum_{k=0}^{n} k = n(n+1)/2$$
 Euler's trick

$$\sum_{k=1}^{n} k = n(n+1) / 2$$

Euler's trick.

$$\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$$

Quadratic series.

$$\sum_{k=1}^{n} k^{3} = n^{2} (n+1)^{2} / 4$$

Cubic series.

Using the Shortcuts

100

- Example: Evaluate $\sum k^2$
 - Use series splitting.
 - Solve for desired summation.
 - Apply quadratic series rule.

(c)2001-200

– Evaluate.

k=50 5. $\sum_{k=1}^{100} k^2 = \left(\sum_{k=1}^{49} k^2\right) + \sum_{k=50}^{100} k^2$ $\sum_{k=50}^{100} k^2 = \left(\sum_{k=1}^{100} k^2\right) - \sum_{k=1}^{49} k^2$ 100.101.201 49.50.996 6 = 338,350 - 40,425= 297,925.

Summations: Conclusion

- You need to know:
 - How to read, write & evaluate summation expressions like:

$$\sum_{i=j}^{k} a_i \qquad \sum_{i=j}^{\infty} a_i \qquad \sum_{x \in X} f(x) \qquad \sum_{P(x)} f(x)$$

– Summation manipulation laws we covered.

Shortcut closed-form formulas,
& how to use them.