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Module #12 - Summations

Summation Notation

•• Given a series {Given a series {aann}, an integer }, an integer lower bound lower bound 
(or(or limitlimit) ) jj≥≥0, and an integer 0, and an integer upper bound upper bound 
kk≥≥jj, then the , then the summation of summation of {{aann} } from j to kfrom j to kjj,, ff {{ nn}} f jf j
is written and defined as follows:is written and defined as follows:

k

kjj

k

ji
i aaaa +++≡ +

=
∑ ...: 1

•• Here, Here, ii is called the is called the index of summationindex of summation..
ji
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Module #12 - Summations

Generalized Summations

•• For an infinite series, we may write:For an infinite series, we may write:
∞

•• To sum a function over all members of a setTo sum a function over all members of a set
...: 1 ++≡ +

∞

=
∑ jj

ji
i aaa

•• To sum a function over all members of a set To sum a function over all members of a set 
XX={={xx11,, xx22, …}:, …}: ...)()(:)( 21 ++≡∑ xfxfxf

X•• Or, if Or, if XX={={xx||PP((xx)}, we may just write:)}, we may just write:∈Xx

)()(:)( ++≡∑ xfxfxf ...)()(:)( 21
)(

++≡∑ xfxfxf
xP
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Module #12 - Summations

Simple Summation Example
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Module #12 - Summations

More Summation Examples

•• An infinite series with a finite sum:An infinite series with a finite sum:

2...1...222 4
1

2
110 =+++=++= −

∞
−∑ i

•• Using a predicate to define a set of elements Using a predicate to define a set of elements 
0=i

to sum over:to sum over:

874925947532 22222∑ 874925947532 2222
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 prime) is (
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Module #12 - Summations

Summation Manipulations

•• Some handy identities for summations:Some handy identities for summations:

∑∑ =
xx

xfcxcf )()( (Distributive law.)
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Module #12 - Summations

More Summation Manipulations

•• Other identities that are sometimes useful:Other identities that are sometimes useful:
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Module #12 - Summations

Example: Impress Your Friends

•• Boast, “I’m so smart; give me any 2Boast, “I’m so smart; give me any 2--digit digit 
numbernumber nn, and I’ll add all the numbers from , and I’ll add all the numbers from 
1 to 1 to nn in my head in just a few seconds.”in my head in just a few seconds.”y jy j

•• I.e.I.e., Evaluate the summation:, Evaluate the summation: ∑
n

i

•• There is a simple closedThere is a simple closed--form formula forform formula for

∑
=i 1

There is a simple closedThere is a simple closed form formula for form formula for 
the result, discovered by Euler at age 12! the result, discovered by Euler at age 12! 

L h d
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Module #12 - Summations

Euler’s Trick, Illustrated

•• Consider the sum:Consider the sum:
1+2+…+(1+2+…+(nn/2)+((/2)+((nn/2)+1)+…+(/2)+1)+…+(nn--1)+1)+nn

n+1…

+1
n+1

n+1

•• nn/2 pairs of elements each pair summing to/2 pairs of elements each pair summing to

n+1

•• nn/2 pairs of elements, each pair summing to /2 pairs of elements, each pair summing to 
nn+1, for a total of (+1, for a total of (nn/2)(n+1)./2)(n+1).
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Module #12 - Summations

Symbolic Derivation of Trick
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Module #12 - Summations

Concluding Euler’s Derivation
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•• So, you only have to do 1 easy So, you only have to do 1 easy 
multiplication in your head then cut in halfmultiplication in your head then cut in half

)(

multiplication in your head, then cut in half.multiplication in your head, then cut in half.
•• Also works for odd Also works for odd nn (prove this at home).(prove this at home).
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Module #12 - Summations

Example: Geometric Progression

•• A A geometric progression geometric progression is a series of the is a series of the 
form form aa, , arar, , arar22, , arar33, …, , …, ararkk, , where where a,ra,r∈∈RR..

•• The sum of such a series is given by:The sum of such a series is given by:The sum of such a series is given by:The sum of such a series is given by:

∑=
k

iarS

•• We can reduce this toWe can reduce this to closed formclosed form via clevervia clever

∑
=

=
i

arS
0

•• We can reduce this to We can reduce this to closed formclosed form via clever via clever 
manipulation of summations... manipulation of summations... 
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Module #12 - Summations

Geometric Sum Derivation
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Module #12 - Summations

Derivation example cont...
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Module #12 - Summations

Concluding long derivation...
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Module #12 - Summations

Nested Summations

•• These have the meaning you’d expect.These have the meaning you’d expect.
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•• Note issues of free vs. bound variables, just Note issues of free vs. bound variables, just 
like in quantified expressions, integrals, etc.like in quantified expressions, integrals, etc.
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Module #12 - Summations

Some Shortcut Expressions
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2/)1(

),()(
0

+∑

∑
=

nnk
n

k
Geometric series.
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Cubic series.
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Module #12 - Summations

Using the Shortcuts

•• Example: Evaluate            .Example: Evaluate            .∑
100
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k
k

–– Use series splitting.Use series splitting.
–– Solve for desiredSolve for desired

=50k
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2 +⎟

⎠

⎞
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⎛
= ∑∑∑ kkkSolve for desiredSolve for desired

summation.summation.
Apply quadraticApply quadratic
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–– Evaluate.Evaluate.
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Module #12 - Summations

Summations: Conclusion

•• You need to know:You need to know:
–– How to read, write & evaluate summation How to read, write & evaluate summation 

expressions like:expressions like:pp

∑ xf )( ∑ )(xf∑
k

ia ∑
∞

ia

–– Summation manipulation laws we covered.Summation manipulation laws we covered.
∈Xx )( xP= ji = ji

–– Shortcut closedShortcut closed--form formulas, form formulas, 
& how to use them.& how to use them.
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