Module #13 – Inductive Proofs Module #13: **Inductive Proofs** Rosen 5th ed., §3.3 ~11 slides, ~1 lecture (c)2001-2003, Michael P. Frank 2008-08-09

§3.3: Mathematical Induction

- A powerful, rigorous technique for proving that a predicate P(n) is true for *every* natural number n, no matter how large.
- Essentially a "domino effect" principle.
- Based on a predicate-logic inference rule:

$$P(0)$$

$$\forall n \geq 0 \ (P(n) \rightarrow P(n+1))$$

$$\therefore \forall n \geq 0 \ P(n)$$

"The First Principle of Mathematical Induction"

Validity of Induction

Proof that $\forall k \geq 0$ P(k) is a valid consequent: Given any $k \geq 0$, $\forall n \geq 0$ $(P(n) \rightarrow P(n+1))$ (antecedent 2) trivially implies $\forall n \geq 0$ $(n < k) \rightarrow (P(n) \rightarrow P(n+1))$, or $(P(0) \rightarrow P(1)) \land (P(1) \rightarrow P(2)) \land \dots \land (P(k-1) \rightarrow P(k))$. Repeatedly applying the hypothetical syllogism rule to adjacent implications k-1 times then gives $P(0) \rightarrow P(k)$; which with P(0) (antecedent #1) and modus ponens gives P(k). Thus $\forall k \geq 0$ P(k).

The Well-Ordering Property

- The validity of the inductive inference rule can also be proved using the *well-ordering property*, which says:
 - Every non-empty set of non-negative integers has a minimum (smallest) element.
 - $\forall \varnothing \subseteq S \subseteq \mathbb{N} : \exists m \in S : \forall n \in S : m \leq n$
- Implies $\{n|\neg P(n)\}$ has a min. element m, but then $P(m-1) \rightarrow P((m-1)+1)$ contradicted.

Outline of an Inductive Proof

- Want to prove $\forall n \ P(n)...$
- Base case (or basis step): Prove P(0).
- *Inductive step*: Prove $\forall n \ P(n) \rightarrow P(n+1)$.
 - -E.g. use a direct proof:
 - Let n∈ \mathbb{N} , assume P(n). (inductive hypothesis)
 - Under this assumption, prove P(n+1).
- Inductive inference rule then gives $\forall n \ P(n)$.

Generalizing Induction

- Can also be used to prove $\forall n \geq c \ P(n)$ for a given constant $c \in \mathbb{Z}$, where maybe $c \neq 0$.
 - In this circumstance, the base case is to prove P(c) rather than P(0), and the inductive step is to prove $\forall n \geq c \ (P(n) \rightarrow P(n+1))$.
- Induction can also be used to prove $\forall n \geq c \ P(a_n)$ for an arbitrary series $\{a_n\}$.
- Can reduce these to the form already shown.

Second Principle of Induction

• Characterized by another inference rule:

P(0) P is true in all previous cases $\forall n \geq 0$: $(\forall 0 \leq k \leq n \ P(k)) \rightarrow P(n+1)$

 $\therefore \forall n \geq 0 : P(n)$

• Difference with 1st principle is that the inductive step uses the fact that P(k) is true for *all* smaller k < n+1, not just for k=n.

Induction Example (1st princ.)

• Prove that the sum of the first n odd positive integers is n^2 . That is, prove:

$$\forall n \ge 1 : \sum_{i=1}^{n} (2i - 1) = n^2$$

- Proof by induction. P(n)
 - Base case: Let n=1. The sum of the first 1 odd positive integer is 1 which equals 1².
 (Cont...)

Example cont.

- Inductive step: Prove $\forall n \ge 1$: $P(n) \rightarrow P(n+1)$.
 - Let n≥1, assume P(n), and prove P(n+1).

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + (2(n+1)-1)$$

$$= (n^2) + 2n + 1$$

$$= (n+1)^2$$
By inductive hypothesis $P(n)$

Another Induction Example

- Prove that $\forall n>0$, $n<2^n$. Let $P(n)=(n<2^n)$
 - Base case: $P(1)=(1<2^1)=(1<2)=\mathbf{T}$.
 - Inductive step: For n>0, prove $P(n)\rightarrow P(n+1)$.
 - Assuming $n < 2^n$, prove $n+1 < 2^{n+1}$.
 - Note $n + 1 < 2^n + 1$ (by inductive hypothesis) $< 2^n + 2^n$ (because $1 < 2 = 2 \cdot 2^0 \le 2 \cdot 2^{n-1} = 2^n$) $= 2^{n+1}$
 - So $n + 1 < 2^{n+1}$, and we're done.

Example of Second Principle

- Show that every n>1 can be written as a product $p_1p_2...p_s$ of some series of s prime numbers. Let P(n)="n has that property"
- Base case: n=2, let s=1, $p_1=2$.
- Inductive step: Let $n \ge 2$. Assume $\forall 2 \le k \le n$: P(k). Consider n+1. If prime, let s=1, $p_1=n+1$. Else n+1=ab, where $1 < a \le n$ and $1 < b \le n$. Then $a=p_1p_2...p_t$ and $b=q_1q_2...q_u$. Then $n+1=p_1p_2...p_tq_1q_2...q_u$, a product of s=t+u primes.

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.
- Base case: 12=3(4), 13=2(4)+1(5), 14=1(4)+2(5), 15=3(5), so $\forall 12 \le n \le 15$, P(n).
- Inductive step: Let $n \ge 15$, assume $\forall 12 \le k \le n$ P(k). Note $12 \le n 3 \le n$, so P(n-3), so add a 4-cent stamp to get postage for n+1.