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§6.1: Recurrence Relations

» A recurrence relation (R.R., or just recurrence)
for a sequence {a,} 1s an equation that expresses
a, 1In terms of one or more previous elements
a,, ..., a, , of the sequence, for all n>n,,.

— A recursive definition, without the base cases.

* A particular sequence (described non-recursively)
1s said to solve the given recurrence relation if 1t 1s
consistent with the definition of the recurrence.

— A given recurrence relation may have many solutions.
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Recurrence Relation Example

« Consider the recurrence relation
a,=2a, = a,, (n22).

* Which of the following are solutions?
a, = 3n Yes
a, — 2" No

a,=>S
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Example Applications

* Recurrence relation for growth of a bank
account with P% interest per given period:
M =M_, +(P/100)M _,
* Growth of a population 1n which each

organism yields 1 new one every period
starting 2 periods after its birth.

P =P _,+P, , (Fibonaccirelation)
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Solving Compound Interest RR

e M =M_,+(P/100)M,
=(1+P/100) M, _,
=rM, _, (let =1+ P/100)
= r(r M, )
=rr(rM,;) ...andso on to...
="M,
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Tower of Hano1 Example

* Problem: Get all disks from peg 1 to peg 2.
— Only move 1 disk at a time.
— Never set a larger disk on a smaller one.
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Hano1 Recurrence Relation

» Let H,=# moves for a stack of n disks.

* Optimal strategy:
— Move top n—1 disks to spare peg. (H,_, moves)
— Move bottom disk. (1 move)
— Move top n—1 to bottom disk. (H,_; moves)

* Note: H =2H ,+1
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Solving Tower of Hano1 RR

H=2H ,+1
=2QH, ,+1)+1 =22H ,+2+1
=222H _;+1)+2+1 =2°H ,+22+2+1

=2"1TH +2m2+ ... +2+1
=2m 1+ 22+  +2+1 (since H, = 1)
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§6.2: Solving Recurrences

General Solution Schemas

* A [inear homogeneous recurrence of degree
k with constant coefficients (“k-
LiHoReCoCo0”) 1s a recurrence of the form

. = ()

* The solution 1s uniquely determined 1f £
initial conditions a,...q,_, are provided.
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Solving LiHoReCoCos

 Basic idea: Look for solutions of the form
a, = r", where r 1s a constant.

» This requires the characteristic equation:
rt=crml+ L+ eh e,
rk—cr¥l— ... —¢c, =0

* The solutions (characteristic roots) can

yield an explicit formula for the sequence.
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Solving 2-LiHoReCoCos

* Consider an arbitrary 2-LiHoReCoCo:
a,= €18, T Ca,
* It has the characteristic equation (C.E.):
r’—cr—c,=0
« Thm. 1: If this CE has 2 roots r,#r,, then
a, = o,r" + a,r," tor n=>0
for some constants a;, a,.
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Example

* Solve the recurrence a, = a,_, + 2a,_, given the
initial conditions a, =2, a, = 7.
* Solution: Use theorem 1
-c=1,¢,=2
— Characteristic equation:
r»—r—2=0
— Solutions: »=[—(-1)x£((-1)?> —4-1-(-2))?] / 2-1
=(1£9Y%)/2= (1£3)/2,s0 r=2 or r=-1.
— Soa,=a,;2"+a, (1)
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Example Continued...

* To find a; and a,, solve the equations for the initial
conditions q, and ay:

a,=2=0,2"+a, (—1)°
a,=7=a.2'"+ta,(-1)!
Simplifying, we have the pair of equations:
2=0,ta,
7=20,— a,
which we can solve easily by substitution:
a,=2—a;; 1T=20,—2—0y) =30, —2;
9=3a,;; 0,=3; a,=1.
* Final answer: a,=32"—(—1)

Check: {a,-,} =2,7,11,25,47,97 ...
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The Case of Degenerate Roots

« Now, what if the C.E. > — ¢;¥ — ¢, = 0 has
only 1 root 7,?

 Theorem 2: Then,
a, = a,ry" + a,nry", for all n>0,
for some constants a;, a,.

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =



Module #17 - Recurrences

k-IL1IHoReCoCos

for all n>0, where the a, are constants.
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Degenerate k-LiHoReCoCos

* Suppose there are 7 roots ry,...,r, with
multiplicities m,,...,m,. Then:

t m;—1
— J |57
0= Sanl:
1\ j=0

I=

for all n>0, where all the a are constants.
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LiNoReCoCos

* Linear nonhomogeneous RRs with constant
coefficients may (unlike LiHOReCoCos)
contain some terms F(#) that depend only
on n (and not on any a,’s). General form:

an - Clan—l Tt Ckan—k + F(I’l)

- _/
YT

The associated homogeneous recurrence relation
(associated LiHoReCoCo).

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank



Module #17 - Recurrences

Solutions of LiINoReCoCos

e A useful theorem about LiNoReCoCos:

— If a, = p(n) 1s any particular solution to the
LiNoReCoCo

a = (Zk: cianij + F(n)

— Then all 1ts solutions are of the form:

a,=p(n) + h(n),
where a, = h(n) 1s any solution to the associated
homogeneous RR a = (Zk: Cianij
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* Find all solutions to a, = 3a,_;+2n. Which
solution has a, = 3?

— Notice this 1s a 1-LiNoReCoCo. Its associated
whose solutions

1-LiHoReCoCo 1s a, = 3a
are all of the form a, = a3". Thus the solutions
to the original problem are all of the form a, =
p(n) + a3". So, all we need to do is find one
p(n) that works.

n—1»
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Trial Solutions

 If the extra terms F(n) are a degree-¢ polynomial
in n, you should try a degree-f polynomial as the
particular solution p(n).

* This case: F(n) 1s linear so try a, = cn + d.
cn+d = 3(c(n—1)+d) + 2n
(—2c+2)n+ (3¢c—2d)=0
Soc=—1and d =-3/2.
So a,=—n—3/2 1s asolution.

* Check: a,.,=1{-5/2,-7/2,-9/2, ... }
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Finding a Desired Solution

* From the previous, we know that all general
solutions to our example are of the form:

a,=—n—3/2+a3"
Solve this for a for the given case, a, = 3:
3=—1-3/2+a3!
a=11/6
* The answeris a,=—n—3/2+(11/6)3"
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§5.3: Divide & Conquer R.R.s

Main points so far:

* Many types of problems are solvable by
reducing a problem of size n into some
number a of independent subproblems, each
of size Srn/b_‘, where a>1 and b>1.

* The time complexity to solve such problems
1s given by a recurrence relation:

Time to break problem
up into subproblems
22

Time for each subproblem EEMESVIEEEE e S
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Divide+Conquer Examples

* Binary search: Break list into 1 sub-
problem (smaller list) (so a=1) of size

< n/2 1 (so b=2).

—So T(n) =T( n/2 )+c (g(n)=c constant)
Merge sort: Break list of length n into 2
sublists (a=2), each of size <| n/2 | (so b=2),
then merge them, in g(n) = O(n) time.

—So T(n)=T( n21) + cn , for some ¢
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Fast Multiplication Example

* The ordinary grade-school algorithm takes ®(»?)
steps to multiply two n-digit numbers.

— This seems like too much work!

So, let’s find an asymptotically faster
multiplication algorithm!

To find the product cd of two 2n-digit base-b

numbers, c=(c,,_(C,,.5---Cy), and

d=(d,, d,, ...d,),, first, we break c and d 1n half:
c=b"C,+C,, d=b"D,*+D,,

and then... (see next slide)
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Derivation of Fast Multiplication

cd =(b"C,+C,)(b"D, +D,)
=b*"C,D, +b"(C,D, +C,D,)+C,D,
=b*"C,\D, +C,D, +

(Multiply out
polynomials)

b" (C1Do o C1D1 o CoDo + C0D1)

DI
b m r(Faetor last polynomial)

Three multlpheatlons each Wlth n-digit numbers
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Recurrence Rel. for Fast Mult.

Notice that the time complexity 7(n) of the
fast multiplication algorithm obeys the

recurrence. Time to do the needed adds &

. T(2n)=3 T(n) subtracts of n-digit and 2n-digit
l.e

numbers

o T(n)=31(n/2)+O(n)
So a=3, b=2.
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The Master Theorem

Consider a function f{n) that, for all n=>b* for
all ke Z", satisties the recurrence relation:

f(n) = af(n/b) + cn?

with a>1, integer b>1, real c>0, d>0. Then:
O(n") if a < b’
f(n)ed0m?logn) if a=>5b"
Om™*)  ifa>b"
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Master Theorem Example

« Recall that complexity of fast multiply was:
T(n)=31(n/2)+O(n)

e Thus, a=3, b=2, d=1. So a > b4, so case 3
of the master theorem applies, so:

T(I’Z) _ O(nlogba) _ 0(nlog23)

which is O(n'>%+), so the new algorithm is
strictly faster than ordinary ®(n?) multiply!
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§6.4: Generating Functions

 Not covered this semester.
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§6.5: Inclusion-Exclusion

 This topic will have been covered out-of-
order already 1n Module #1535,
Combinatorics.

* As for Section 6.6, applications of
Inclusion-Exclusion: No slides yet.
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