

§6.1: Recurrence Relations

• A recurrence relation (R.R., or just recurrence) for a sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more previous elements a_0, \ldots, a_{n-1} of the sequence, for all $n \ge n_0$.

– A recursive definition, without the base cases.

• A particular sequence (described non-recursively) is said to *solve* the given recurrence relation if it is consistent with the definition of the recurrence.

– A given recurrence relation may have many solutions.

Example Applications

- Recurrence relation for growth of a bank account with P% interest per given period: $M_n = M_{n-1} + (P/100)M_{n-1}$
- Growth of a population in which each organism yields 1 new one every period starting 2 periods after its birth.

 $P_n = P_{n-1} + P_{n-2}$ (Fibonacci relation)

Solving Compound Interest RR

•
$$M_n = M_{n-1} + (P/100)M_{n-1}$$

= $(1 + P/100) M_{n-1}$
= $r M_{n-1}$ (let $r = 1 + P/100$)
= $r (r M_{n-2})$
= $r \cdot r \cdot (r M_{n-3})$...and so on to...
= $r^n M_0$

Tower of Hanoi Example

- Problem: Get all disks from peg 1 to peg 2.
 Only move 1 disk at a time.
 - Never set a larger disk on a smaller one.

Hanoi Recurrence Relation

- Let $H_n = \#$ moves for a stack of *n* disks.
- Optimal strategy:
 - Move top n-1 disks to spare peg. (H_{n-1} moves)
 - Move bottom disk. (1 move)
 - Move top n-1 to bottom disk. (H_{n-1} moves)
- Note: $H_n = 2H_{n-1} + 1$

Solving Tower of Hanoi RR

$$\begin{split} H_n &= 2 H_{n-1} + 1 \\ &= 2 (2 H_{n-2} + 1) + 1 \\ &= 2^2 (2 H_{n-3} + 1) + 2 + 1 \\ &= 2^3 H_{n-3} + 2^2 + 2 + 1 \\ &\dots \\ &= 2^{n-1} H_1 + 2^{n-2} + \dots + 2 + 1 \\ &= 2^{n-1} + 2^{n-2} + \dots + 2 + 1 \\ &= \sum_{i=0}^{n-1} 2^i \\ &= 2^n - 1 \end{split}$$
 (since $H_1 = 1$)

(c)2001-2003, Michael P. Frank

§6.2: Solving Recurrences

General Solution Schemas

• A <u>linear homogeneous recurrence of degree</u> <u>k with constant coefficients</u> ("k-LiHoReCoCo") is a recurrence of the form

 $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, where the c_i are all real, and $c_k \neq 0$.

• The solution is uniquely determined if k initial conditions $a_0 \dots a_{k-1}$ are provided.

Solving LiHoReCoCos

- Basic idea: Look for solutions of the form $a_n = r^n$, where *r* is a constant.
- This requires the characteristic equation: $r^{n} = c_{1}r^{n-1} + \dots + c_{k}r^{n-k}, i.e.,$ $r^{k} - c_{1}r^{k-1} - \dots - c_{k} = 0$
- The solutions (*characteristic roots*) can yield an explicit formula for the sequence.

Solving 2-LiHoReCoCos

- Consider an arbitrary 2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$
- It has the characteristic equation (C.E.): $r^2 - c_1 r - c_2 = 0$
- **Thm. 1:** If this CE has 2 roots $r_1 \neq r_2$, then $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \ge 0$ for some constants α_1, α_2 .

Example

- Solve the recurrence $a_n = a_{n-1} + 2a_{n-2}$ given the initial conditions $a_0 = 2$, $a_1 = 7$.
- Solution: Use theorem 1

$$-c_1 = 1, c_2 = 2$$

- Characteristic equation: $r^2 - r - 2 = 0$
- Solutions: $r = [-(-1)\pm((-1)^2 4 \cdot 1 \cdot (-2))^{1/2}] / 2 \cdot 1$ = $(1\pm 9^{1/2})/2 = (1\pm 3)/2$, so r = 2 or r = -1.

- So
$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n$$
.

Example Continued...

To find α_1 and α_2 , solve the equations for the initial conditions a_0 and a_1 : $\ddot{a}_0 = 2 = \alpha_1 2^0 + \alpha_2 (-1)^0$ $a_1 = 7 = \alpha_1 2^1 + \alpha_2 (-1)^1$ Simplifying, we have the pair of equations: $2 = \alpha_1 + \alpha_2$ $7 = 2\alpha_1 - \alpha_2$ which we can solve easily by substitution: $\alpha_2 = 2 - \alpha_1; \quad 7 = 2\alpha_1 - (2 - \alpha_1) = 3\alpha_1 - 2;$ $9 = 3\alpha_1; \ \alpha_1 = 3; \ \alpha_2 = 1.$ Final answer: $a_n = 3 \cdot 2^n - (-1)^n$ Check: $\{a_{n>0}\} = 2, 7, 11, 25, 47, 97 \dots$ (c)2001-2003, Michael P. Frank

8/9/2008

The Case of Degenerate Roots

- Now, what if the C.E. $r^2 c_1 r c_2 = 0$ has only 1 root r_0 ?
- Theorem 2: Then,

 $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, for all $n \ge 0$, for some constants α_1, α_2 .

k-LiHoReCoCos

- Consider a *k*-LiHoReCoCo:
- It's C.E. is: $r^{k} \sum_{i=1}^{k} c_{i} r^{k-i} = 0$

$$a_n = \sum_{i=1}^n c_i a_{n-i}$$

k

• **Thm.3:** If this has k^{i-1} distinct roots r_i , then the solutions to the recurrence are of the form:

$$a_n = \sum_{i=1}^{\kappa} \alpha_i r_i^n$$

for all $n \ge 0$, where the α_i are constants.

Degenerate k-LiHoReCoCos

• Suppose there are *t* roots r_1, \ldots, r_t with multiplicities m_1, \ldots, m_t . Then:

$$a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i - 1} \alpha_{i,j} n^j \right) r_i^n$$

for all $n \ge 0$, where all the α are constants.

Li<u>No</u>ReCoCos

Linear <u>nonhomogeneous</u> RRs with constant coefficients may (unlike Li<u>Ho</u>ReCoCos) contain some terms *F(n)* that depend *only* on *n* (and *not* on any *a_i*'s). General form:

$$a_n = c_1 a_{n-1} + \ldots + c_k a_{n-k} + F(n)$$

The *associated homogeneous recurrence relation* (associated Li<u>Ho</u>ReCoCo).

Solutions of LiNoReCoCos

• A useful theorem about LiNoReCoCos: - If $a_n = p(n)$ is any *particular* solution to the LiNoReCoCo $a_n = \left(\sum_{i=1}^k c_i a_{n-i}\right) + F(n)$

- Then *all* its solutions are of the form: $a_n = p(n) + h(n),$ where $a_n = h(n)$ is any solution to the associated homogeneous RR $a_n = \left(\sum_{i=1}^{k} c_i a_{n-i}\right)$

Example

- Find all solutions to $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?
 - Notice this is a 1-Li<u>No</u>ReCoCo. Its associated 1-Li<u>Ho</u>ReCoCo is $a_n = 3a_{n-1}$, whose solutions are all of the form $a_n = \alpha 3^n$. Thus the solutions to the original problem are all of the form $a_n =$ $p(n) + \alpha 3^n$. So, all we need to do is find one p(n) that works.

Trial Solutions

• If the extra terms F(n) are a degree-*t* polynomial in *n*, you should try a degree-*t* polynomial as the particular solution p(n).

• This case: F(n) is linear so try $a_n = cn + d$. cn+d = 3(c(n-1)+d) + 2n (for all n) (-2c+2)n + (3c-2d) = 0 (collect terms)

So c = -1 and d = -3/2.

So $a_n = -n - 3/2$ is a solution.

• Check: $a_{n\geq 1} = \{-5/2, -7/2, -9/2, \dots\}$

Finding a Desired Solution

• From the previous, we know that all general solutions to our example are of the form:

$$a_n = -n - 3/2 + \alpha 3^n.$$

Solve this for α for the given case, $a_1 = 3$:

$$3 = -1 - 3/2 + \alpha 3^{1}$$

 $\alpha = 11/6$

• The answer is $a_n = -n - 3/2 + (11/6)3^n$

§5.3: Divide & Conquer R.R.s

Main points so far:

- Many types of problems are solvable by reducing a problem of size *n* into some number *a* of independent subproblems, each of size ≤ *n/b*, where *a*≥1 and *b*>1.
- The time complexity to solve such problems is given by a recurrence relation:

g(n)

Time to break problem up into subproblems

 $-T(n) = a T(\lceil n/b \rceil)$

Divide+Conquer Examples

- **Binary search:** Break list into 1 subproblem (smaller list) (so a=1) of size $\leq \lfloor n/2 \rfloor$ (so b=2).
 - So $T(n) = T(\lceil n/2 \rceil) + c$ (g(n)=c constant)
- Merge sort: Break list of length *n* into 2 sublists (*a*=2), each of size $\leq \lceil n/2 \rceil$ (so *b*=2), then merge them, in $g(n) = \Theta(n)$ time.

- So $T(n) = T(\lceil n/2 \rceil) + cn$ (roughly, for some c)

Fast Multiplication Example

- The ordinary grade-school algorithm takes $\Theta(n^2)$ steps to multiply two *n*-digit numbers.
 - This seems like too much work!
- So, let's find an asymptotically *faster* multiplication algorithm!
- To find the product cd of two 2n-digit base-bnumbers, $c=(c_{2n-1}c_{2n-2}...c_0)_b$ and $d=(d_{2n-1}d_{2n-2}...d_0)_b$, first, we break c and d in half: $c=b^nC_1+C_0$, $d=b^nD_1+D_0$, and then... (see next slide)

Derivation of Fast Multiplication

$$cd = (b^{n}C_{1} + C_{0})(b^{n}D_{1} + D_{0})$$

$$= b^{2n}C_{1}D_{1} + b^{n}(C_{1}D_{0} + C_{0}D_{1}) + C_{0}D_{0} \quad (Multiply out polynomials)$$

$$= b^{2n}C_{1}D_{1} + C_{0}D_{0} + Zero$$

$$b^{n}(C_{1}D_{0} + C_{0}D_{1} + C_{1}D_{0} - C_{1}D_{0} + C_{0}D_{0} - C_{0}D_{0})$$

$$= (b^{2n} + b^{n}(C_{1}D_{1}) + (b^{n} + 1)C_{0}D_{0} + b^{n}(C_{1}D_{0} - C_{1}D_{1} - C_{0}D_{0} + C_{0}D_{1})$$

$$= (b^{2n} + b^{n}(C_{1}D_{1}) + (b^{n} + 1)C_{0}D_{0} + b^{n}(C_{1} - C_{0})(D_{0} - D_{0}) \quad (Factor last polynomial)$$
Three multiplications, each with *n*-digit numbers

Recurrence Rel. for Fast Mult.

Notice that the time complexity T(n) of the fast multiplication algorithm obeys the recurrence:

• $T(2n)=3T(n)+\Theta(n)$ *i.e.*,

Time to do the needed adds & subtracts of *n*-digit and 2*n*-digit numbers

• $T(n)=3T(n/2)+\Theta(n)$ So a=3, b=2.

The Master Theorem

Consider a function f(n) that, for all $n=b^k$ for all $k \in \mathbb{Z}^+$, satisfies the recurrence relation: $f(n) = af(n/b) + cn^d$ with $a \ge 1$, integer b > 1, real c > 0, $d \ge 0$. Then: $f(n) \in \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$

(c)2001-2003, Michael P. Frank

Master Theorem Example

- Recall that complexity of fast multiply was: $T(n)=3T(n/2)+\Theta(n)$
- Thus, *a*=3, *b*=2, *d*=1. So *a* > *b*^{*d*}, so case 3 of the master theorem applies, so:

 $T(n) = O(n^{\log_b a}) = O(n^{\log_2 3})$

which is $O(n^{1.58...})$, so the new algorithm is strictly faster than ordinary $\Theta(n^2)$ multiply!

(c)2001-2003, Michael P. Frank

§6.5: Inclusion-Exclusion

- This topic will have been covered out-oforder already in Module #15, Combinatorics.
- As for Section 6.6, applications of Inclusion-Exclusion: No slides yet.