Module \#17:
 Recurrence Relations

Rosen $5^{\text {th }}$ ed., §6.1-6.3
~ 29 slides, ~ 1.5 lecture

§6.1: Recurrence Relations

- A recurrence relation (R.R., or just recurrence) for a sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more previous elements a_{0}, \ldots, a_{n-1} of the sequence, for all $n \geq n_{0}$.
- A recursive definition, without the base cases.
- A particular sequence (described non-recursively) is said to solve the given recurrence relation if it is consistent with the definition of the recurrence.
- A given recurrence relation may have many solutions.

Recurrence Relation Example

- Consider the recurrence relation

$$
a_{n}=2 a_{n-1}-a_{n-2}(n \geq 2) .
$$

- Which of the following are solutions?

$$
\begin{aligned}
a_{n} & =3 n & & \text { Yes } \\
a_{n} & =2^{n} & & \text { No } \\
a_{n} & =5 & & \text { Yes }
\end{aligned}
$$

Example Applications

- Recurrence relation for growth of a bank account with $P \%$ interest per given period:

$$
M_{n}=M_{n-1}+(P / 100) M_{n-1}
$$

- Growth of a population in which each organism yields 1 new one every period starting 2 periods after its birth.

$$
P_{n}=P_{n-1}+P_{n-2} \quad \text { (Fibonacci relation) }
$$

Solving Compound Interest RR

$$
\text { - } \begin{aligned}
M_{n} & =M_{n-1}+(P / 100) M_{n-1} \\
& =(1+P / 100) M_{n-1} \\
& =r M_{n-1} \quad(\operatorname{let} r=1+P / 100) \\
& =r\left(r M_{n-2}\right) \\
& =r \cdot r \cdot\left(r M_{n-3}\right) \quad \ldots \text { and so on to... } \\
& =r^{n} M_{0}
\end{aligned}
$$

Tower of Hanoi Example

- Problem: Get all disks from peg 1 to peg 2.
- Only move 1 disk at a time.
- Never set a larger disk on a smaller one.

Hanoi Recurrence Relation

- Let $H_{n}=\#$ moves for a stack of n disks.
- Optimal strategy:
- Move top $n-1$ disks to spare peg. (H_{n-1} moves)
- Move bottom disk. (1 move)
- Move top $n-1$ to bottom disk. (H_{n-1} moves)
- Note: $H_{n}=2 H_{n-1}+1$

Solving Tower of Hanoi RR

$$
\begin{aligned}
H_{n} & =2 H_{n-1}+1 \\
& =2\left(2 H_{n-2}+1\right)+1 \quad=2^{2} H_{n-2}+2+1 \\
& =2^{2}\left(2 H_{n-3}+1\right)+2+1 \quad=2^{3} H_{n-3}+2^{2}+2+1 \\
& \cdots \\
& =2^{n-1} H_{1}+2^{n-2}+\ldots+2+1 \\
& =2^{n-1}+2^{n-2}+\ldots+2+1 \quad \quad\left(\text { since } H_{1}=1\right) \\
& =\sum_{i=0}^{n-1} 2^{i} \\
& =2^{n}-1
\end{aligned}
$$

§6.2: Solving Recurrences

General Solution Schemas

- A linear homogeneous recurrence of degree \underline{k} with constant coefficients (" k $\mathrm{LiHoReCoCo")}$ is a recurrence of the form

$$
a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k},
$$

where the c_{i} are all real, and $c_{k} \neq 0$.

- The solution is uniquely determined if k initial conditions $a_{0} \ldots a_{k-1}$ are provided.

Solving LiHoReCoCos

- Basic idea: Look for solutions of the form $a_{n}=r^{n}$, where r is a constant.
- This requires the characteristic equation:

$$
\begin{aligned}
& r^{n}=c_{1} r^{n-1}+\ldots+c_{k} r^{n-k}, \text { i.e. }, \\
& r^{k}-c_{1} r^{k-1}-\ldots-c_{k}=0
\end{aligned}
$$

- The solutions (characteristic roots) can yield an explicit formula for the sequence.

Solving 2-LiHoReCoCos

- Consider an arbitrary 2-LiHoReCoCo:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

- It has the characteristic equation (C.E.):

$$
r^{2}-c_{1} r-c_{2}=0
$$

- Thm. 1: If this CE has 2 roots $r_{1} \neq r_{2}$, then

$$
a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}^{n} \text { for } n \geq 0
$$

for some constants α_{1}, α_{2}.

Example

- Solve the recurrence $a_{n}=a_{n-1}+2 a_{n-2}$ given the initial conditions $a_{0}=2, a_{1}=7$.
- Solution: Use theorem 1
$-c_{1}=1, c_{2}=2$
- Characteristic equation:

$$
r^{2}-r-2=0
$$

- Solutions: $r=\left[-(-1) \pm\left((-1)^{2}-4 \cdot 1 \cdot(-2)\right)^{1 / 2}\right] / 2 \cdot 1$

$$
=\left(1 \pm 9^{1 / 2}\right) / 2=(1 \pm 3) / 2, \text { so } r=2 \text { or } r=-1
$$

- So $a_{n}=\alpha_{1} 2^{n}+\alpha_{2}(-1)^{n}$.

Example Continued...

- To find α_{1} and α_{2}, solve the equations for the initial conditions a_{0} and a_{1} :

$$
\begin{aligned}
& a_{0}=2=\alpha_{1} 2^{0}+\alpha_{2}(-1)^{0} \\
& a_{1}=7=\alpha_{1} 2^{1}+\alpha_{2}(-1)^{1}
\end{aligned}
$$

Simplifying, we have the pair of equations:

$$
\begin{aligned}
& 2=\alpha_{1}+\alpha_{2} \\
& 7=2 \alpha_{1}-\alpha_{2}
\end{aligned}
$$

which we can solve easily by substitution:

$$
\begin{aligned}
& \alpha_{2}=2-\alpha_{1} ; \quad 7=2 \alpha_{1}-\left(2-\alpha_{1}\right)=3 \alpha_{1}-2 ; \\
& 9=3 \alpha_{1} ; \quad \alpha_{1}=3 ; \quad \alpha_{2}=1 .
\end{aligned}
$$

- Final answer: $a_{n}=3 \cdot 2^{n}-(-1)^{n}$

Check: $\left\{a_{n \geq 0}\right\}=2,7,11,25,47,97 \ldots$

The Case of Degenerate Roots

- Now, what if the C.E. $r^{2}-c_{1} r-c_{2}=0$ has only 1 root r_{0} ?
- Theorem 2: Then,

$$
a_{n}=\alpha_{1} r_{0}{ }^{n}+\alpha_{2} n r_{0}{ }^{n}, \text { for all } n \geq 0,
$$

for some constants α_{1}, α_{2}.

k-LiHoReCoCos

- Consider a k-LiHoReCoCo:
- It's C.E. is:

$$
r^{k}-\sum_{i=1}^{k} c_{i} r^{k-i}=0
$$

$$
a_{n}=\sum_{i=1}^{k} c_{i} a_{n-i}
$$

- Thm.3: If this has k distinct roots r_{i}, then the solutions to the recurrence are of the form:

$$
a_{n}=\sum_{i=1}^{k} \alpha_{i} r_{i}^{n}
$$

for all $n \geq 0$, where the α_{i} are constants.

Degenerate k-LiHoReCoCos

- Suppose there are t roots r_{1}, \ldots, r_{t} with multiplicities m_{1}, \ldots, m_{t}. Then:

$$
a_{n}=\sum_{i=1}^{t}\left(\sum_{j=0}^{m_{i}-1} \alpha_{i, j} n^{j}\right) r_{i}^{n}
$$

for all $n \geq 0$, where all the α are constants.

LiNoReCoCos

- Linear nonhomogeneous RRs with constant coefficients may (unlike LiHoReCoCos) contain some terms $F(n)$ that depend only on n (and not on any a_{i} 's). General form:

$$
a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}+F(n)
$$

The associated homogeneous recurrence relation (associated Li $\underline{\text { HoReCoCo). }}$

Solutions of LiNoReCoCos

- A useful theorem about LiNoReCoCos:
- If $a_{n}=p(n)$ is any particular solution to the LiNoReCoCo

$$
a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-i}\right)+F(n)
$$

- Then all its solutions are of the form:

$$
a_{n}=p(n)+h(n),
$$

where $a_{n}=h(n)$ is any solution to the associated homogeneous RR

$$
a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-i}\right)
$$

Example

- Find all solutions to $a_{n}=3 a_{n-1}+2 n$. Which solution has $a_{1}=3$?
- Notice this is a $1-\mathrm{LiNoReCoCo}$. Its associated 1 -LiHoReCoCo is $a_{n}=3 a_{n-1}$, whose solutions are all of the form $a_{n}=\alpha 3^{n}$. Thus the solutions to the original problem are all of the form $a_{n}=$ $p(n)+\alpha 3^{n}$. So, all we need to do is find one $p(n)$ that works.

Trial Solutions

- If the extra terms $F(n)$ are a degree- t polynomial in n, you should try a degree- t polynomial as the particular solution $p(n)$.
- This case: $F(n)$ is linear so try $a_{n}=c n+d$.

$$
\begin{aligned}
& c n+d=3(c(n-1)+d)+2 n \quad(\text { for all } n) \\
& (-2 c+2) n+(3 c-2 d)=0 \quad(\text { collect terms }) \\
& \text { So } c=-1 \text { and } d=-3 / 2 . \\
& \text { So } a_{n}=-n-3 / 2 \text { is a solution. }
\end{aligned}
$$

- Check: $a_{n \geq 1}=\{-5 / 2,-7 / 2,-9 / 2, \ldots\}$

Finding a Desired Solution

- From the previous, we know that all general solutions to our example are of the form:

$$
a_{n}=-n-3 / 2+\alpha 3^{n} .
$$

Solve this for α for the given case, $a_{1}=3$:

$$
\begin{aligned}
& 3=-1-3 / 2+\alpha 3^{1} \\
& \alpha=11 / 6
\end{aligned}
$$

- The answer is $a_{n}=-n-3 / 2+(11 / 6) 3^{n}$

§5.3: Divide \& Conquer R.R.s

Main points so far:

- Many types of problems are solvable by reducing a problem of size n into some number a of independent subproblems, each of size $\leq\lceil n / b\rceil$, where $a \geq 1$ and $b>1$.
- The time complexity to solve such problems is given by a recurrence relation:
$-T(n)=a(T(\lceil n / b\rceil)+g(n)$
Time for each subproblem
1-2003, Michael P. Frank

Time to break problem up into subproblems

Divide + Conquer Examples

- Binary search: Break list into 1 subproblem (smaller list) (so $a=1$) of size $\leq\lceil n / 2\rceil$ (so $b=2$).
- So $T(n)=T(\mid n / 2\rceil)+c \quad(g(n)=c$ constant $)$
- Merge sort: Break list of length n into 2 sublists ($a=2$), each of size $\leq\lceil n / 2\rceil$ (so $b=2$), then merge them, in $g(n)=\Theta(n)$ time.
- So $T(n)=T([n / 2\rceil)+c n \quad$ (roughly, for some c)

Fast Multiplication Example

- The ordinary grade-school algorithm takes $\Theta\left(n^{2}\right)$ steps to multiply two n-digit numbers.
- This seems like too much work!
- So, let's find an asymptotically faster multiplication algorithm!
- To find the product $c d$ of two $2 n$-digit base- b numbers, $c=\left(c_{2 n-1} c_{2 n-2} \ldots c_{0}\right)_{b}$ and $d=\left(d_{2 n-1} d_{2 n-2} \ldots d_{0}\right)_{b}$, first, we break c and d in half: $c=b^{n} C_{1}+C_{0}, \quad d=b^{n} D_{1}+D_{0}$, and then... (see next slide)

Derivation of Fast Multiplication

$$
\begin{aligned}
c d= & \left(b^{n} C_{1}+C_{0}\right)\left(b^{n} D_{1}+D_{0}\right) \\
= & b^{2 n} C_{1} D_{1}+b^{n}\left(C_{1} D_{0}+C_{0} D_{1}\right)+C_{0} D_{0} \quad \text { polynomials) } \\
= & b^{2 n} C_{1} D_{1}+C_{0} D_{0}+\quad \text { Zero } \\
& \left.\quad b^{n}\left(C_{1} D_{0}+C_{0} D_{1}+C_{1} D_{1}\right)-C_{1} D_{1}+\left(C_{0} D_{0}\right)-C_{0} D_{0}\right) \\
= & \left(b^{2 n}+b^{n}\left(C_{1} D_{1}+\left(b^{n}+1 C_{0} D_{0}\right)+\right.\right. \\
& b^{n}\left(C_{1} D_{0}-C_{1} D_{1}-C_{0} D_{0}+C_{0} D_{1}\right)
\end{aligned}
$$

$$
=\left(b^{2 n}+b^{n} C_{1} D_{1}\right)+\left(b^{n}+1 C_{0} D\right)+
$$

$$
b^{n}\left(C_{1}-C_{0}\right)\left(D_{0}-D \uparrow\right. \text { (Factor last polynomial) }
$$

Recurrence Rel. for Fast Mult.

Notice that the time complexity $T(n)$ of the fast multiplication algorithm obeys the recurrence:

Time to do the needed adds \&

- $T(2 n)=3 T(n)+\Theta(n)$ i.e.,
- $T(n)=3 T(n / 2)+\Theta(n)$

$$
\text { So } a=3, b=2 \text {. }
$$

The Master Theorem

Consider a function $f(n)$ that, for all $n=b^{k}$ for all $k \in \mathbf{Z}^{+}$, satisfies the recurrence relation:

$$
f(n)=a f(n / b)+c n^{d}
$$

with $a \geq 1$, integer $b>1$, real $c>0, d \geq 0$. Then:

$$
f(n) \in \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Master Theorem Example

- Recall that complexity of fast multiply was:

$$
T(n)=3 T(n / 2)+\Theta(n)
$$

- Thus, $a=3, b=2, d=1$. So $a>b^{d}$, so case 3 of the master theorem applies, so:

$$
T(n)=O\left(n^{\log _{b} a}\right)=O\left(n^{\log _{2} 3}\right)
$$

which is $O\left(n^{1.58 \ldots}\right)$, so the new algorithm is strictly faster than ordinary $\Theta\left(n^{2}\right)$ multiply!

Module \#17-Recurrences

§6.4: Generating Functions

- Not covered this semester.

§6.5: Inclusion-Exclusion

- This topic will have been covered out-oforder already in Module \#15, Combinatorics.
- As for Section 6.6, applications of Inclusion-Exclusion: No slides yet.

