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§6.1: Recurrence Relations

•• A A recurrence relationrecurrence relation (R.R., or just (R.R., or just recurrencerecurrence) ) 
f {f { } i i h} i i hfor a sequence {for a sequence {aann} is an equation that expresses } is an equation that expresses 
aann in terms of one or more previous elements in terms of one or more previous elements 

f h f llf h f llaa00, …, , …, aann−1−1 of the sequence, for all of the sequence, for all nn≥≥nn00..
–– A recursive definition, without the base cases.A recursive definition, without the base cases.

•• A particular sequence (described nonA particular sequence (described non--recursively) recursively) 
is said to is said to solvesolve the given recurrence relation if it is the given recurrence relation if it is 
consistent with the definition of the recurrence.consistent with the definition of the recurrence.
–– A given recurrence relation may have many solutions.A given recurrence relation may have many solutions.
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Recurrence Relation Example

•• Consider the recurrence relationConsider the recurrence relation
aann = 2= 2aann−1−1 − − aann−2−2 ((nn≥2).≥2).

•• Which of the following are solutions?Which of the following are solutions?•• Which of the following are solutions?Which of the following are solutions?
aann = 3= 3nn Yes
aann = 2= 2nn

aann = 5= 5 Yes

No

aann  5 5 es
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Example Applications

•• Recurrence relation for growth of a bank Recurrence relation for growth of a bank 
account with account with PP% interest per given period:% interest per given period:

MM == MM 11 + (+ (PP/100)/100)MM 11MMnn   MMnn−1−1 + (+ (PP/100)/100)MMnn−1−1

•• Growth of a population in which each Growth of a population in which each 
i i ld i di i ld i dorganism yields 1 new one every period organism yields 1 new one every period 

starting 2 periods after its birth.starting 2 periods after its birth.
PPnn = = PPnn−1−1 + + PPnn−2−2 (Fibonacci relation)(Fibonacci relation)
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Solving Compound Interest RR

•• MMnn = = MMnn−1−1 + (+ (PP/100)/100)MMnn−1−1

= (1 + = (1 + PP/100) /100) MMnn−1−1

== rr MM (let(let rr = 1 += 1 + PP/100)/100)= = rr MMnn−1−1 (let (let rr = 1 + = 1 + PP/100)/100)
= = rr ((rr MMnn−2−2))
= = rr··rr·(·(rr MMnn−3−3)) …and so on to……and so on to…

nn MM= = rrnn MM00
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Tower of Hanoi Example

•• Problem: Get all disks from peg 1 to peg 2.Problem: Get all disks from peg 1 to peg 2.
–– Only move 1 disk at a time.Only move 1 disk at a time.
–– Never set a larger disk on a smaller one.Never set a larger disk on a smaller one.Never set a larger disk on a smaller one.Never set a larger disk on a smaller one.
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Hanoi Recurrence Relation

•• Let Let HHn n = # moves for a stack of = # moves for a stack of nn disks.disks.
•• Optimal strategy:Optimal strategy:

Move topMove top nn−1 disks to spare peg (−1 disks to spare peg (HH moves)moves)–– Move top Move top nn 1 disks to spare peg. (1 disks to spare peg. (HHnn−1−1 moves)moves)
–– Move bottom disk. (1 move)Move bottom disk. (1 move)
–– Move top Move top nn−1 to bottom disk. (−1 to bottom disk. (HHnn−1−1 moves)moves)

•• Note:      Note:      HHnn = 2= 2HHnn−1−1 + 1+ 1nn nn 11
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Solving Tower of Hanoi RR

HHnn = 2 = 2 HHnn−1−1 + 1+ 1
2 (22 (2 HH 1) 11) 1 2222 HH 2 12 1= = 2 (2 2 (2 HHnn−2−2 + 1) + 1 + 1) + 1 = 2= 22 2 HHnn−2−2 + 2 + 1+ 2 + 1

= 2= 222(2 (2 HHnn−3−3 + 1) + 2 + 1+ 1) + 2 + 1 = 2= 233 HHnn−3−3 + 2+ 222 + 2 + 1+ 2 + 1
……
= 2= 2nn−1−1 HH11 + 2+ 2nn−2−2 + … + 2 + 1+ … + 2 + 1
= 2= 2nn−1−1 + 2+ 2nn−2−2 + … + 2 + 1+ … + 2 + 1 (since (since HH11 = 1)= 1)
= = ∑

−1

2
n

i

= 2= 2nn − 1− 1

∑
=0i
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§6.2: Solving Recurrences
G l S l ti S h

•• A A lilinear near hohomogeneous mogeneous rerecurrence of degree currence of degree 
General Solution Schemas

kk with with coconstant nstant cocoefficientsefficients (“(“kk--
LiHoReCoCo”) is a recurrence of the formLiHoReCoCo”) is a recurrence of the form))

aann = = cc11aann−1−1 + … + + … + cckkaann−−kk,,
where thewhere the cc are all real andare all real and cckk ≠ 0≠ 0where the where the ccii are all real, and are all real, and cckk ≠ 0.≠ 0.

•• The solution is uniquely determined if The solution is uniquely determined if kk
initial conditions initial conditions aa00……aakk−1−1 are provided.are provided.
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Solving LiHoReCoCos

•• Basic idea: Look for solutions of the form Basic idea: Look for solutions of the form 
aann = = rrnn, where , where rr is a constant.is a constant.

•• This requires theThis requires the characteristic equationcharacteristic equation::This requires the This requires the characteristic equationcharacteristic equation::
rrnn = = cc11rrnn−1−1 + … + + … + cckkrrnn−−kk, , i.e.i.e., , 

kk kk−1−1 00rrkk − − cc11rrkk 11 − … − − … − cckk = 0= 0
•• The solutions (The solutions (characteristic rootscharacteristic roots) can ) can 

yield an explicit formula for the sequence.yield an explicit formula for the sequence.
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Solving 2-LiHoReCoCos

•• Consider an arbitrary 2Consider an arbitrary 2--LiHoReCoCo:LiHoReCoCo:
aann = = cc11aann−1−1 + + cc22aann−2−2

•• It has the characteristic equation (C E ):It has the characteristic equation (C E ):It has the characteristic equation (C.E.): It has the characteristic equation (C.E.): 
rr22 − − cc11r r − − cc22 = 0= 0

f hi hf hi h hh•• Thm. 1:Thm. 1: If this CE has 2 roots If this CE has 2 roots rr11≠≠rr22, then, then
aann = = αα11rr11

nn + + αα22rr22
nn for for nn≥0≥0nn 11 11 22 22

for some constants for some constants αα11, , αα22..
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Example

•• Solve the recurrence Solve the recurrence aann = = aann−1−1 + 2+ 2aann−2−2 given the given the 
i i i l di ii i i l di i 22 77initial conditions initial conditions aa00 = 2, = 2, aa11 = 7.= 7.

•• Solution: Use theorem 1Solution: Use theorem 1
–– cc11 = 1, = 1, cc22 = 2= 2
–– Characteristic equation: Characteristic equation: 

rr22 − − rr − 2 = 0− 2 = 0
–– Solutions:  Solutions:  rr = [−(−1)= [−(−1)±±((−1)((−1)22 − 4·1·(−2))− 4·1·(−2))1/21/2] / 2·1] / 2·1

//= (1= (1±±991/21/2)/2 =  (1)/2 =  (1±±3)/2, so  3)/2, so  rr = 2  or  = 2  or  rr = −1.= −1.
–– So So aann = = αα11 22nn + + αα22 (−1)(−1)nn.    .    
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Example Continued…
•• To find To find αα11 and and αα22, solve the equations for the initial , solve the equations for the initial 

conditions conditions aa00 and and aa11: : 00 11
aa00 = 2 = = 2 = αα112200 + + αα22 (−1)(−1)00

aa11 = 7 = = 7 = αα112211 + + αα22 (−1)(−1)11

Simplifying we have the pair of equations:Simplifying we have the pair of equations:Simplifying, we have the pair of equations:Simplifying, we have the pair of equations:
2 = 2 = αα11 + + αα22
7 = 27 = 2αα11 − − αα2211 22

which we can solve easily by substitution:which we can solve easily by substitution:
αα22 = 2−= 2−αα11;   7 = 2;   7 = 2αα11 − (2−− (2−αα11) = 3) = 3αα11 − 2; − 2; 
9 = 39 = 3αα ;; αα = 3;= 3; αα = 1= 19 = 39 = 3αα11;  ;  αα11 = 3;   = 3;   αα22 = 1.= 1.

•• Final answer:Final answer: aann = = 3·23·2nn − (−1)− (−1)nn
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The Case of Degenerate Roots

•• Now, what if the C.E. Now, what if the C.E. rr22 − − cc11r r − − cc22 = 0 has = 0 has 
only 1 root only 1 root rr00??

•• Theorem 2:Theorem 2: ThenThenTheorem 2:Theorem 2: Then,Then,
aann = = αα11rr00

nn + + αα22nrnr00
nn,  for all ,  for all nn≥0,≥0,

for some constantsfor some constantsfor some constants for some constants αα11, , αα22..
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k-LiHoReCoCos

•• Consider a Consider a kk--LiHoReCoCo:LiHoReCoCo:
∑=

k

aca•• It’s C.E. is:It’s C.E. is: ∑
=

−=
i

inin aca
10=−∑ −

k
ik

i
k rcr

•• Thm.3:Thm.3: If this has If this has kk distinct roots distinct roots rrii, , then the then the 
solutions to the recurrence are of the form:solutions to the recurrence are of the form:

1=i

solutions to the recurrence are of the form:solutions to the recurrence are of the form:

∑=
k

n
iin ra α

for all for all nn≥0, where the ≥0, where the ααii are constants.are constants.

∑
=i 1
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Degenerate k-LiHoReCoCos

•• Suppose there are Suppose there are tt roots roots rr11,…,,…,rrtt with with 
l i li i il i li i i ThThmultiplicities multiplicities mm11,…,,…,mmtt.  Then:.  Then:

∑ ∑
−

⎟
⎞

⎜
⎛t m

j
i 1

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

n
i

j

j
jin rna

1 0
,α

for all for all nn≥0, where all the ≥0, where all the αα are constants.are constants.
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LiNoReCoCos

•• Linear Linear nononhomogeneousnhomogeneous RRs with constant RRs with constant 
coefficients may (unlike Licoefficients may (unlike LiHoHoReCoCos) ReCoCos) 
contain some terms contain some terms FF((nn) that depend ) that depend onlyonly(( ) p) p yy
on on nn (and (and notnot on any on any aaii’s).  General form:’s).  General form:

+ ++ + ++ FF(( ))aann = = cc11aann−1−1 + … + + … + cckkaann−−kk + + FF((nn))

The associated homogeneous recurrence relation
(associated LiHoReCoCo).
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Solutions of LiNoReCoCos

•• A useful theorem about LiNoReCoCos:A useful theorem about LiNoReCoCos:
–– If If aann = = pp((nn) is any ) is any particularparticular solution to the solution to the 

LiNoReCoCoLiNoReCoCo k

⎟
⎞

⎜
⎛∑

ThenThen allall its solutions are of the form:its solutions are of the form:

)(
1

nFaca
i

inin +⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=
−

–– Then Then allall its solutions are of the form:its solutions are of the form:
aann = = pp((nn) + ) + hh((nn),),

wherewhere aa == hh((nn) is any solution to the associated) is any solution to the associatedwhere where aann = = hh((nn) is any solution to the associated ) is any solution to the associated 
homogeneous RRhomogeneous RR ⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=
−

k

i
inin aca

1
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Example

•• Find all solutions to Find all solutions to aann = 3= 3aann−1−1+2+2nn.  Which .  Which 
solution has solution has aa11 = 3?= 3?
–– Notice this is a 1Notice this is a 1--LiLiNoNoReCoCo. Its associatedReCoCo. Its associatedNotice this is a 1Notice this is a 1 LiLiNoNoReCoCo.  Its associated ReCoCo.  Its associated 

11--LiLiHoHoReCoCo is ReCoCo is aann = 3= 3aann−1−1, whose solutions , whose solutions 
are all of the form are all of the form aann = = αα33nn.  Thus the solutions .  Thus the solutions a e a o t e oa e a o t e o aann αα33 . us t e so ut o s. us t e so ut o s
to the original problem are all of the form to the original problem are all of the form aann = = 
pp((nn) + ) + αα33nn.. So, all we need to do is find one So, all we need to do is find one pp(( )) S ,S ,
pp((nn) that works.) that works.
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Trial Solutions

•• If the extra terms If the extra terms FF((nn) are a degree) are a degree--tt polynomial polynomial 
inin nn you should try a degreeyou should try a degree tt polynomial as thepolynomial as thein in nn, you should try a degree, you should try a degree--tt polynomial as the polynomial as the 
particular solution particular solution pp((nn).).

•• This case:This case: FF((nn) is linear so try) is linear so try aa == cncn ++ dd•• This case: This case: FF((nn) is linear so try ) is linear so try aann = = cncn + + dd..
cn+dcn+d = 3(= 3(cc((nn−1)+−1)+dd) + 2) + 2nn (for all (for all nn))
( 2( 2cc+2)+2)nn + (3+ (3cc 22dd) = 0) = 0 (collect terms)(collect terms)(−2(−2cc+2)+2)nn + (3+ (3cc−2−2dd) = 0) = 0 (collect terms)(collect terms)
So So cc = −1 and = −1 and dd = −3/2.= −3/2.
SoSo aa == nn 3/2 is a solution3/2 is a solutionSo So aann = −= −nn − 3/2   is a solution.− 3/2   is a solution.

•• Check:  Check:  aann≥1≥1 = {−5/2, −7/2, −9/2, … }= {−5/2, −7/2, −9/2, … }
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Finding a Desired Solution

•• From the previous, we know that all general From the previous, we know that all general 
solutions to our example are of the form:solutions to our example are of the form:

aa == −−nn − 3/2 +− 3/2 + αα33nnaann   nn  3/2 +  3/2 + αα33 ..
Solve this for Solve this for αα for the given case, for the given case, aa11 = 3:= 3:

3 = −1 − 3/2 + 3 = −1 − 3/2 + αα3311

αα = 11/6= 11/6αα = 11/6= 11/6
•• The answer is The answer is aann = −= −nn − 3/2 + (11/6)3− 3/2 + (11/6)3nn
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§5.3: Divide & Conquer R.R.s

Main points so far:Main points so far:
•• Many types of problems are solvable by Many types of problems are solvable by 

reducing a problem of sizereducing a problem of size nn into someinto somereducing a problem of size reducing a problem of size nn into some into some 
number number aa of independent subproblems, each of independent subproblems, each 
of si eof si e ≤⎡≤⎡ //bb⎤⎤ herehere ≥≥1 and1 and bb>1>1of size of size ≤⎡≤⎡nn//bb⎤⎤, where , where aa≥≥1 and 1 and bb>1.>1.

•• The time complexity to solve such problems The time complexity to solve such problems 
is given by a recurrence relation:is given by a recurrence relation:
–– TT((nn) =) = aa··TT((⎡⎡nn//bb⎤⎤) +) + gg((nn)) Time to break problem
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Divide+Conquer Examples

•• Binary search:Binary search: Break list into 1 subBreak list into 1 sub--
problem (smaller list) (so problem (smaller list) (so aa=1) of size =1) of size 
≤⎡≤⎡nn/2/2⎤⎤ (so (so bb=2).=2).⎡⎡ ⎤⎤ (( ))
–– So So TT((nn) = ) = TT((⎡⎡nn/2/2⎤⎤)+)+cc ((gg((nn)=)=cc constant)constant)

M tM t B k li t f l thB k li t f l th i t 2i t 2•• Merge sort:Merge sort: Break list of length Break list of length n n into 2 into 2 
sublists (sublists (aa=2), each of size =2), each of size ≤⎡≤⎡nn/2/2⎤⎤ (so (so bb=2), =2), 
then merge them, in then merge them, in gg((nn) = ) = ΘΘ((nn) time.) time.
–– So So TT((nn) = ) = TT((⎡⎡nn/2/2⎤⎤) + ) + cn   cn   (roughly, for some (roughly, for some cc))
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Fast Multiplication Example
•• The ordinary gradeThe ordinary grade--school algorithm takes school algorithm takes ΘΘ((nn22) ) 

steps to multiply twosteps to multiply two nn--digit numbersdigit numberssteps to multiply two steps to multiply two nn digit numbers.digit numbers.
–– This seems like too much work!This seems like too much work!

•• So, let’s find an asymptotically So, let’s find an asymptotically faster faster , y p y, y p y ff
multiplication algorithm!multiplication algorithm!

•• To find the product To find the product cdcd of two 2of two 2nn--digit basedigit base--bb
bb (( )) ddnumbers, numbers, cc=(=(cc22nn--11cc22nn--22……cc00))bb and and 

dd=(=(dd22nn--11dd22nn--22……dd00))bb, first, we break , first, we break cc and and dd in half: in half: 
cc==bbnnCC11++CC00 dd==bbnnDD11++DD00cc bb CC11++CC00,      ,      dd bb DD11++DD00, , 

and then... (see next slide)and then... (see next slide)
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Derivation of Fast Multiplication

)(

))((
2

0101

DCDCDCbDCb

DDbCCbcd
nn

nn

+++=

++=
(Multiply out)(

0011
2

00100111

DCDCb

DCDCDCbDCb
n ++=

+++=
Zero

polynomials)

)1()(

))()((
2

000011111001

DCbDCbb

DCDCDCDCDCDCb
nnn

n

++++=

−+−++

)(

)1()(

10001101

0011

DCDCDCDCb

DCbDCbb
n +−−

++++=

))((

)1()(

1001

0011
2

DDCCb

DCbDCbb
n

nnn

−−

++++=

(Factor last polynomial)
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Recurrence Rel. for Fast Mult.

Notice that the time complexity Notice that the time complexity TT((nn) of the ) of the 
fast multiplication algorithm obeys the fast multiplication algorithm obeys the 
recurrence:recurrence: Time to do the needed adds &

•• TT(2(2nn)=3)=3TT((nn)+)+ΘΘ((nn))
ii

Time to do the needed adds & 
subtracts of n-digit and 2n-digit
numbersi.e.i.e.,,

•• TT((nn)=3)=3TT((nn/2)+/2)+ΘΘ((nn))
So So aa=3, =3, bb=2.=2.
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The Master Theorem

Consider a function Consider a function ff((nn) that, for all ) that, for all nn==bbkk for for 
all all kk∈∈ZZ++,,,,satisfies the recurrence relation:satisfies the recurrence relation:

ff((nn) =) = afaf((nn//bb) +) + cncnddff((nn)  )  afaf((nn//bb) + ) + cncn
with with aa≥1, integer ≥1, integer bb>1>1, real , real cc>0, >0, dd≥0.  Then:≥0.  Then:

⎪
⎨

⎧

=
<

∈ dd

dd

bannO
banO

nf if)log(
 if)(

)(
⎪
⎩

⎨
>
=∈

da banO
bannOnf

b  if)(
 if)log()(

log
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Master Theorem Example

•• Recall that complexity of fast multiply was:Recall that complexity of fast multiply was:
TT((nn)=3)=3TT((nn/2)+/2)+ΘΘ((nn))

•• ThusThus aa=3=3 bb=2=2 dd=1 So=1 So aa >> bbdd so case 3so case 3•• Thus, Thus, aa=3, =3, bb=2, =2, dd=1.  So =1.  So aa > > bbdd, so case 3 , so case 3 
of the master theorem applies, so:of the master theorem applies, so:

ll

which iswhich is OO((nn1.58…1.58…) so the new algorithm is) so the new algorithm is
)()()( 3loglog 2nOnOnT ab ==

which is which is OO((nn ), so the new algorithm is ), so the new algorithm is 
strictly faster than ordinary strictly faster than ordinary ΘΘ((nn22) multiply!) multiply!
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§6.4: Generating Functions

•• Not covered this semester.Not covered this semester.
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§6.5: Inclusion-Exclusion

•• This topic will have been covered outThis topic will have been covered out--ofof--
order already in Module #15, order already in Module #15, 
Combinatorics.Combinatorics.

•• As for Section 6.6, applications of As for Section 6.6, applications of 
InclusionInclusion Exclusion: No slides yetExclusion: No slides yetInclusionInclusion--Exclusion: No slides yet.Exclusion: No slides yet.
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