

Binary Relations

- Let A, B be any two sets.
- A binary relation R from A to B, written (with signature) $R:A \leftrightarrow B$, is a subset of $A \times B$.
 - E.g., let \leq : $\mathbb{N} \leftrightarrow \mathbb{N} := \{(n,m) \mid n \leq m\}$
- The notation a R b or aRb means $(a,b) \in R$.
 - *E.g.*, *a* < *b* means (*a*,*b*)∈ <
- If aRb we may say "a is related to b (by relation R)", or "a relates to b (under relation R)".
- A binary relation R corresponds to a predicate function $P_R:A\times B\to \{\mathbf{T},\mathbf{F}\}\$ defined over the 2 sets A,B;e.g., "eats" := $\{(a,b)|\$ organism a eats food $b\}$

Complementary Relations

- Let $R:A \leftrightarrow B$ be any binary relation.
- Then, $\mathbb{R}: A \leftrightarrow B$, the *complement* of R, is the binary relation defined by

$$\mathcal{R} := \{(a,b) \mid (a,b) \notin R\} = (A \times B) - R$$

Note this is just \overline{R} if the universe of discourse is $U = A \times B$; thus the name complement.

• Note the complement of R is R.

Example: $\neq = \{(a,b) \mid (a,b) \notin <\} = \{(a,b) \mid \neg a < b\} = \geq |$

Inverse Relations

• Any binary relation $R:A \leftrightarrow B$ has an *inverse* relation $R^{-1}:B \leftrightarrow A$, defined by

$$R^{-1} := \{(b,a) \mid (a,b) \in R\}.$$

$$E.g., <^{-1} = \{(b,a) \mid a < b\} = \{(b,a) \mid b > a\} = >.$$

• *E.g.*, if *R*:People \rightarrow Foods is defined by $aRb \Leftrightarrow a \ eats \ b$, then: $b \ R^{-1} \ a \Leftrightarrow b \ is \ eaten \ by \ a$. (Passive voice.)

Relations on a Set

- A (binary) relation from a set A to itself is called a relation on the set A.
- *E.g.*, the "<" relation from earlier was defined as a relation *on* the set **N** of natural numbers.
- The *identity relation* I_A on a set A is the set $\{(a,a)|a\in A\}$.

Reflexivity

- A relation R on A is reflexive if $\forall a \in A$, aRa.
 - E.g., the relation $\geq :\equiv \{(a,b) \mid a \geq b\}$ is reflexive.
- A relation is *irreflexive* iff its complementary relation is reflexive.
 - Note "irreflexive" ≠ "not reflexive"!
 - Example: < is irreflexive.
 - Note: "likes" between people is not reflexive, but not irreflexive either. (Not everyone likes themselves, but not everyone dislikes themselves either.)

Symmetry & Antisymmetry

- A binary relation R on A is symmetric iff R
 - $= R^{-1}$, that is, if $(a,b) \in R \leftrightarrow (b,a) \in R$.
 - -E.g., = (equality) is symmetric. < is not.
 - "is married to" is symmetric, "likes" is not.
- A binary relation R is antisymmetric if $(a,b) \in R \rightarrow (b,a) \notin R$.
 - − < is antisymmetric, "likes" is not.</p>

Transitivity

- A relation R is *transitive* iff (for all a,b,c) $(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R$.
- A relation is *intransitive* if it is not transitive.
- Examples: "is an ancestor of" is transitive.
- "likes" is intransitive.
- "is within 1 mile of" is...?

Totality

- A relation $R:A \leftrightarrow B$ is *total* if for every $a \in A$, there is at least one $b \in B$ such that $(a,b) \in R$.
- If *R* is not total, then it is called *strictly* partial.
- A partial relation is a relation that might be strictly partial. Or, it might be total. (In other words, all relations are considered "partial.")

Functionality

- A relation $R:A \leftrightarrow B$ is *functional* (that is, it is also a partial function $R:A \to B$) if, for any $a \in A$, there is at most $1 \ b \in B$ such that $(a,b) \in R$.
- R is antifunctional if its inverse relation R^{-1} is functional.
 - Note: A functional relation (partial function) that is also antifunctional is an invertible partial function.
- R is a total function $R:A \rightarrow B$ if it is both functional and total, that is, for any $a \in A$, there is exactly 1 b such that $(a,b) \in R$. If R is functional but not total, then it is a strictly partial function.

Composite Relations

• Let $R:A \leftrightarrow B$, and $S:B \leftrightarrow C$. Then the *composite* $S \circ R$ of R and S is defined as:

$$S \circ R = \{(a,c) \mid aRb \wedge bSc\}$$

- Note function composition $f \circ g$ is an example.
- The n^{th} power R^n of a relation R on a set A can be defined recursively by:

$$R^0 := \mathbf{I}_A$$
; $R^{n+1} := R^n \circ R$ for all $n \ge 0$.

- Negative powers of R can also be defined if desired, by $R^{-n} := (R^{-1})^n$.

§7.2: *n*-ary Relations

- An *n*-ary relation R on sets A_1, \ldots, A_n , written $R:A_1, \ldots, A_n$, is a subset $R \subseteq A_1 \times \ldots \times A_n$.
- The sets A_i are called the *domains* of R.
- The degree of R is n.
- R is functional in domain A_i if it contains at most one n-tuple $(..., a_i, ...)$ for any value a_i within domain A_i .

Relational Databases

- A *relational database* is essentially an *n*-ary relation *R*.
- A domain A_i is a *primary key* for the database if the relation R is functional in A_i .
- A *composite key* for the database is a set of domains $\{A_i, A_j, ...\}$ such that R contains at most 1 n-tuple $(..., a_i, ..., a_j, ...)$ for each composite value $(a_i, a_i, ...) \in A_i \times A_i \times ...$

Selection Operators

- Let A be any n-ary domain $A = A_1 \times ... \times A_n$, and let $C:A \rightarrow \{T,F\}$ be any condition (predicate) on elements (n-tuples) of A.
- Then, the *selection operator* s_C is the operator that maps any (n-ary) relation R on A to the n-ary relation of all n-tuples from R that satisfy C.

$$-I.e., \forall R \subseteq A, s_C(R) = R \cap \{a \in A \mid s_C(a) = \mathbf{T}\}\$$

Selection Operator Example

- Suppose we have a domain
 A = StudentName × Standing × SocSecNos
- Suppose we define a certain condition on *A*, UpperLevel(name,standing,ssn) :≡ [(standing = junior) ∨ (standing = senior)]
- Then, $s_{UpperLevel}$ is the selection operator that takes any relation R on A (database of students) and produces a relation consisting of *just* the upperlevel classes (juniors and seniors).

Projection Operators

- Let $A = A_1 \times ... \times A_n$ be any *n*-ary domain, and let $\{i_k\} = (i_1, ..., i_m)$ be a sequence of indices all falling in the range 1 to n,
 - That is, where $1 \le i_k \le n$ for all $1 \le k \le m$.
- Then the *projection operator* on *n*-tuples

$$P_{\{i_k\}}:A\to A_{i_1}\times\ldots\times A_{i_m}$$
 is defined by:

$$P_{\{i_k\}}(a_1,...,a_n) = (a_{i_1},...,a_{i_m})$$

Projection Example

- Suppose we have a ternary (3-ary) domain $Cars=Model \times Year \times Color.$ (note n=3).
- Consider the index sequence $\{i_k\}=1,3.$ (m=2)
- Then the projection $P_{\{i_k\}}$ simply maps each tuple $(a_1,a_2,a_3)=(model,year,color)$ to its image:

$$(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$$

 $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$ This operator can be usefully applied to a whole relation $R \subseteq Cars$ (database of cars) to obtain a list of model/color combinations available.

Join Operator

- Puts two relations together to form a sort of combined relation.
- If the tuple (A,B) appears in R_1 , and the tuple (B,C) appears in R_2 , then the tuple (A,B,C) appears in the join $J(R_1,R_2)$.
 - -A, B, C can also be sequences of elements rather than single elements.

Join Example

- Suppose R_1 is a teaching assignment table, relating *Professors* to *Courses*.
- Suppose R_2 is a room assignment table relating *Courses* to *Rooms*, *Times*.
- Then $J(R_1,R_2)$ is like your class schedule, listing (professor,course,room,time).

§7.3: Representing Relations

- Some ways to represent *n*-ary relations:
 - With an explicit list or table of its tuples.
 - With a function from the domain to $\{T,F\}$.
 - Or with an algorithm for computing this function.
- Some special ways to represent binary relations:
 - With a zero-one matrix.
 - With a directed graph.

Using Zero-One Matrices

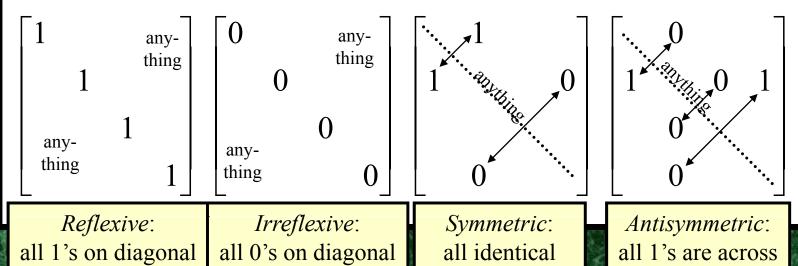
- To represent a relation R by a matrix $\mathbf{M}_R = [m_{ij}]$, let $m_{ij} = 1$ if $(a_i, b_j) \in R$, else 0.
- *E.g.*, Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.
- The 0-1 matrix representation of that "Likes" relation:

	Susan	Mary	Sally
Joe		1	$\begin{bmatrix} 0 \end{bmatrix}$
Fred	0	1	0
Mark		0	1

8/9/2008

Zero-One Reflexive, Symmetric

- Terms: Reflexive, non-Reflexive, irreflexive, symmetric, asymmetric, and antisymmetric.
 - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.



(c)2001-2003, M

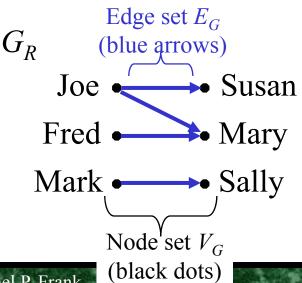
across diagonal

from 0's

Using Directed Graphs

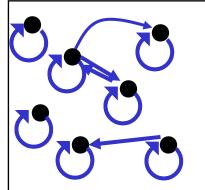
• A directed graph or digraph $G=(V_G,E_G)$ is a set V_G of vertices (nodes) with a set $E_G \subseteq V_G \times V_G$ of edges (arcs,links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R:A \leftrightarrow B$ can be represented as a graph $G_R=(V_G=A \cup B, E_G=R)$.

\mathbf{M}_R	Susan	Mary	Sally
Joe	\[\] 1	1	$\begin{bmatrix} 0 \end{bmatrix}$
Fred	0	1	0
Mark	0	0	1

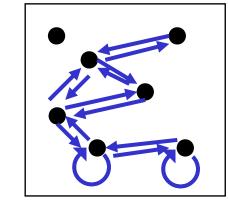


Digraph Reflexive, Symmetric

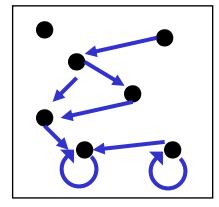
It is extremely easy to recognize the reflexive/irreflexive/symmetric/antisymmetric properties by graph inspection.



Reflexive: Irreflexive:
Every node No node
has a self-loop links to itself



Symmetric: Every link is bidirectional



Antisymmetric:
No link is
bidirectional

Asymmetric, non-antisymmetric

Non-reflexive, non-irreflexive

§7.4: Closures of Relations

- For any property X, the "X closure" of a set A is defined as the "smallest" superset of A that has the given property.
- The *reflexive closure* of a relation R on A is obtained by adding (a,a) to R for each $a \in A$. *I.e.*, it is $R \cup I_A$
- The *symmetric closure* of R is obtained by adding (b,a) to R for each (a,b) in R. I.e., it is $R \cup R^{-1}$
- The *transitive closure* or *connectivity relation* of R is obtained by repeatedly adding (a,c) to R for each (a,b),(b,c) in R.

$$R^* = \bigcup_{n \in \mathbf{Z}^+} R^n$$

Paths in Digraphs/Binary Relations

- A path of length n from node a to b in the directed graph G (or the binary relation R) is a sequence $(a,x_1), (x_1,x_2), ..., (x_{n-1},b)$ of n ordered pairs in E_G (or R).
 - An empty sequence of edges is considered a path of length 0 from a to a.
 - If any path from a to b exists, then we say that a is connected to b. ("You can get there from here.")
- A path of length $n \ge 1$ from a to a is called a *circuit* or a cycle.
- Note that there exists a path of length n from a to b in R if and only if $(a,b) \in R^n$.

Simple Transitive Closure Alg.

A procedure to compute R^* with 0-1 matrices. **procedure** $transClosure(\mathbf{M}_R:rank-n\ 0-1\ mat.)$

```
\mathbf{A} := \mathbf{B} := \mathbf{M}_R;

\mathbf{for} \ i := 2 \text{ to } n \text{ begin}

\mathbf{A} := \mathbf{A} \odot \mathbf{M}_R; \quad \mathbf{B} := \mathbf{B} \vee \mathbf{A} \quad \{\text{join}\}

end \{\text{note A represents } R^i\}

return \mathbf{B} \{\text{Alg. takes } \Theta(n^4) \text{ time}\}
```

A Faster Transitive Closure Alg.

```
procedure transClosure(\mathbf{M}_R:rank-n_0-1)
  \mathbf{A} := \mathbf{B} := \mathbf{M}_R;
  for i := 1 to \lceil \log_2 n \rceil be
        A := A \odot A; {A represents \hat{R}^i}
        \mathbf{B} := \mathbf{B} \vee \mathbf{A} {"add" \mathbf{M}_{R}^{[2^{i}]} into \mathbf{B}}
   end
   return B {Alg. takes only \Theta(n^3 \log n) time}
```

Roy-Warshall Algorithm

• Uses only $\Theta(n^3)$ operations! **Procedure** $Warshall(\mathbf{M}_R : rank-n \ 0-1 \ matrix)$ $\mathbf{W} := \mathbf{M}_{\scriptscriptstyle R}$ for k := 1 to nfor i := 1 to nfor j := 1 to n $w_{ij} := w_{ij} \lor (w_{ik} \land w_{kj})$ **return W** {this represents R^* }

 $w_{ij} = 1$ means there is a path from *i* to *j* going only through nodes $\leq k$

§7.5: Equivalence Relations

- An *equivalence relation* (e.r.) on a set *A* is simply any binary relation on *A* that is reflexive, symmetric, and transitive.
 - -E.g., = itself is an equivalence relation.
 - For any function $f:A \rightarrow B$, the relation "have the same f value", or $=_f:=\{(a_1,a_2) \mid f(a_1)=f(a_2)\}$ is an equivalence relation, e.g., let m= "mother of" then $=_m=$ "have the same mother" is an e.r.

Equivalence Relation Examples

- "Strings a and b are the same length."
- "Integers a and b have the same absolute value."
- "Real numbers a and b have the same fractional part $(i.e., a b \in \mathbb{Z})$."
- "Integers a and b have the same residue modulo m." (for a given m>1)

Equivalence Classes

- Let *R* be any equiv. rel. on a set *A*.
- The *equivalence class* of a, $[a]_R := \{ b \mid aRb \}$ (optional subscript R)
 - It is the set of all elements of A that are "equivalent" to
 a according to the eq.rel. R.
 - Each such b (including a itself) is called a representative of $[a]_R$.
- Since $f(a)=[a]_R$ is a function of a, any equivalence relation R be defined using $aRb \equiv a$ and b have the same f value, given that f.

Equivalence Class Examples

- "Strings a and b are the same length."
 - -[a] = the set of all strings of the same length as a.
- "Integers a and b have the same absolute value."
 - $[a] = \text{the set } \{a, -a\}$
- "Real numbers a and b have the same fractional part $(i.e., a b \in \mathbf{Z})$."
 - -[a] = the set $\{..., a-2, a-1, a, a+1, a+2, ...\}$
- "Integers *a* and *b* have the same residue modulo *m*." (for a given *m*>1)
 - [a] =the set $\{..., a-2m, a-m, a, a+m, a+2m, ...\}$

Partitions

- A partition of a set A is the set of all the equivalence classes $\{A_1, A_2, \dots\}$ for some e.r. on A.
- The A_i 's are all disjoint and their union = A.
- They "partition" the set into pieces. Within each piece, all members of the set are equivalent to each other.

Module #18 - Relations

§7.6: Partial Orderings

• Not sure yet if there will be time to cover this section.