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Binary Relations
•• Let Let AA, , BB be any two sets.be any two sets.
•• AA binary relationbinary relation RR fromfrom AA toto BB written (with signature)written (with signature)•• A A binary relationbinary relation RR from from AA to to BB, written (with signature) , written (with signature) 

RR::AA↔↔BB,, is a subset of is a subset of AA××BB.  .  
–– E.g.E.g., let , let << : : NN↔↔NN :≡ {(:≡ {(nn,,mm)) | | n n < < mm}}

•• The notation The notation a Ra R bb or or aRbaRb means (means (aa,,bb))∈∈R.R.
–– E.g.E.g., , a a << bb means (means (aa,,bb))∈∈ <<
ff bb ““ i l di l d bb (b l i(b l i )”)”•• If If aRbaRb we may say “we may say “aa is related to is related to bb (by relation (by relation RR)”, or )”, or 

““aa relates to relates to bb (under relation (under relation RR)”.)”.
•• A binary relationA binary relation RR corresponds to a predicate functioncorresponds to a predicate function•• A binary relation A binary relation R R corresponds to a predicate function corresponds to a predicate function 

PPRR::AA××BB→{→{TT,,FF} defined over the 2 sets } defined over the 2 sets AA,,BB; ; e.g.e.g., , 
“eats” :≡ {(“eats” :≡ {(aa,,bb)| organism )| organism a a eats food eats food bb}}
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Complementary Relations

•• Let Let RR::AA↔↔BB be any binary relation.be any binary relation.
•• Then, Then, RR::AA↔↔BB, the , the complementcomplement of of RR, is the , is the 

binary relation defined bybinary relation defined byy yy y
RR :≡ {(:≡ {(aa,,bb) | () | (aa,,bb))∉∉RR} = (} = (AA××BB) − ) − RR

Note this is justNote this is just RR if the universe ofif the universe ofNote this is just Note this is just RR if the universe of if the universe of 
discourse is discourse is UU = = AA××BB; thus the name ; thus the name 
complementcomplementcomplement.complement.

•• Note the complement of Note the complement of RR is is RR..
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Inverse Relations

•• Any binary relation Any binary relation RR::AA↔↔BB has an has an inverseinverse
relation relation RR−1−1::BB↔↔AA, defined by, defined by

RR−1 −1 :≡ {(:≡ {(bb,,aa) | () | (aa,,bb))∈∈RR}.}.{({( ,, ) | () | ( ,, )) }}
E.g.E.g., , <<−1−1 = {(= {(bb,,aa) | ) | aa<<bb} = {(} = {(bb,,aa) | ) | bb>>aa} = } = >>..

ifif l d i d fi d bl d i d fi d b•• E.g.E.g., if  , if  RR:People→Foods is defined by      :People→Foods is defined by      
aRbaRb ⇔⇔ aa eatseats bb,  then:  ,  then:  
bb RR−1−1 aa ⇔⇔ bb is eaten byis eaten by aa. (Passive voice.). (Passive voice.)
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Relations on a Set

•• A (binary) relation from a set A (binary) relation from a set AA to itself is to itself is 
called a relation called a relation onon the set the set AA..

•• E gE g the “the “<<” relation from earlier was” relation from earlier wasE.g.E.g., the , the <<  relation from earlier was  relation from earlier was 
defined as a relation defined as a relation onon the set the set NN of natural of natural 
numbersnumbersnumbers.numbers.

•• The The identity relation identity relation IIAA on a set on a set AA is the set is the set AA
{({(aa,,aa)|)|aa∈∈AA}.}.
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Reflexivity

•• A relation A relation RR on on AA is is reflexivereflexive if if ∀∀aa∈∈AA,, aRaaRa..
–– E.g.E.g., the relation , the relation ≥≥ :≡ {(:≡ {(aa,,bb) | ) | aa≥≥bb} is reflexive.} is reflexive.

•• A relation is A relation is irreflexiveirreflexive iff its complementary iff its complementary 
relation is reflexive.relation is reflexive.
–– Note “Note “irreflexiveirreflexive” ≠ “” ≠ “notnot reflexivereflexive”!”!
–– Example: Example: << is irreflexive.is irreflexive.
–– Note: “likes” between people is not reflexive, but not Note: “likes” between people is not reflexive, but not 

irreflexive either.  (Not everyone likes themselves, but irreflexive either.  (Not everyone likes themselves, but 
not everyone dislikes themselves either.) not everyone dislikes themselves either.) 
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Symmetry & Antisymmetry

•• A binary relation A binary relation RR on on AA is symmetric iff is symmetric iff RR
= = RR−1−1,, that is, if (that is, if (aa,,bb))∈∈RR ↔ (↔ (bb,,aa))∈∈RR..
–– E.g.E.g.,, == (equality) is symmetric.(equality) is symmetric. << is not.is not.E.g.E.g., , (equality) is symmetric.  (equality) is symmetric.  is not.is not.
–– “is married to” is symmetric, “likes” is not.“is married to” is symmetric, “likes” is not.

A bi l tiA bi l ti RR ii i ii i ifif•• A binary relation A binary relation RR is is antisymmetricantisymmetric if if 
((aa,,bb))∈∈RR → (→ (bb,,aa))∉∉RR..
–– << is antisymmetric, “likes” is not.is antisymmetric, “likes” is not.
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Transitivity

•• A relation A relation RR is is transitivetransitive iff (for all iff (for all aa,,bb,,cc))
((aa,,bb))∈∈RR ∧∧ ((bb,,cc))∈∈RR → (→ (aa,,cc))∈∈RR..

•• A relation isA relation is intransitiveintransitive if it is notif it is notA relation is A relation is intransitiveintransitive if it is not if it is not 
transitive.transitive.

l i f i i il i f i i i•• Examples: “is an ancestor of” is transitive.Examples: “is an ancestor of” is transitive.
•• “likes” is intransitive.“likes” is intransitive.likes  is intransitive.likes  is intransitive.
•• “is within 1 mile of” is… ? “is within 1 mile of” is… ? 
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Totality

•• A relation A relation RR::AA↔↔BB is is totaltotal if for every if for every aa∈∈AA, , 
th i t l tth i t l t bb BB h th t (h th t ( bb)) RRthere is at least one there is at least one bb∈∈BB such that (such that (aa,,bb))∈∈RR..

•• If If RR is not total, then it is called is not total, then it is called strictly strictly yy
partialpartial..

•• AA partial relationpartial relation is a relation thatis a relation that mightmight bebeA A partial relationpartial relation is a relation that is a relation that mightmight be be 
strictly partial.  Or, it might be total.  (In strictly partial.  Or, it might be total.  (In 
other words all relations are consideredother words all relations are consideredother words, all relations are considered other words, all relations are considered 
“partial.”)“partial.”)
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Functionality
•• A relation A relation RR::AA↔↔BB is is functionalfunctional (that is, it is also a (that is, it is also a 

partial functionpartial function RR::AA→→BB) if for any) if for any aa∈∈AA there isthere ispartial function partial function RR::AA→→BB) if, for any ) if, for any aa∈∈AA,, there is there is 
at most 1at most 1 bb∈∈BB such that (such that (aa,,bb))∈∈RR..

•• RR is is antifunctionalantifunctional if its inverse relation if its inverse relation RR−1−1 is is ff
functional.  functional.  
–– Note: A functional relation (partial function) that is also Note: A functional relation (partial function) that is also 

antifunctional is an invertible partial functionantifunctional is an invertible partial functionantifunctional is an invertible partial function.antifunctional is an invertible partial function.
•• RR is a is a total functiontotal function RR::AA→→BB if it is both functional if it is both functional 

and total, that is, for anyand total, that is, for any aa∈∈AA, there is, there is exactlyexactly 11 bband total, that is, for any and total, that is, for any aa∈∈AA, there is , there is exactlyexactly 1 1 bb
such that (such that (aa,,bb))∈∈R.  R.  If If RR is functional but not total, is functional but not total, 
then it is a then it is a strictly partial functionstrictly partial function..
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Composite Relations

•• Let Let RR::AA↔↔BB, and , and SS::BB↔↔CC.  Then the .  Then the compositecomposite SSooRR
ofof RR andand SS is defined as:is defined as:of of RR and and SS is defined as:is defined as:

SSooR R = {(= {(aa,,cc) | ) | aRbaRb ∧∧ bScbSc}}
N f i i iN f i i i ff i li l•• Note function composition Note function composition ffoogg is an example.is an example.

•• The The nnthth power power RRnn of a relation of a relation RR on a set on a set AA can be can be 
d fi d i l bd fi d i l bdefined recursively by:defined recursively by:

RR00 :≡ :≡ IIA A ;; RRnn+1 +1 :≡ :≡ RRnnooRR for all for all nn≥0.≥0.
N ti fN ti f RR l b d fi d if d i d bl b d fi d if d i d b–– Negative powers of Negative powers of RR can also be defined if desired, by can also be defined if desired, by 
RR−−nn :≡ (:≡ (RR−1−1))nn..
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§7.2: n-ary Relations

•• An An nn--ary relation ary relation RR on sets on sets AA11,…,,…,AAnn, , 
ittitt RR AA AA i b ti b twritten written RR::AA11,…,,…,AAnn, is a subset, is a subset

R R ⊆⊆ AA11××… … ×× AAnn..
•• The sets The sets AAii are called the are called the domainsdomains of of RR..
•• TheThe degreedegree ofof RR isis nn..The The degreedegree of of RR is is nn..
•• RR is is functional in domain Afunctional in domain Aii if it contains at if it contains at 

most onemost one nn tuple (tuple ( aa ) for any value) for any value aamost one most one nn--tuple (…, tuple (…, aai i ,…) for any value ,…) for any value aaii
within domain within domain AAii..
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Relational Databases

•• A A relational databaserelational database is essentially an is essentially an nn--ary ary 
l til ti RRrelation relation RR..

•• A domain A domain AAii is a is a primary keyprimary key for the for the ii p y yp y y
database if the relation database if the relation RR is functional in is functional in AAii..

•• AA composite keycomposite key for the database is a set offor the database is a set ofA A composite keycomposite key for the database is a set of for the database is a set of 
domains {domains {AAii, , AAjj,, ……} such that } such that RR contains at contains at 
most 1most 1 nn--tuple (tuple ( aaii aajj ) for each) for eachmost 1 most 1 nn tuple (…,tuple (…,aaii,…,,…,aajj,…) for each ,…) for each 
composite value (composite value (aaii, , aajj,…),…)∈∈AAii××AAjj××… … 
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Selection Operators

•• Let Let AA be any be any nn--ary domain ary domain AA==AA11××……××AAnn, , 
d l td l t CC AA {{TT FF} b diti} b ditiand let and let CC::AA→{→{TT,,FF} be any condition } be any condition 

(predicate) on elements ((predicate) on elements (nn--tuples) of tuples) of AA..
•• Then, the Then, the selection operatorselection operator ssCC is the is the 

operator that maps any (operator that maps any (nn--ary) relation ary) relation RR on on p p y (p p y ( y)y)
AA to the to the nn--ary relation of all ary relation of all nn--tuples from tuples from RR
that satisfy that satisfy C.  C.  yy
–– I.e.I.e., , ∀∀RR⊆⊆AA,, ssCC((RR) = ) = RR∩∩{{aa∈∈AA | | ssCC((aa) = ) = TT}}
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Selection Operator Example

•• Suppose we have a domain Suppose we have a domain 
AA = StudentName= StudentName×× StandingStanding×× SocSecNosSocSecNosA A = StudentName = StudentName ×× Standing Standing ×× SocSecNosSocSecNos

•• Suppose we define a certain condition on Suppose we define a certain condition on AA, , 
UpperLevelUpperLevel((namename standingstanding ssnssn) :≡) :≡UpperLevelUpperLevel((namename,,standingstanding,,ssnssn) :≡ ) :≡ 

[([(standing = standing = junior)junior) ∨∨ ((standingstanding = senior)]= senior)]
•• ThenThen ss is the selection operator that takesis the selection operator that takes•• Then, Then, ssUpperLevelUpperLevel is the selection operator that takes is the selection operator that takes 

any relation any relation RR on on AA (database of students) and (database of students) and 
produces a relation consisting ofproduces a relation consisting of justjust the upperthe upper--produces a relation consisting of produces a relation consisting of justjust the upperthe upper
level classes (juniors and seniors).level classes (juniors and seniors).
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Projection Operators

•• Let Let AA = = AA11××……××AAnn be any be any nn--ary domain, ary domain, 
d l t {d l t {ii } (} (ii ii ) b f) b fand let {and let {iikk}=(}=(ii11,…,,…,iimm) be a sequence of ) be a sequence of 

indices all falling in the range 1 to indices all falling in the range 1 to nn,,
–– That is, where 1 ≤ That is, where 1 ≤ iik k ≤ n≤ n for all 1 ≤ for all 1 ≤ kk ≤ ≤ mm..

•• Then the Then the projection operatorprojection operator on on nn--tuplestuplesp j pp j p pp

is defined by:is defined by:
mk iii AAAP ××→ K

1
:}{
yy

),...,(),...,(
11}{ mk iini aaaaP =
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Projection Example

•• Suppose we have a ternary (3Suppose we have a ternary (3--ary) domain ary) domain 
CarsCars==ModelModel××YearYear××ColorColor (note(note nn=3)=3)CarsCars==ModelModel××YearYear××Color.  Color.  (note (note nn=3).=3).

•• Consider the index sequence {Consider the index sequence {iikk}= 1,3. (}= 1,3. (mm=2)=2)
Th h j iTh h j i PP i l h li l h l•• Then the projection Then the projection P    P    simply maps each tuple simply maps each tuple 
((aa11,,aa22,,aa33) = () = (modelmodel,,yearyear,,colorcolor) to its image: ) to its image: 

{ik}

)()()( ld l
•• This operator can be usefully applied to a whole This operator can be usefully applied to a whole 

relationrelation RR⊆⊆CarsCars (database of cars) to obtain a list(database of cars) to obtain a list

),(),(),( 3121
colormodelaaaa ii ==

relation relation RR⊆⊆CarsCars (database of cars) to obtain a list (database of cars) to obtain a list 
of model/color combinations available.of model/color combinations available.
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Join Operator

•• Puts two relations together to form a sort of Puts two relations together to form a sort of 
combined relation.combined relation.

•• If the tuple (If the tuple (AA BB) appears in) appears in RR11 and theand theIf the tuple (If the tuple (AA,,BB) appears in ) appears in RR11, and the , and the 
tuple (tuple (BB,,CC) appears in ) appears in RR22, then the tuple , then the tuple 
((AA BB CC) appears in the join) appears in the join JJ((RR RR ))((AA,,BB,,CC) appears in the join ) appears in the join JJ((RR11,,RR22).).
–– AA, , BB, , CC can also be sequences of elements can also be sequences of elements 

rather than single elements.rather than single elements.
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Join Example

•• Suppose Suppose RR11 is a teaching assignment table, is a teaching assignment table, 
relating relating ProfessorsProfessors to to CoursesCourses.  .  

•• SupposeSuppose RR22 is a room assignment tableis a room assignment tableSuppose Suppose RR22 is a room assignment table is a room assignment table 
relating relating CoursesCourses to to RoomsRooms,,TimesTimes..

hh (( ) i lik l h d l) i lik l h d l•• Then Then JJ((RR11,,RR22) is like your class schedule, ) is like your class schedule, 
listing (listing (professorprofessor,,coursecourse,,roomroom,,timetime).).
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§7.3: Representing Relations

•• Some ways to represent Some ways to represent nn--ary relations:ary relations:
–– With an explicit list or table of its tuples.With an explicit list or table of its tuples.
–– With a function from the domain to {With a function from the domain to {TT,,FF}.}.

•• Or with an algorithm for computing this function.Or with an algorithm for computing this function.

•• SomeSome specialspecial waysways toto representrepresent binarybinarypp yy pp yy
relationsrelations::
–– WithWith aa zerozero--oneone matrixmatrix..WithWith aa zerozero oneone matrixmatrix..
–– WithWith aa directeddirected graphgraph..
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Using Zero-One Matrices

•• To represent a relation To represent a relation RR by a matrix by a matrix 
MM [[ ] l t] l t 1 if (1 if ( bb )) RR l 0l 0MMRR = [= [mmijij], let ], let mmijij = 1 if (= 1 if (aaii,,bbjj))∈∈RR, else 0., else 0.

•• E.g.E.g., Joe likes Susan and Mary, Fred likes , Joe likes Susan and Mary, Fred likes gg yy
Mary, and Mark likes Sally.Mary, and Mark likes Sally.

•• The 0The 0--1 matrix1 matrix SallyMarySusanThe 0The 0 1 matrix 1 matrix 
representationrepresentation
of that “Likes”of that “Likes” ⎥

⎥
⎤

⎢
⎢
⎡

010
0   1      1   

Fred
Joe

yy

of that Likesof that Likes
relation:relation: ⎥

⎥
⎦⎢

⎢
⎣    1   00Mark
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Zero-One Reflexive, Symmetric

•• Terms:Terms: ReflexiveReflexive,, nonnon--Reflexive, irreflexiveReflexive, irreflexive,,
ssymmetric, asymmetric, and antisymmetricymmetric, asymmetric, and antisymmetric..
–– These relation characteristics are very easy toThese relation characteristics are very easy toThese relation characteristics are very easy to These relation characteristics are very easy to 

recognize by inspection of the zerorecognize by inspection of the zero--one matrix.one matrix.
⎤⎡⎤⎡⎤⎡⎤⎡ 0101 any any-

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

0
101

0

   
01

1

   
0

0
0

   
1

1
1 any-

thing
any-
thing

⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣ 0
0

00
0

1
1

R fl i I fl i S i A i i

any-
thing

any-
thing
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Reflexive:
all 1’s on diagonal

Irreflexive:
all 0’s on diagonal

Symmetric:
all identical

across diagonal

Antisymmetric:
all 1’s are across

from 0’s
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Using Directed Graphs

•• A A directed graphdirected graph or or digraphdigraph GG=(=(VVGG,,EEGG) is a set ) is a set VVGG of of 
vertices (nodes)vertices (nodes) with a setwith a set EE ⊆⊆VV ××VV ofof edgesedgesvertices (nodes)vertices (nodes) with a set with a set EEGG⊆⊆VVGG××VVGG of of edges edges 
(arcs,links)(arcs,links).  Visually represented using dots for nodes, .  Visually represented using dots for nodes, 
and arrows for edges.  Notice that a relation and arrows for edges.  Notice that a relation RR::AA↔↔BB can be can be gg
represented as a graph represented as a graph GGRR=(=(VVGG==AA∪∪BB, , EEGG==RR).).

M G
Edge set EG

⎥
⎤

⎢
⎡ 0   1      1   Joe

SallyMarySusanMR GR

Joe
F d

Susan
M

(blue arrows)

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣    1   00
010

Mark
Fred Fred

Mark
Mary
Sally
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Node set VG
(black dots)
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Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ It is extremely easy to recognize the reflexive/irreflexive/ 
i / i i i b h i ii / i i i b h i isymmetric/antisymmetric properties by graph inspection.symmetric/antisymmetric properties by graph inspection.

R fl i I fl i S t i A ti t iReflexive:
Every node

has a self-loop

Irreflexive:
No node

links to itself

Symmetric:
Every link is
bidirectional

Antisymmetric:
No link is

bidirectional
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§7.4: Closures of Relations
•• For any property For any property XX, the “, the “XX closure” of a set closure” of a set AA is defined as is defined as 

the “smallest” superset ofthe “smallest” superset of AA that has the given propertythat has the given propertythe smallest  superset of the smallest  superset of AA that has the given property.that has the given property.
•• The The reflexive closurereflexive closure of a relation of a relation RR on on A A is obtained by is obtained by 

adding (adding (aa,,aa) to ) to RR for each for each aa∈∈AA.   .   I.e.I.e.,, it is it is RR ∪∪ IIAA
•• The The symmetric closuresymmetric closure of of RR is obtained by adding (is obtained by adding (bb,,aa) to ) to 

RR for each (for each (aa,,bb) in ) in RR.  .  I.e.I.e., it is , it is RR ∪∪ RR−1−1

ThTh i i li i l i i l ii i l i ff RR ii•• The The transitive closuretransitive closure or or connectivity relation connectivity relation of of RR is is 
obtained by repeatedly adding (obtained by repeatedly adding (aa,,cc) to ) to RR for each for each 
((aa,,bb),(),(bb,,cc) in ) in RR..(( ,, ),(),( ,, ))
–– I.e.I.e., it is, it is

U
+

= nRR*
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Paths in Digraphs/Binary Relations

•• A A pathpath of length of length n n from node from node aa to to bb in the directed in the directed 
graphgraph GG (or the binary relation(or the binary relation RR) is a sequence) is a sequencegraph graph GG (or the binary relation (or the binary relation RR) is a sequence ) is a sequence 
((aa,,xx11), (), (xx11,,xx22), …, (), …, (xxnn−1−1,,bb) of ) of nn ordered pairs in ordered pairs in EEGG
(or (or RR).).
–– An empty sequence of edges is considered a path of An empty sequence of edges is considered a path of 

length 0 from length 0 from aa to to aa..
–– If any path fromIf any path from aa toto bb exists then we say thatexists then we say that aa isisIf any path from If any path from aa to to bb exists, then we say that exists, then we say that aa is is 

connected toconnected to bb.  (“You can get there from here.  (“You can get there from here.”).”)
•• A path of length A path of length nn≥1 from ≥1 from aa to to aa is called a is called a circuitcircuit

or a cycle.or a cycle.
•• Note that there exists a path of length Note that there exists a path of length nn from from aa to to 

bb inin RR if and onl if (if and onl if ( bb)) RRnn
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Simple Transitive Closure Alg.

A procedure to compute A procedure to compute RR** with 0with 0--1 matrices.1 matrices.
procedureprocedure transClosuretransClosure((MMRR:rank:rank--nn 00--1 mat.)1 mat.)

AA :=:= BB :=:= MM ;;AA := := BB := := MMRR;;
forfor ii := 2 to := 2 to nn beginbegin

AA := := AA⊙MR;   B := B ∨ A     {join}
end {note A represents Ri}end
return B {Alg. takes Θ(n4) time}

{ o e ep ese s }
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A Faster Transitive Closure Alg.

procedureprocedure transClosuretransClosure((MMRR:rank:rank--nn 00--1 mat.)1 mat.)
AA := := BB := := MMRR;;
forfor ii := 1 to:= 1 to ⎡loglog nn⎤⎤ beginbeginforfor ii := 1 to := 1 to ⎡loglog22 nn⎤⎤ beginbegin

AA := := AA⊙A;      {A represents R  }
{ dd i }]2[ i

2i

B := B ∨ A     {“add”           into B} 
end

]2[ i

RM
end
return B {Alg. takes only Θ(n3 log n) time}
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Roy-Warshall Algorithm

•• Uses only Uses only ΘΘ((nn33) operations!) operations!
Procedure Procedure WarshallWarshall((MMRR : rank: rank--nn 00--1 matrix)1 matrix)

WW :=:= MMRRWW :  :  MMRR
forfor kk := 1 := 1 toto nn

forfor ii := 1:= 1 toto nnforfor ii := 1 := 1 toto nn
forfor jj := 1 := 1 toto nn

ww :=:= ww ∨∨ ((ww ∧∧ ww ))wwijij := := wwijij ∨∨ ((wwikik ∧∧ wwkjkj))
return Wreturn W {this represents {this represents RR**}}
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§7.5: Equivalence Relations

•• An An equivalence relationequivalence relation (e.r.) on a set (e.r.) on a set AA is is 
simply any binary relation on simply any binary relation on AA that is that is 
reflexive, symmetric, and transitive.reflexive, symmetric, and transitive., y ,, y ,
–– E.g.E.g., , == itself is an equivalence relation.itself is an equivalence relation.

For any functionFor any function ff::AA→B→B the relation “have thethe relation “have the–– For any function For any function ff::AA→B→B, the relation have the , the relation have the 
same same ff value”, or value”, or ==ff :≡ {(:≡ {(aa11,,aa22) | ) | ff((aa11)=)=ff((aa22)} )} 
is an equivalence relationis an equivalence relation e ge g letlet m=“m=“mothermotheris an equivalence relation, is an equivalence relation, e.g.e.g., let , let m=m= mother mother 
of” then of” then ==mm = “have the same mother” is an e.r.= “have the same mother” is an e.r.
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Equivalence Relation Examples

•• ““Strings Strings aa and and bb are the same length.”are the same length.”
•• “Integers “Integers aa and and bb have the same absolute have the same absolute 

value ”value ”value.value.
•• “Real numbers “Real numbers aa and and bb have the same have the same 

f i l (f i l ( bb ))fractional part (fractional part (i.e.i.e., , aa − − bb ∈∈ ZZ).”).”
•• “Integers“Integers aa andand bb have the same residuehave the same residueIntegers Integers aa and and bb have the same residue have the same residue 

modulo modulo mm.”  (for a given .”  (for a given mm>1)>1)

8/9/2008 (c)2001-2003, Michael P. Frank 31



Module #18 - Relations

Equivalence Classes

•• Let Let RR be any equiv. rel. on a set be any equiv. rel. on a set AA..
ThTh i l li l l ff•• The The equivalence classequivalence class of of aa,,

[[aa]]RR ::≡ { ≡ { bb | | aRbaRb }} (optional subscript (optional subscript RR))
It i th t f ll l t fIt i th t f ll l t f AA th t “ i l t” tth t “ i l t” t–– It is the set of all elements of It is the set of all elements of AA that are “equivalent” to that are “equivalent” to 
aa according to the eq.rel. according to the eq.rel. RR..

–– Each suchEach such bb (including(including aa itself) is called aitself) is called aEach such Each such bb (including (including aa itself) is called a itself) is called a 
representativerepresentative of [of [aa]]RR..

•• Since Since ff((aa)=)=[[aa]]RR is a function of is a function of aa,  any equivalence ,  any equivalence ff(( )) [[ ]]RR , y q, y q
relation relation R R be defined using be defined using aRbaRb :≡ “:≡ “aa and and bb have have 
the same the same ff value”, given that value”, given that ff..
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Equivalence Class Examples
•• ““Strings Strings aa and and bb are the same length.”are the same length.”

[[aa] = the set of all strings of the same length as] = the set of all strings of the same length as aa–– [[aa] = the set of all strings of the same length as ] = the set of all strings of the same length as a.a.
•• “Integers “Integers aa and and bb have the same absolute value.”have the same absolute value.”

–– [[aa] = the set {] = the set {aa,, −−aa}}[[aa]  the set {]  the set {aa, , aa}}
•• “Real numbers “Real numbers aa and and bb have the same fractional have the same fractional 

part (part (i.e.i.e., , aa − − bb ∈∈ ZZ).”).”p (p ( ))
–– [[aa] = the set {…, ] = the set {…, aa−2, −2, aa−1, −1, aa, , aa+1, +1, aa+2, …}+2, …}

•• “Integers “Integers aa and and bb have the same residue modulo have the same residue modulo 
” (f i” (f i >1)>1)mm.”  (for a given .”  (for a given mm>1)>1)

–– [[aa] = the set {…, ] = the set {…, a−a−22mm, , aa−−mm, , aa, , aa++mm, , aa+2+2mm, …}, …}
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Partitions

•• A A partitionpartition of a set of a set AA is the set of all the is the set of all the 
equivalence classes {equivalence classes {AA11, , AA22, … } for some , … } for some 
e.r. on e.r. on AA..

•• The The AAii’s are all disjoint and their union = ’s are all disjoint and their union = AA..
h i i h i i i hih i i h i i i hi•• They “partition” the set into pieces.  Within They “partition” the set into pieces.  Within 

each piece, all members of the set are each piece, all members of the set are 
equivalent to each other.equivalent to each other.

8/9/2008 (c)2001-2003, Michael P. Frank 34



Module #18 - Relations

§7.6: Partial Orderings

•• Not sure yet if there will be time to cover Not sure yet if there will be time to cover 
this section.this section.
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