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Binary Relations

8/9/2008

Let A, B be any two sets.

A binary relation R from A to B, written (with signature)
R:A<B, 1s a subset of A XB.

— Eg. let<:NoN = {(nm) | n<m}
The notation a R b or aRb means (a,b)eR.

— E.g.,a<bmeans (a,b)e <

If aRb we may say “a is related to b (by relation R)”, or
“a relates to b (under relation R)”.

A binary relation R corresponds to a predicate function
Pp:AXB—{T,F} defined over the 2 sets 4,B; e.g.,
“eats” := {(a,b)| organism a eats food b}
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Complementary Relations

* Let R:A<>B be any binary relation.

* Then, A B, the complement of R, 1s the
binary relation defined by

R=1{ab)|(ab)gR} =(AXB)—R
Note this 1s just R if the universe of
discourse 1s U = 4 X B; thus the name
complement.

* Note the complement of R1s R.
Example: €= {(a,b) | (a,b)g<} = {(a,b) | ~a<b} ==
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Inverse Relations

* Any binary relation R:4<>B has an inverse
relation R~ 1:B<— A4, defined by
R 1= {(b,a)| (a,b)eR}.
E.g.,<!'={(b,a)|a<b} = {(b,a) | b>a} = >.
e E.g,1f R:People—Foods i1s defined by

aRb < a eats b, then:
b R 'a < b is eaten by a. (Passive voice.)
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Relations on a Set

* A (binary) relation from a set A4 to 1tself 1s
called a relation on the set 4.

» E.g., the “<” relation from earlier was
defined as a relation on the set N of natural
numbers.

* The identity relation 1, on a set A4 1s the set
a,a)lacd;.
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Reflexivity

* A relation R on A4 1s reflexive if Vae A, aRa.
— E.g., the relation > := {(a,b) | a>b} 1s reflexive.
* A relation 1s irreflexive 1t its complementary
relation 1s reflexive.
— Note “irreflexive” # “not reflexive”!
— Example: < is irreflexive.

— Note: “likes” between people 1s not reflexive, but not
irreflexive either. (Not everyone likes themselves, but
not everyone dislikes themselves either.)
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Symmetry & Antisymmetry

A binary relation R on A4 1s symmetric iff R
= R!, that is, if (a,b)eR < (b,a)€R.
— E.g., = (equality) 1s symmetric. <1is not.
— “1s married to” 1s symmetric, “likes” 1s not.

* A binary relation R is antisymmetric if
(a,b)eR — (b,a)R.

— < 1s antisymmetric, “likes” 1s not.
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Transitivity

A relation R 1s transitive 1t (for all a,b,c)
(a,b)eR A (b,c)eR — (a,c)eR.

A relation 1s intransitive 1if 1t 1S not
transitive.

Examples: “is an ancestor of” 1s transitive.
“likes” 1s 1ntransitive.

“1s within 1 mile of”’ 1s... ?
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Totality

* A relation R:A<B 1s total if for every a€A,
there 1s at least one b€ B such that (a,b)eR.

* If R 1s not total, then 1t 1s called strictly
partial.

e A nﬂrfml relation 1s a re

strlctly partial. Or, 1t might be total. (In
other words, all relations are considered

“partial.”)
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Functionality

* Arelation R:A<B 1s functional (that 1s, 1t 1s also a
partial function R:4—B) if, for any a€ A, there 1s
at most 1 beB such that (a,b)eR.

R is antifunctional if its inverse relation R! is
functional.
— Note: A functional relation (partial function) that 1s also
antifunctional 1s an invertible partial function.

* Ris a total function R:A— B 1f 1t 1s both functional
and total, that 1s, for any a€ A, there 1s exactly 1 b
such that (a,b)eR. If R 1s functional but not total,
then 1t 1s a strictly partial function.
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Composite Relations
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Let R:A<—B, and S:B«<~—C. Then the composite SoR
of R and § 1s defined as:

SoR = {(a,c) | aRb A bSc}
Note function composition fog is an example.

The n' power R” of a relation R on a set A can be
defined recursively by:
R*:=1,; R"1:=R"R for all n>0.

— Negative powers of R can also be defined if desired, by
R :=(R .
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§7.2: n-ary Relations
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An n-ary relation R on sets 4,,...,4,,
written R:4,,...,4,, 1s a subset
RcA/X ... X4,

The sets A, are called the domains of R.

The degree of R 1s n.

R 1s functional in domain A; 1t it contains at
most one n-tuple (..., a;,...) for any value g,
within domain 4.
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Relational Databases

* A relational database 1s essentially an n-ary

8/9/2008

relation R.

A domain 4; 1s a primary key for the
database 1f the relation R 1s functional in 4.
A composite key for the database 1s a set of
domains {4;, 4;, ...} such that R contains at
most 1 n-tuple (...,a;...,a;...) for each
composite value (a;, a;,...)€4; X4, %X ...
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Selection Operators

* Let A be any n-ary domain A=A4,X%... X4
and let C:4—{T,F} be any condition
(predicate) on elements (n-tuples) of A.

* Then, the selection operator s 1s the
operator that maps any (n-ary) relation R on
A to the n-ary relation of all n-tuples from R
that satisty C.

—le.,VRcCA, s{(R)=RN{acAd |sAa)="T}

no
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Selection Operator Example

Suppose we have a domain
A = StudentName X Standing X SocSecNos

Suppose we define a certain condition on A,

UpperLevel(name,standing,ssn) =
[(standing = junior) v (standing = senior)]

>

111611 bUpperLevel lb LIIC bUleLlUll UPCIdLUI Lllcll Ldl&Cb

any relation R on A4 (database of students) and
produces a relation consisting of just the upper-
level classes (Juniors and seniors).

8/9/2008 (¢)2001-2003, Michael P. Frank
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Projection Operators

 LetA=A,X... X4, be any n-ary domain,
and let {i,}=(i,,...,i,) be a sequence of
indices all falling in the range 1 to n,

— That1s, where 1 <i, <nforall 1 <k <m.

* Then the projection operator on n-tuples
P iA—> A4 x...x 4
1S deﬁneé by:

By (ayseess
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Projection Example
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Suppose we have a ternary (3-ary) domain
Cars=Model X Year X Color. (note n=3).

Consider the index sequence {i,}= 1,3. (m=2)
Then the projection P{ ik}simply mectps.each tuple
(a,,a,,a;) = (model.year,color) to its image:
(a,,a, )=(a,,a;) = (model,color)
This operator can be usefully applied to a whole

relation RcCars (database of cars) to obtain a list
of model/color combinations available.
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Join Operator

* Puts two relations together to form a sort of
combined relation.

o If the tuple (4,B) appears in R,, and the
tuple (B,C) appears in R,, then the tuple
(4,B,C) appears 1n the join J(R,,R,).

— A, B, C can also be sequences of elements
rather than single elements.
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Join Example

* Suppose R, 1s a teaching assignment table,
relating Professors to Courses.

* Suppose R, 1s a room assignment table
relating Courses to Rooms,Times.

* Then J(R,R,) 1s like your class schedule,
listing (professor,course,room,time).
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§7.3: Representing Relations

* Some ways to represent n-ary relations:

— With an explicit list or table of its tuples.
— With a function from the domain to {T,F}.
» Or with an algorithm for computing this function.
« Some special ways to represent binary
relations:

— With a zero-one matrix.
— With a directed graph.

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank
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Using Zero-One Matrices

* To represent a relation R by a matrix
M;, = [m,], let m; =1 1f (a;,b;) €R, else 0.

» E.g., Joe likes Susan and Mary, Fred likes
Mary, and Mark likes Sally.

* The 0-1 matrix Susan Mary Sally

representation Joe | 1 1 0
of that “Likes” Fred 0 1 0
relation: Mark 0 0
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Zero-One Reflexive, Symmetric

» Terms: Reflexive, non-Reflexive, irreflexive,
symmetric, asymmetric, and antisymmetric.

— These relation characteristics are very easy to
recognize by inspection of the zero-one matrix.

any- 0 any- 0

1 0 0

a any- .
thing thing 0 0

Reflexive: Irreflexive: Symmetric: Antisymmetric:
all 1’s on diagonal | all 0’s on diagonal all identical all 1’s are across
8/9/2008 _ _ OEIEIERY) across diagonal from 0’s
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Using Directed Graphs

* A directed graph or digraph G=(V,E;) 1s aset V; of
vertices (nodes) with a set E .V XV of edges
(arcs,links). Visually represented using dots for nodes,
and arrows for edges. Notice that a relation R:4<>B can be
represented as a graph G=(V~=A4AUB, E,=R).

_ Edge set £,
Susan Mary Sally Ur (bhmws)

1 1 0 Joe e——>e Susan
o 1 0 Fred .>g. Mary

0 0 1 Mark\-—»}Sally

NodeYset Ve
8/9/2008 _ _ (€)2001-2003, Michael P Frank blaCk dots)




Module #18 - Relations

Digraph Reflexive, Symmetric

It 1s extremely easy to recognize the reflexive/irreflexive/
symmetric/antisymmetric properties by graph inspection.

.4%. .’4(.

|
AR

Reflexive: Irreflexive: Symmetric:  Antisymmetric:

Every node No node Every link 1s No link 1s
has a self-loop  links to itself bidirectional  bidirectional

Asymmetric, non-antisymmetric Non-reflexive, non-irreflexive
8/9/2008 : : (¢)2001-2003, Michael P. Frank




Module #18 - Relations

§7.4: Closures of Relations
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For any property X, the “X closure” of a set 4 1s defined as
the “smallest” superset of 4 that has the given property.

The reflexive closure of a relation R on 4 is obtained by
adding (a,a) to R for each acA. le., 1t1is |F U/,

The symmetric closure of R is obtained by adding (b,a) to
R for each (a,b) inR. Le.,itis|R U R

The transitive closure or connectivity relation of R 1s
obtained by repeatedly adding (a,c) to R for each
(a,b),(b,c) in R.

— le., 1t1s

(¢)2001-2003, Michael P. Frank
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Paths in Digraphs/Binary Relations

* A path of length n from node a to 6 1n the directed
graph G (or the binary relation R) 1s a sequence
(a,x,), (x;,X%,), ..., (x,_,b) of n ordered pairs in £
(or R

— An empty sequence of edges is considered a path of
length O from a to a.

T'F anv 1’\91‘]’1 fro om a fn k PV1Q1‘Q fhpn we sav ﬂ'\qf a 10
J tl A1\Ulll a I»J, VLI J

connected to b. (““You can get there from here. ”)

* A path of length n>1 from a to a 1s called a circuit
or a cycle.

* Note that there exists a path of length n from a to
b in R 1f and only if (a,b)eR".

8/9/2008 : : (¢)2001-2003, Michael P. Frank
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Sitmple Transitive Closure Alg.

A procedure to compute R* with 0-1 matrices.
procedure transClosure(Mp:rank-n 0-1 mat.)
A =B = My;
fori:=2ton begin
A=ACOM,; B=BVvA {join}
end {note A represents R’}
return B {Alg. takes O(n*) time}

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =
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A Faster Transitive Closure Alg.

procedure fransClosure(Mpy:rank-r N
A=B =M, ” nl\h.il-“lll J]MJJ]M
= D= Mg, L

fori:=1to |_10g2 be

A=A®A; (A represents R
B=BvA {“add” M l'into B}

end
return B {Alg. takes only ®(#? log n) time}

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =
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Roy-Warshall Algorithm

« Uses only O(#°) operations!
Procedure Warshall(My, : rank-n 0-1 matrix)
W =M,
fork.=1ton
fori.=1ton
forj.=1ton
Wi =W v (wlk/\wk)

ij
return W {this represents R*}

w;; = 1 means there is a path from i to j going only through nodes <k

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =
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§7.5: Equivalence Relations

* An equivalence relation (e.r.) on a set 4 1s
simply any binary relation on A4 that 1s
reflexive, symmetric, and transitive.

— E.g., = 1tself 1s an equivalence relation.

— For any function f:A— B, the relation “have the
same f value”, or =,:= {(a,,a,) | a,)=/a,)}
1S an equivalence relation, e.g., let m= “mother
of” then =, = “have the same mother” is an e.r.

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =
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Equivalence Relation Examples

“Strings a and b are the same length.”

“Integers a and b have the same absolute
value.”

“Real numbers a and b have the same
fractional part (i.e.,a — b € Z.).”

“Integers a and b have the same residue
modulo m.” (for a given m>1)

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =



Module #18 - Relations

Equivalence Classes

* Let R be any equiv. rel. on a set A4.

* The equivalence class of a,
lalp:={b|aRb}  (optional subscript R)
— It 1s the set of all elements of A4 that are “equivalent” to
a according to the eq.rel. R.

— Each such b (1n(‘]11d1ng a1t lf\ called a
representative of [a].

* Since f(a)=[a]; 1s a function of a, any equivalence
relation R be defined using aRb := “a and b have
the same f value”, given that f.

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank
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Equivalence Class Examples

Strings a and b are the same length.”

— [a] = the set of all strings of the same length as a.
“Integers a and b have the same absolute value.”

— [a] = the set {a, —a}

“Real numbers a and b have the same fractional
part (i.e.,a—b € Z1.).”

— [a]=theset {...,a—2,a"1,a,atl, at2, ...}
“Integers a and b have the same residue modulo
m.” (for a given m>1)

— [a] =theset {..., a—2m, a—m, a, atm, at2m, ...}

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank
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Partitions

* A partition of a set A 1s the set of all the
equivalence classes {4, 4,, ... } for some
e.r. on A.

* The A’s are all disjoint and their union = 4.

* They “partition” the set into pieces. Within
each piece, all members of the set are
equivalent to each other.
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§7.6: Partial Orderings

* Not sure yet 1f there will be time to cover
this section.
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