

What are Graphs?

Not

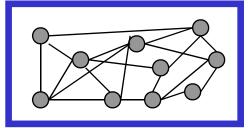
- General meaning in everyday math: A plot or chart of numerical dato using a coordinate system.
- Technical meaning in discrete mathematics: A particular class of discrete structures (to be defined) that is useful for representing relations and has a convenient webbylooking graphical representation.

Applications of Graphs

- Potentially anything (graphs can represent relations, relations can describe the extension of any predicate).
- Apps in networking, scheduling, flow optimization, circuit design, path planning.
- Geneology analysis, computer gameplaying, program compilation, objectoriented design, ...

Simple Graphs

- Correspond to symmetric binary relations *R*.
- A *simple graph G*⁻(*V*,*E*) consists of:

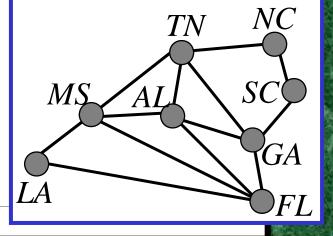


Visual Representation of a Simple Graph

- a set V of vertices or nodes (V corresponds to the universe of the relation R),
- a set *E* of *edges* / *arcs* / *links*: unordered pairs of [distinct?] elements $u, v \in V$, such that uRv.

Example of a Simple Graph

- Let *V* be the set of states in the farsoutheastern U.S.:
 - $-V = \{FL, GA, AL, MS, LA, SC, TN, NC\}$
- Let $E = \{\{u, v\} | u \text{ adjoins } v\}$
 - ={{FL,GA},{FL,AL},{FL,MS}, {FL,LA},{GA,AL},{AL,MS}, {MS,LA},{GA,SC},{GA,TN}, {SC,NC},{NC,TN},{MS,TN}, {MS,AL}}



Multigraphs

- Like simple graphs, but there may be *more than one* edge connecting two given nodes.
- A multigraph $G^{-}(V, E, f)$ consists of a set Vof vertices, a set E of edges (as primitive objects), and a function $f:E \rightarrow \{\{u,v\} | u, v \in V \land u \neq v\}.$
- E.g., nodes are cities, edges are segments of major highways.

Pseudographs

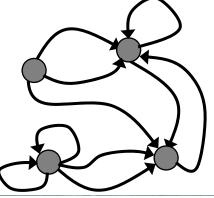
- Like a multigraph, but edges connecting a node to itself are allowed.
- A pseudograph G=(V, E, f) where $f:E \rightarrow \{\{u,v\} | u,v \in V\}$. Edge $e \in E$ is a loop if $f(e)=\{u,u\}=\{u\}$.
- *E.g.*, nodes are campsites in a state park, edges are hiking trails through the woods

Directed Graphs

- Correspond to arbitrary binary relations *R*, which need not be symmetric.
- A *directed graph* (*V*,*E*) consists of a set of vertices *V* and a binary relation *E* on *V*.
- *E.g.*: *V* = people, *E*={(*x*,*y*) | *x* loves *y*}

Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- A *directed multigraph* G=(V, E, f) consists of a set *V* of vertices, a set *E* of edges, and a function $f:E \rightarrow V \times V$.
- E.g., V=web pages, E=hyperlinks. The WWW is a directed multigraph...



Types of Graphs: Summary

- Summary of the book's definitions.
- Keep in mind this terminology is not fully standardized...

Edge	M ultiple	Self-
type	edges ok?	loops ok?
Undir.	No	No
Undir.	Yes	No
Undir.	Yes	Yes
Directed	No	Yes
Directed	Yes	Yes
	type Undir. Undir. Undir. Directed	typeedges ok?Undir.NoUndir.YesUndir.YesDirectedNo

§8.2: Graph Terminology

 Adjacent, connects, endpoints, degree, initial, terminal, in-degree, out-degree, complete, cycles, wheels, n-cubes, bipartite, subgraph, union.

Adjacency

Let *G* be an undirected graph with edge set *E*. Let $e \in E$ be (or map to) the pair $\{u,v\}$. Then we say:

- u, v are adjacent / neighbors / connected.
- Edge *e* is *incident with* vertices *u* and *v*.
- Edge *e connects u* and *v*.
- Vertices *u* and *v* are *endpoints* of edge *e*.

Degree of a Vertex

- Let *G* be an undirected graph, $v \in V$ a vertex.
- The *degree* of *v*, deg(*v*), is its number of incident edges. (Except that any self-loops are counted twice.)
- A vertex with degree 0 is *isolated*.
- A vertex of degree 1 is *pendant*.

Handshaking Theorem

• Let *G* be an undirected (simple, multi-, or pseudo-) graph with vertex set *V* and edge set *E*. Then

$$\sum_{v \in V} \deg(v) = 2|E|$$

• Corollary: Any undirected graph has an even number of vertices of odd degree.

Directed Adjacency

- Let G be a directed (possibly multi-) graph, and let e be an edge of G that is (or maps to) (u,v). Then we say:
 - -u is adjacent to v, v is adjacent from u
 - e comes from u, e goes to v.
 - -e connects u to v, e goes from u to v
 - the *initial vertex* of *e* is *u*
 - the *terminal vertex* of *e* is *v*

Directed Degree

- Let G be a directed graph, v a vertex of G.
 - The *in-degree* of v, deg⁻(v), is the number of edges going to v.
 - The *out-degree* of *v*, deg⁺(*v*), is the number of edges coming from *v*.
 - The *degree* of v, $deg(v) \equiv deg^{-}(v) + deg^{+}(v)$, is the sum of v's in-degree and out-degree.

Directed Handshaking Theorem

• Let *G* be a directed (possibly multi-) graph with vertex set *V* and edge set *E*. Then:

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = \frac{1}{2} \sum_{v \in V} \deg(v) = |E|$$

• Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

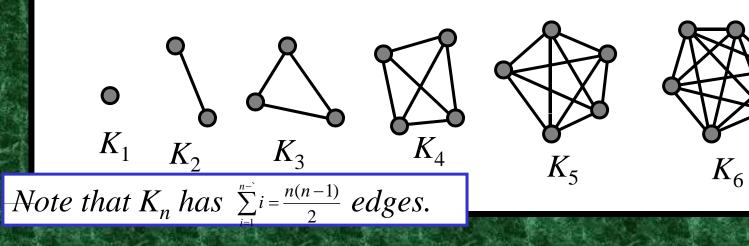
Special Graph Structures

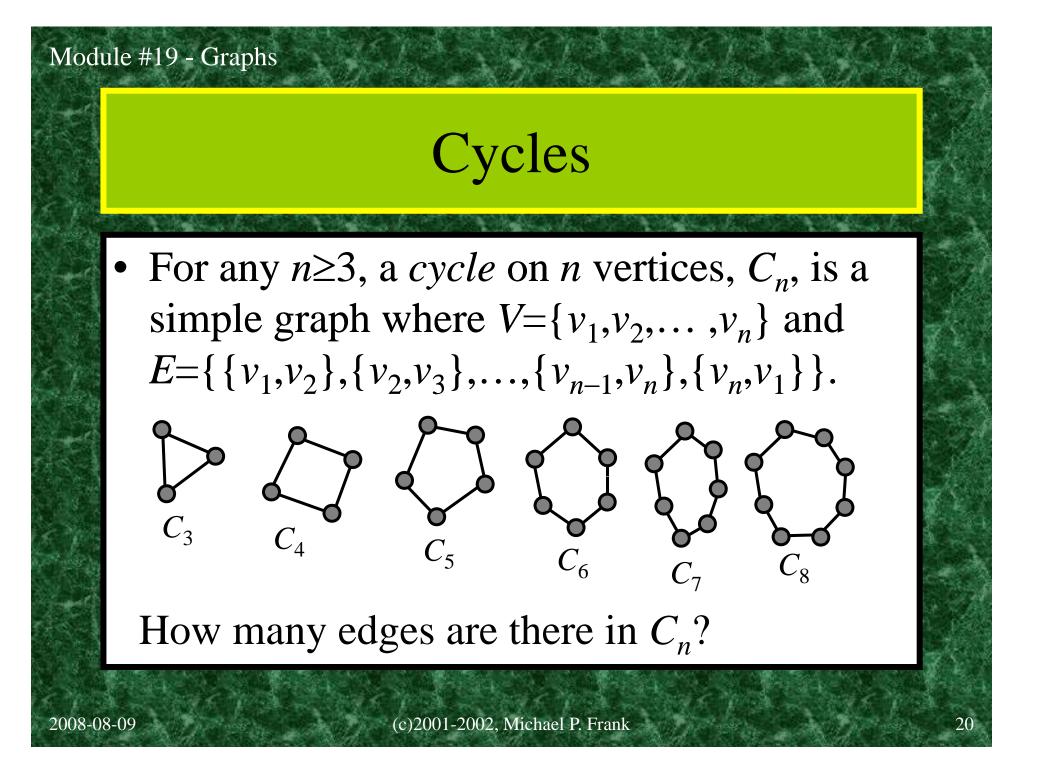
Special cases of undirected graph structures:

- Complete graphs K_n
- Cycles C_n
- Wheels W_n
- *n*-Cubes Q_n
- Bipartite graphs
- Complete bipartite graphs $K_{m,n}$

Complete Graphs

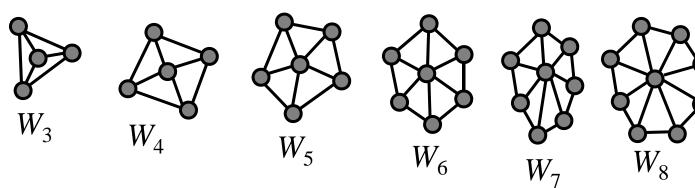
• For any $n \in \mathbb{N}$, a *complete graph* on *n* vertices, K_n , is a simple graph with *n* nodes in which every node is adjacent to every other node: $\forall u, v \in V: u \neq v \leftrightarrow \{u, v\} \in E$.





Wheels

For any n≥3, a wheel W_n, is a simple graph obtained by taking the cycle C_n and adding one extra vertex v_{hub} and n extra edges {{v_{hub},v₁}, {v_{hub},v₂},...,{v_{hub},v_n}}.

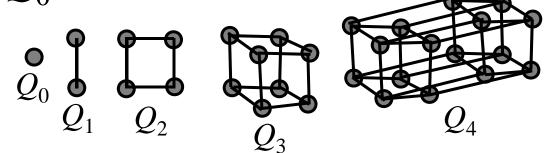


How many edges are there in W_n ?

2008-08-09

n-cubes (hypercubes)

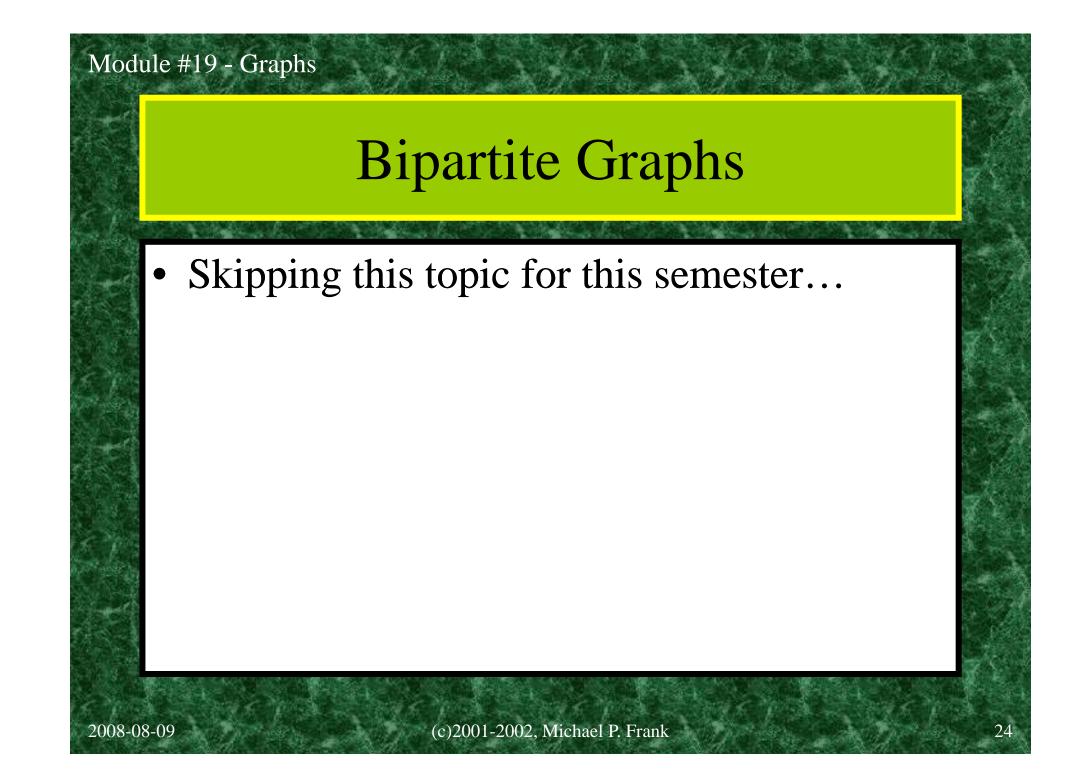
For any n∈N, the hypercube Q_n is a simple graph consisting of two copies of Q_{n-1} connected together at corresponding nodes.
 Q₀ has 1 node.

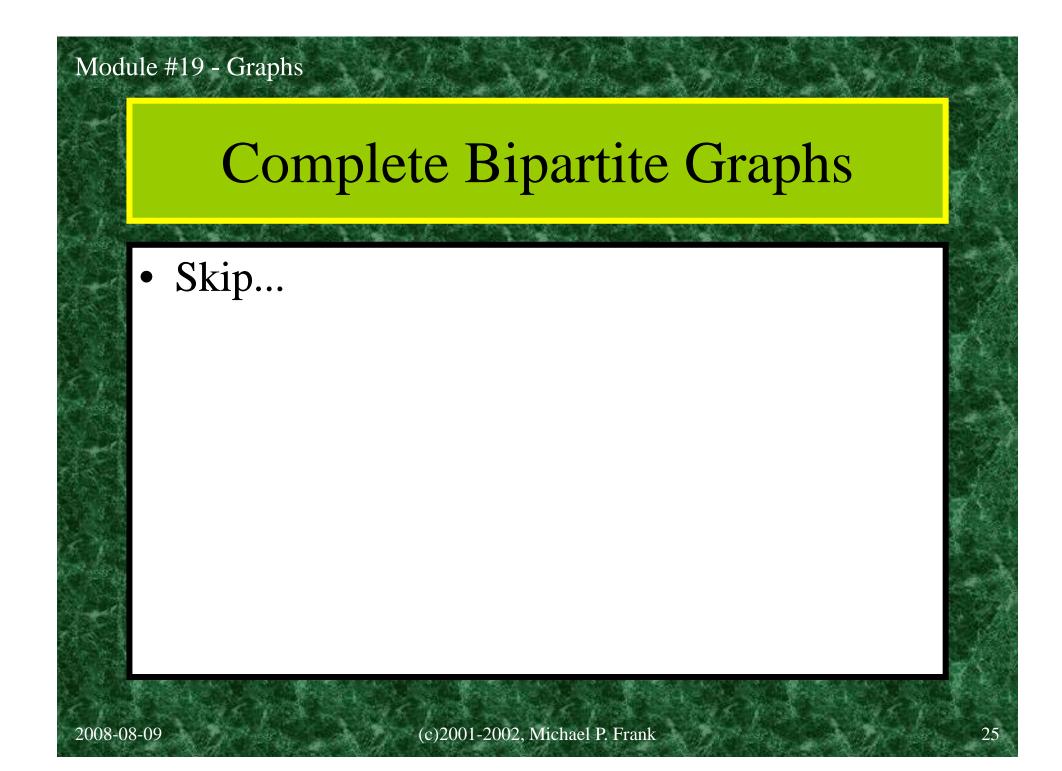


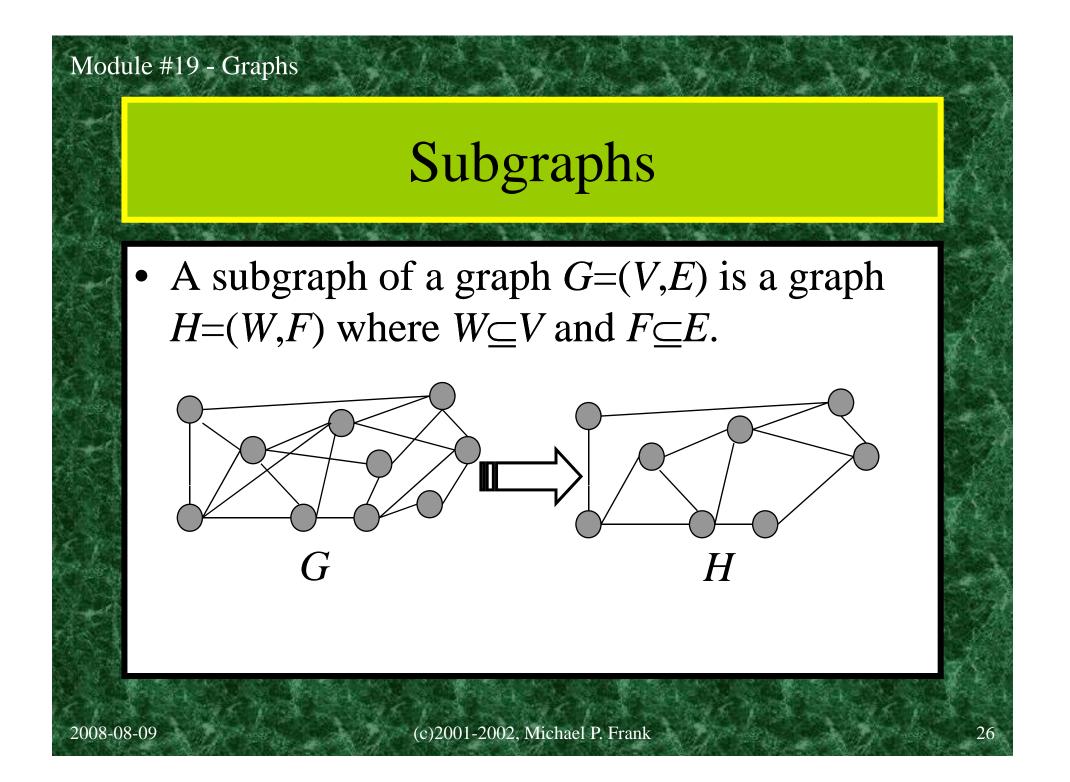
Number of vertices: 2^{*n*}*. Number of edges:Exercise to try!*

n-cubes (hypercubes)

- For any $n \in \mathbb{N}$, the hypercube Q_n can be defined recursively as follows:
 - $-Q_0 = \{\{v_0\}, \emptyset\}$ (one node and no edges)
 - For any $n \in \mathbb{N}$, if $Q_n = (V, E)$, where $V = \{v_1, \dots, v_a\}$ and $E = \{e_1, \dots, e_b\}$, then $Q_{n+1} = (V \cup \{v_1', \dots, v_a'\}, E \cup \{e_1', \dots, e_b'\} \cup \{\{v_1, v_1'\}, \{v_2, v_2'\}, \dots, \{v_a, v_a'\}\})$ where v_1', \dots, v_a' are new vertices, and where if $e_i = \{v_i, v_k\}$ then $e_i' = \{v_i', v_k'\}$.







Graph Unions

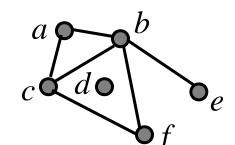
• The union $G_1 \cup G_2$ of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph $(V_1 \cup V_2, E_1 \cup E_2)$.

§8.3: Graph Representations & Isomorphism

- Graph representations:
 - Adjacency lists.
 - Adjacency matrices.
 - Incidence matrices.
- Graph isomorphism:
 - Two graphs are isomorphic iff they are identical except for their node names.

Adjacency Lists

• A table with 1 row per vertex, listing its adjacent vertices.



	Adjacent
Vertex	Vertices
a	<i>b</i> , <i>c</i>
b	a, c, e, f
С	a, b, f
d	
е	b
f	<i>c</i> , <i>b</i>

Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of each edge incident from that node.

Adjacency Matrices

• Matrix $\mathbf{A} = [a_{ij}]$, where a_{ij} is 1 if $\{v_i, v_j\}$ is an edge of *G*, 0 otherwise.

Graph Isomorphism

- Formal definition:
 - Simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* iff \exists a bijection $f:V_1 \rightarrow V_2$ such that $\forall a, b \in V_1$, a and b are adjacent in G_1 iff f(a) and f(b) are adjacent in G_2 .
 - -f is the "renaming" function that makes the two graphs identical.
 - Definition can easily be extended to other types
 of graphs.

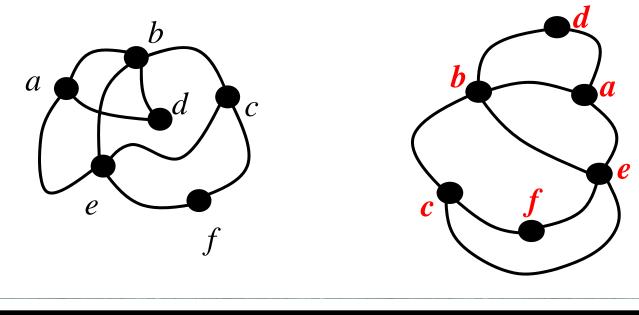
Graph Invariants under Isomorphism

Necessary but not sufficient conditions for $G_1 = (V_1, E_1)$ to be isomorphic to $G_2 = (V_2, E_2)$: -|V1| = |V2|, |E1| = |E2|.

- The number of vertices with degree *n* is the same in both graphs.
- For every proper subgraph g of one graph, there is a proper subgraph of the other graph that is isomorphic to g.

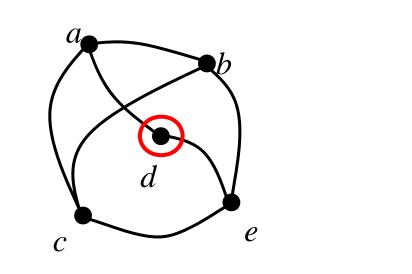
Isomorphism Example

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.



Are These Isomorphic?

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.



* Same # of vertices * Same # of edges * Different # of verts of degree 2! (1 vs 3)

§8.4: Connectivity

- In an undirected graph, a *path of length n from u to v* is a sequence of adjacent edges going from vertex u to vertex v.
- A path is a *circuit* if u=v.
- A path *traverses* the vertices along it.
- A path is *simple* if it contains no edge more than once.

Paths in Directed Graphs

• Same as in undirected graphs, but the path must go in the direction of the arrows.

Connectedness

- An undirected graph is *connected* iff there is a path between every pair of distinct vertices in the graph.
- Theorem: There is a *simple* path between any pair of vertices in a connected undirected graph.
- Connected component: connected subgraph
- A *cut vertex* or *cut edge* separates 1 connected component into 2 if removed.

Directed Connectedness

- A directed graph is *strongly connected* iff there is a directed path from *a* to *b* for any two verts *a* and *b*.
- It is *weakly connected* iff the underlying *undirected* graph (*i.e.*, with edge directions removed) is connected.
- Note *strongly* implies *weakly* but not viceversa.

Paths & Isomorphism

• Note that connectedness, and the existence of a circuit or simple circuit of length *k* are graph invariants with respect to isomorphism.

Counting Paths w Adjacency Matrices

- Let A be the adjacency matrix of graph G.
- The number of paths of length k from v_i to v_j is equal to $(\mathbf{A}^k)_{i,j}$. (The notation $(\mathbf{M})_{i,j}$ denotes $m_{i,j}$ where $[m_{i,j}] = \mathbf{M}$.)

§8.5: Euler & Hamilton Paths

- An *Euler circuit* in a graph *G* is a simple circuit containing every <u>e</u>dge of *G*.
- An *Euler path* in *G* is a simple path containing every <u>e</u>dge of *G*.
- A *Hamilton circuit* is a circuit that traverses each vertex in *G* exactly once.
- A *Hamilton path* is a path that traverses each vertex in G exactly once.

Some Useful Theorems

- A connected multigraph has an Euler circuit iff each vertex has even degree.
- A connected multigraph has an Euler path (but not an Euler circuit) iff it has exactly 2 vertices of odd degree.
- If (but <u>not</u> only if) G is connected, simple, has n≥3 vertices, and ∀v deg(v)≥n/2, then G has a Hamilton circuit.