Module #19 - Graphs

2008-08-09 =

Module #19:
Graph Theory

Rosen 5t ed., chs. 8-9
~44 slides (more later), ~3 lectures
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Module #19 - Graphs

What are Graphs?

e Technical meaning in discrete mathematics:
A particular class of discrete structures (to
be defined) that is useful for representing
relations and has a convenient webby-
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Applications of Graphs

 Potentially anything (graphs can represent
relations, relations can describe the
extension of any predicate).

* Apps in networking, scheduling, flow
optimization, circuit design, path planning.

* Geneology analysis, computer game-
playing, program compilation, object-
oriented design, ...
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Simple Graphs

e Correspond to symmetric
binary relations R.
* A S|mple graph G:(V’E) Visual Representation

consists of: of a Simple Graph

— a set V of vertices or nodes (V corresponds to
the universe of the relation R),

— a set E of edges / arcs / links: unordered pairs
of [distinct?] elements u,v € V, such that uRv.
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Example of a Simple Graph

e etV be the set of states In the far-
southeastern U.S.:

-V={FL, GA, AL, MS, LA, SC, TN, NC}
e Let E={{u,v}{u adjoins v}

={{FL,GA},{FL,AL}{FL,MS},
{FL,LA}{GA AL},{AL MS},
{MS,LA}{GA,SC},{GA TN},
{SC,NC},{NC, TN},{MS, TN},
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Multigraphs

 Like simple graphs, but there may be more
than one edge connecting two given nodes.

o A multigraph G=(V, E, f) consists of a set V
of vertices, a set E of edges (as primitive
objects), and a function < parallel
f.E>{{u,v}u,veV A u=v}. edges

* E.g., nodes are cities, edges
are segments of major highways.
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Pseudographs

 Like a multigraph, but edges connecting a
node to itself are allowed.

* A pseudograph G=(V, E, f) where
f.E—>{{u,v}u,veV}. Edge ecE isa loopif
f(e)={u,u}={u}.

e E.g., nodes are campsites

In a state park, edges are
hiking trails through the wood
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Directed Graphs

e Correspond to arbitrary binary relations R,
which need not be symmetric.

A directed graph (V,E) consists of a set of
vertices V and a binary relation E on V.

e E.g.:V =people,
E={(x,y) | x loves y}
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Directed Multigraphs

 Like directed graphs, but there may be more
than one arc from a node to another.

o A directed multigraph G=(V, E, f) consists
of a set V of vertices, a set E of edges, and a
function f.E—>VxV.

* E.g., V=web pages,
E=hyperlinks. The WWW is
a directed multigraph...
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Types of Graphs: Summary

o Summary of the book’s definitions.

o Keep in mind this terminology is not fully

standardized...

Edge Multiple Self-
Term type edges ok? loops ok?
Simple graph Undir. N o No
Multigraph Undir. Yes N o
Pseudograph Undir. Yes Yes
Directed graph Directed No Yes
Directed multigraph  Directed Yes Yes
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§8.2: Graph Terminology

 Adjacent, connects, endpoints, degree,
Initial, terminal, in-degree, out-degree,
complete, cycles, wheels, n-cubes, bipartite,
subgraph, union.
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Adjacency

et G be an undirected graph with edge set E.
et ecE be (or map to) the pair {u,v}. Then
we say:.

e U, v are adjacent / neighbors / connected.
e Edge e Is Incident with vertices u and v.

e Edge e connects u and v.

 Vertices u and v are endpoints of edge e.
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Degree of a Vertex

Let G be an undirected graph, veV a vertex.

The degree of v, deg(Vv), Is Its number of
Incident edges. (Except that any self-loops

are counted twice.)
A vertex with degree 0 is Isolated.
A vertex of degree 1 Is pendant.
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Handshaking Theorem

o Let G be an undirected (simple, multi-, or
pseudo-) graph with vertex set V and edge

set E. Then

> deg(v) = 2|E|

veV

» Corollary: Any undirected graph has an
even number of vertices of odd degree.
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Directed Adjacency

o Let G be a directed (possibly multi-) graph,
and let e be an edge of G that is (or maps to)
(u,v). Then we say:

— u Is adjacent to v, v Is adjacent from u
— e comes fromu, e goestov.

— € connects u to v, e goes fromutov

— the initial vertex of e Is u

— the terminal vertex of e is v
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Directed Degree

o Let G be a directed graph, v a vertex of G.

— The in-degree of v, deg~(v), is the number of
edges going to v.

— The out-degree of v, deg*(v), is the number of
edges coming from v.

— The degree of v, deg(v)=deg-(v)+deg*(v), Is the
sum of v’s in-degree and out-degree.
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Directed Handshakmg Theorem

o Let G be a directed (possibly multi-) graph
with vertex set V and edge set E. Then:

> deg™(v) =) deg (v) == Zdeg(v)_\E\

veV veV VeV

* Note that the degree of a node Is unchanged
by whether we consider its edges to be
directed or undirected.
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Special Graph Structures

Special cases of undirected graph structures:
» Complete graphs K,

* Cycles C,

e Wheels W,

* N-Cubes Q,

 Bipartite graphs

» Complete bipartite graphs K.
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Complete Graphs

 Forany neN, a complete graph on n
vertices, K., Is a simple graph with n nodes
In which every node Is adjacent to every
other node: Yu,veV: uzv<>{u,v}<E.

VAT

Note that K, has Si- ”(” 2 edges
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* For any n>3, a cycle on n vertices, C,, Is a
simple graph where V={v,,v,,... ,v,} and

E:{{Vlivz}’{VZ’V3}’ - ’{Vn—livn}’{vnivl}}-

AN

How many edges are there in C_?
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* For any n>3, a wheel W, Is a simple graph
obtained by taking the cycle C, and adding
one extra vertex v, ,, and n extra edges

{{thb’vl}’ {thb’VZ}’ e ’{thb’vn}}-

P RS EHE

How many edges are there in W,?
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n-cubes (hypercubes)

* For any neN, the hypercube Q,, Is a simple
graph consisting of two copies of Q, ,
connected together at corresponding nodes.

Q, has 1 node.

Im@@

Number of vertices: 2”. Number of edges:Exercise to try!
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n-cubes (hypercubes)

* For any neN, the hypercube Q, can be
defined recursively as follows:
— Qu={{v,}.<} (one node and no edges)
— Forany neN, if Q =(V,E), where V={vg,...,v}
and E={e,,...,e,}, then Q.. ,=(V{v,",....v; },

Eu{e,,....e, Fo{{vyvy BV, v -
{v,Vv, }}) wherev,’,...,v," are new vertices,
and where If e;={v;,v, } then &;"={v;",v," }.
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Bipartite Graphs

« SKipping this topic for this semester...
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Complete Bipartite Graphs
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Subgraphs

o A subgraph of a graph G=(V,E) Is a graph
H=(W,F) where WcV and FcE.

o=l T
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Graph Unions

* The union G,UG, of two simple graphs
G,=(Vy, E,) and G,=(V,,E,) Is the simple
graph (V,uV,, E;UE,).
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Isomorphlsm

o Graph representations:
— Adjacency lists.
— Adjacency matrices.
— Incidence matrices.

o Graph isomorphism:

— Two graphs are isomorphic iff they are
Identical except for their node names.
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Adjacency Lists

o A table with 1 row per vertex, listing Its

adjacent vertices. Adjacent

Vertex |Vertices
b, C

a, c,ef
a, b, f

c, b
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Directed Adjacency Lists

1 row per node, listing the terminal nodes of
each edge incident from that node.
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Adjacency Matrices

* Matrix A=[a;], where a;; Is 1 If {v;, v;} Is an
edge of G, 0 otherwise.
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Graph Isomorphism

 Formal definition:

— Simple graphs G,=(V, E,) and G,=(V,, E,) are
Isomorphic iff 3 a bijection f:V;—V, such that
V a,beV,, aand b are adjacent in G, Iff f(a) and
f(b) are adjacent in G,

— fis the “renaming” function that makes the two
graphs identical.

— Definition can easily be extended to other types
of graphs.
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Graph Invariants under Isomorphism

Necessary but not sufficient conditions for
G,=(V,, E,) to be isomorphic to G,=(V,, E,):
— IV1|=|V2|, |EL|=|E2).
— The number of vertices with degree n is the

cama hnfh nr :\nhc
ULV ||| NULILI Hlu

— For every proper subgraph g of one graph, there

IS a proper subgraph of the other graph that is
Isomorphic to g.
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Isomorphism Example

* |f isomorphic, label the 2nd graph to show
the Isomorphism, else identify difference.
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Are These Isomorphic?

* |f isomorphic, label the 2nd graph to show
the Isomorphism, else identify difference.

* Same # of

vertices
* Same # of

edges
* Different
# of verts of
degree 2!
(1 vs 3)
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e |Inan

§8.4: Connectivity

undirected graph, a path of length n

from u to v Is a sequence of adjacent edges
going from vertex u to vertex v.

Dat
Dat
nat

N IS a circuit If u=v.
n traverses the vertices along it.

n 1S simple If it contains no edge more

than once.
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Paths Iin Directed Graphs

e Same as In undirected graphs, but the path
must go In the direction of the arrows.
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Connectedness

An undirected graph is connected iff there Is
a path between every pair of distinct
vertices in the graph.

e Theorem: There is a simple path between
any pair of vertices in a connected
undirected graph.

e Connected component: connected subgraph

e A cut vertex or cut edge separates 1
connected component into 2 if removed.
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Directed Connectedness

o A directed graph is strongly connected iff
there Is a directed path from a to b for any
two verts a and b.

* |t is weakly connected Iff the underlying
undirected graph (i.e., with edge directions
removed) IS connected.

* Note strongly implies weakly but not vice-
Versa.
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Paths & Isomorphism

* Note that connectedness, and the existence
of a circuit or simple circuit of length k are
graph invariants with respect to
Isomorphism.
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Counting Paths w Adjacency Matrices

 Let A be the adjacency matrix of graph G.

* The number of paths of length k from v; to v,
is equal to (A¥);;. (The notation (M),

denotes m;; where [m; ;] = M.)
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§8.5: Euler & Hamilton Paths

An Euler circuit in a graph G is a simple
circuit containing every edge of G.

An Euler path in G is a simple path
containing every edge of G.

A Hamilton circuit is a circuit that traverses
each vertex in G exactly once.

A Hamilton path is a path that traverses
each vertex in G exactly once.
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Some Useful Theorems

« A connected multigraph has an Euler circuit
Iff each vertex has even degree.

* A connected multigraph has an Euler path
(but not an Euler circuit) Iff it has exactly 2
vertices of odd degree.

o |If (but not only If) G Is connected, simple,
has n>3 vertices, and Vv deg(v)=n/2, then G
has a Hamilton circuit.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &




