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What are Graphs? Not

•• General meaning in everyday math: General meaning in everyday math: 
A plot or chart of numerical data using a A plot or chart of numerical data using a 
coordinate system.coordinate system.yy

•• Technical meaning in discrete mathematics:Technical meaning in discrete mathematics:
A ti l l f di t t t (tA ti l l f di t t t (tA particular class of discrete structures (to A particular class of discrete structures (to 
be defined) that is useful for representing be defined) that is useful for representing 
relations and has a convenient webbyrelations and has a convenient webby--
looking graphical representation.looking graphical representation.
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Applications of Graphs

•• Potentially anything (graphs can represent  Potentially anything (graphs can represent  
relations, relations can describe the relations, relations can describe the 
extension of any predicate).extension of any predicate).y p )y p )

•• Apps in networking, scheduling, flow Apps in networking, scheduling, flow 
optimization circuit design path planningoptimization circuit design path planningoptimization, circuit design, path planning.optimization, circuit design, path planning.

•• Geneology analysis, computer gameGeneology analysis, computer game--
playing, program compilation, objectplaying, program compilation, object--
oriented design, …oriented design, …
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Simple Graphs

•• Correspond to symmetricCorrespond to symmetric
binary relations binary relations RR..

•• AA simple graphsimple graph GG=(=(VV EE))A A simple graphsimple graph GG ((VV,,EE))
consists of:consists of:

VV ff ii dd ((VV dd

Visual Representation
of a Simple Graph

–– a set a set VV of of verticesvertices oror nodesnodes ((VV corresponds to corresponds to 
the universe of the relation the universe of the relation RR),),

–– a set a set EE of of edgesedges / / arcsarcs / / linkslinks: unordered pairs : unordered pairs 
of of [distinct?][distinct?] elements elements uu,,vv ∈∈ VV, such that , such that uRvuRv..
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Example of a Simple Graph

•• Let Let VV be the set of states in the farbe the set of states in the far--
southeastern U.S.:southeastern U.S.:
––VV={FL, GA, AL, MS, LA, SC, TN, NC}={FL, GA, AL, MS, LA, SC, TN, NC}VV {FL, GA, AL, MS, LA, SC, TN, NC}{FL, GA, AL, MS, LA, SC, TN, NC}

•• Let Let EE={{={{uu,,vv}|}|u u adjoins adjoins vv}}
{{ } { } { }{{ } { } { } TN NC={{FL,GA},{FL,AL},{FL,MS},={{FL,GA},{FL,AL},{FL,MS},

{FL,LA},{GA,AL},{AL,MS},{FL,LA},{GA,AL},{AL,MS},
{ S A} {GA SC} {GA }{ S A} {GA SC} {GA }

TN

ALMS SC

NC

{MS,LA},{GA,SC},{GA,TN},{MS,LA},{GA,SC},{GA,TN},
{SC,NC},{NC,TN},{MS,TN},{SC,NC},{NC,TN},{MS,TN},
{MS AL}}{MS AL}}

LA
GA
FL
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Multigraphs

•• Like simple graphs, but there may be Like simple graphs, but there may be more more 
than onethan one edge connecting two given nodes.edge connecting two given nodes.

•• AA multigraphmultigraph GG=(=(VV EE ff ) consists of a set) consists of a set VVA A multigraphmultigraph GG ((VV, , EE, , f f ) consists of a set ) consists of a set VV
of vertices, a set of vertices, a set EE of edges (as primitive of edges (as primitive 
objects) and a functionobjects) and a functionobjects), and a functionobjects), and a function
ff::EE→→{{{{uu,,vv}|}|uu,,vv∈∈VV ∧∧ uu≠≠vv}.}.

Parallel
edges

•• E.g., nodes are cities, edgesE.g., nodes are cities, edges
are segments of major highways.are segments of major highways.
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Pseudographs

•• Like a multigraph, but edges connecting a Like a multigraph, but edges connecting a 
d t it lf ll dd t it lf ll dnode to itself are allowed.node to itself are allowed.

•• A A pseudographpseudograph GG=(=(VV, , EE, , f f ) where) wherep g pp g p (( ff ))
ff::EE→→{{{{uu,,vv}|}|uu,,vv∈∈VV}.  Edge }.  Edge ee∈∈EE is a is a looploop if if 
ff((ee)={)={uu,,uu}={}={uu}.}.ff(( ) {) { ,, } {} { }}

•• E.g.E.g., nodes are campsites, nodes are campsites
in a state park edges arein a state park edges arein a state park, edges arein a state park, edges are
hiking trails through the woods.hiking trails through the woods.
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Directed Graphs

•• Correspond to arbitrary binary relations Correspond to arbitrary binary relations RR, , 
which need not be symmetric.which need not be symmetric.

•• AA directed graphdirected graph ((VV EE) consists of a set of) consists of a set ofA A directed graphdirected graph ((VV,,EE) consists of a set of ) consists of a set of 
vertices vertices VV and a binary relation and a binary relation EE on on VV..

ll•• E.g.E.g.: : VV = people,= people,
EE={(={(xx,,yy) | ) | xx loves loves yy}}
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Directed Multigraphs

•• Like directed graphs, but there may be more Like directed graphs, but there may be more 
th f d t thth f d t ththan one arc from a node to another.than one arc from a node to another.

•• A A directed multigraphdirected multigraph GG=(=(VV, , EE, , f f ) consists ) consists g pg p (( ff ))
of a set of a set VV of vertices, a set of vertices, a set EE of edges, and a of edges, and a 
function function ff::EE→→VV××VV..ff

•• E.g., E.g., VV=web pages,=web pages,
EE=hyperlinks=hyperlinks The WWW isThe WWW isEE hyperlinks.  hyperlinks.  The WWW isThe WWW is
a directed multigraph...a directed multigraph...
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Types of Graphs: Summary

•• Summary of the book’s definitions.Summary of the book’s definitions.
•• Keep in mind this terminology is not fully Keep in mind this terminology is not fully 

standardizedstandardizedstandardized...standardized...

T erm
E dge
type

M ultip le
edges ok?

S elf-
loops ok?

S im ple graph U ndir. N o N o
M ultigraph U ndir. Y es N o
P seudograph U ndir Y es Y esP seudograph U ndir. Y es Y es
D irected  graph D irected N o Y es
D irected  m ultigraph D irected Y es Y es
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§8.2: Graph Terminology

•• Adjacent, connects, endpoints, degree, Adjacent, connects, endpoints, degree, 
initial, terminal, ininitial, terminal, in--degree, outdegree, out--degree, degree, 
complete, cycles, wheels, ncomplete, cycles, wheels, n--cubes, bipartite, cubes, bipartite, p , y , ,p , y , , , p ,, p ,
subgraph, union.subgraph, union.
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Adjacency

Let Let GG be an undirected graph with edge set be an undirected graph with edge set EE.  .  
Let Let ee∈∈EE be (or map to) the pair {be (or map to) the pair {uu,,vv}.  Then }.  Then 
we say:we say:yy

•• uu, , vv are are adjacentadjacent / / neighborsneighbors / / connectedconnected..
dd ii d hd h ii dd•• Edge Edge ee is is incident withincident with vertices vertices uu and and vv..

•• EdgeEdge ee connectsconnects uu andand vv..Edge Edge ee connectsconnects uu and and vv..
•• Vertices Vertices uu and and vv are are endpointsendpoints of edge of edge ee..
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Degree of a Vertex

•• Let Let GG be an undirected graph, be an undirected graph, vv∈∈VV a vertex.a vertex.
•• The The degreedegree of of vv, deg(, deg(vv), is its number of ), is its number of 

incident edges (Except that any selfincident edges (Except that any self--loopsloopsincident edges. (Except that any selfincident edges. (Except that any self loops loops 
are counted twice.)are counted twice.)

i h d ii h d i l dl d•• A vertex with degree 0 is A vertex with degree 0 is isolatedisolated..
•• A vertex of degree 1 isA vertex of degree 1 is pendantpendant..A vertex of degree 1 is A vertex of degree 1 is pendantpendant..
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Handshaking Theorem

•• Let Let GG be an undirected (simple, multibe an undirected (simple, multi--, or , or 
pseudopseudo--) graph with vertex set ) graph with vertex set VV and edge and edge 
set set EE.  Then.  Then

Ev 2)deg( =∑
•• Corollary: Any undirected graph has anCorollary: Any undirected graph has an

Vv
)g(∑

∈

Corollary: Any undirected graph has an Corollary: Any undirected graph has an 
even number of vertices of odd degree.even number of vertices of odd degree.
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Directed Adjacency

•• Let Let GG be a directed (possibly multibe a directed (possibly multi--) graph, ) graph, 
and let and let ee be an edge of be an edge of GG that is (or maps to) that is (or maps to) 
((uu,,vv).  Then we say:).  Then we say:(( ,, ) y) y
–– uu is is adjacent toadjacent to vv, , vv is is adjacent fromadjacent from uu

ee comes fromcomes from u eu e goes togoes to vv–– ee comes fromcomes from u, e u, e goes togoes to v.v.
–– e connects u to ve connects u to v, , e goes from u to ve goes from u to v
–– the the initial vertexinitial vertex of of ee is is uu
–– the the terminal vertexterminal vertex of of ee is is vv
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Directed Degree

•• Let Let GG be a directed graph, be a directed graph, vv a vertex of a vertex of GG..
–– The The inin--degreedegree of of vv, deg, deg−−((vv), is the number of ), is the number of 

edges going to edges going to vv..g g gg g g
–– The The outout--degreedegree of of vv, deg, deg++((vv), is the number of ), is the number of 

edges coming fromedges coming from vv..edges coming from edges coming from vv..
–– The The degreedegree of of vv, deg(, deg(vv))≡≡degdeg−−((vv)+)+degdeg++((vv), is the ), is the 

sum ofsum of vv’s in’s in degree and outdegree and out degreedegreesum of sum of vv s ins in--degree and outdegree and out--degree.degree.
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Directed Handshaking Theorem

•• Let Let GG be a directed (possibly multibe a directed (possibly multi--) graph ) graph 
with vertex set with vertex set VV and edge set and edge set EE.  Then:.  Then:

E∑∑∑ +− )d (1)(d)(d Evvv
VvVvVv

=== ∑∑∑
∈∈

+

∈

)deg(
2

)(deg)(deg

•• Note that the degree of a node is unchanged Note that the degree of a node is unchanged 
by whether we consider its edges to beby whether we consider its edges to beby whether we consider its edges to be by whether we consider its edges to be 
directed or undirected.directed or undirected.
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Special Graph Structures

Special cases of undirected graph structures:Special cases of undirected graph structures:
•• Complete graphs Complete graphs KKnn

•• CyclesCycles CC•• Cycles Cycles CCnn

•• Wheels Wheels WWnn

•• nn--Cubes Cubes QQnn

Bi tit hBi tit h•• Bipartite graphsBipartite graphs
•• Complete bipartite graphs Complete bipartite graphs KKmm nn
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Complete Graphs

•• For any For any nn∈∈NN, a , a complete graphcomplete graph on on nn
vertices, vertices, KKnn, is a simple graph with , is a simple graph with nn nodes nodes 
in which every node is adjacent to every in which every node is adjacent to every y j yy j y
other node: other node: ∀∀uu,,vv∈∈VV: : uu≠≠vv↔↔{{uu,,vv}}∈∈EE..

K1 K2 K3 K4 K5 K6
Note that K has edges)1(` −

=∑
− nni

n
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Cycles

•• For any For any nn≥≥33, a , a cyclecycle on on nn vertices, vertices, CCnn, is a , is a 
simple graph where simple graph where VV={={vv11,,vv22,… ,,… ,vvnn} and } and 
EE={{={{vv11,,vv22},{},{vv22,,vv33},…,{},…,{vvnn−−11,,vvnn},{},{vvnn,,vv11}}.}}.{{{{ 11,, 22},{},{ 22,, 33}, ,{}, ,{ nn−−11,, nn},{},{ nn,, 11}}}}

C3 C4 C5 C6 C C5 C6 C7
C8

How many edges are there in Cn?
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Wheels
•• For any For any nn≥≥33, a , a wheelwheel WWnn, is a simple graph , is a simple graph 

obtained by taking the cycleobtained by taking the cycle CC and addingand addingobtained by taking the cycle obtained by taking the cycle CCnn and adding and adding 
one extra vertex one extra vertex vvhubhub and and nn extra edges extra edges 
{{{{ } {} { } {} { }}}}{{{{vvhubhub,,vv11}, {}, {vvhubhub,,vv22},…,{},…,{vvhubhub,,vvnn}}.}}.

WW3 W4 W5 W6 W7
W8

How many edges are there in W ?
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n-cubes (hypercubes)

•• For any For any nn∈∈NN, the hypercube , the hypercube QQnn is a simple is a simple 
graph consisting of two copies of graph consisting of two copies of QQnn--11
connected together at corresponding nodes.  connected together at corresponding nodes.  g p gg p g
QQ00 has 1 node.has 1 node.

Q0
Q1 Q2 Q Q4Q1 Q2 Q3

Q4

Number of vertices: 2n.  Number of edges:Exercise to try! 
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n-cubes (hypercubes)

•• For any For any nn∈∈NN, the hypercube , the hypercube QQnn can be can be 
defined recursively as follows:defined recursively as follows:
–– QQ00={{={{vv00},},∅∅} (one node and no edges)} (one node and no edges)QQ00 {{{{vv00},},∅∅} (one node and no edges)} (one node and no edges)
–– For any For any nn∈∈NN, if , if QQnn==((VV,,EE), where ), where VV={={vv11,…,,…,vvaa} } 

andand EE={={ee ee } then} then QQ =(=(VV∪∪{{vv ´́ vv ´́}}andand EE={={ee11,…,,…,eebb}, then }, then QQnn+1+1=(=(VV∪∪{{vv11 ,…,,…,vvaa }}, , 
EE∪∪{{ee11´́,…,,…,eebb´́}}∪∪{{{{vv11,,vv11´́},{},{vv22,,vv22´́},…,},…,
{{vv vv ´́}}}}) where) where vv ´́ vv ´́ are new verticesare new vertices{{vvaa,,vvaa }}}}) where ) where vv11 ,…,,…,vvaa are new vertices, are new vertices, 
and where if and where if eeii={={vvjj,,vvkk} then } then eeii´́={={vvjj´́,,vvkk´́}. }. 
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Bipartite Graphs

•• Skipping this topic for this semester…Skipping this topic for this semester…
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Complete Bipartite Graphs

•• Skip...Skip...
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Subgraphs

•• A subgraph of a graph A subgraph of a graph GG=(=(VV,,EE) is a graph ) is a graph 
HH=(=(WW,,FF) where ) where WW⊆⊆VV and and FF⊆⊆EE..

G HG H
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Graph Unions

•• The The unionunion GG11∪∪GG22 of two simple graphs of two simple graphs 
GG11=(=(VV11, , EE11) and ) and GG22=(=(VV22,,EE22) is the simple ) is the simple 
graph (graph (VV11∪∪VV22, , EE11∪∪EE22).).g p (g p ( 11 22,, 11 22))
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§8 3: Graph Representations &§8.3: Graph Representations & 
Isomorphismp

•• Graph representations:Graph representations:
–– Adjacency lists.Adjacency lists.
–– Adjacency matrices.Adjacency matrices.Adjacency matrices.Adjacency matrices.
–– Incidence matrices.Incidence matrices.

G h i hiG h i hi•• Graph isomorphism:Graph isomorphism:
–– Two graphs are isomorphic iff they are Two graphs are isomorphic iff they are 

identical except for their node names.identical except for their node names.
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Adjacency Lists

•• A table with 1 row per vertex, listing its A table with 1 row per vertex, listing its 
adjacent vertices.adjacent vertices.
a b Vertex

Adjacent
Verticesa b

dc e

Vertex Vertices
a
b

b, c
a, c, e, f

f
f

c a, b, f
d

be b
f c, b
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Directed Adjacency Lists

•• 1 row per node, listing the terminal nodes of 1 row per node, listing the terminal nodes of 
each edge incident from that node.each edge incident from that node.
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Adjacency Matrices

•• Matrix Matrix AA=[=[aaijij], where ], where aaijij is 1 if {is 1 if {vvii, , vvjj} is an } is an jj jj jj
edge of edge of GG, 0 otherwise., 0 otherwise.
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Graph Isomorphism

•• Formal definition:Formal definition:
–– Simple graphs Simple graphs GG11=(=(VV11, , EE11) and ) and GG22=(=(VV22, , EE22) are ) are 

isomorphicisomorphic iff iff ∃∃ a bijection a bijection ff::VV11→→VV22 such that such that pp jj ff 11 22
∀∀ aa,,bb∈∈VV11, , aa and and bb are adjacent in are adjacent in GG11 iff iff ff((aa) and ) and 
ff((bb) are adjacent in ) are adjacent in GG22..ff(( ) j) j 22

–– ff is the “renaming” function that makes the two is the “renaming” function that makes the two 
graphs identical.graphs identical.graphs identical.graphs identical.

–– Definition can easily be extended to other types Definition can easily be extended to other types 
of graphsof graphs
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Graph Invariants under Isomorphism

NecessaryNecessary but not but not sufficientsufficient conditions for conditions for 
GG11=(=(VV11, , EE11) to be isomorphic to ) to be isomorphic to GG22=(=(VV22, , EE22):):

–– ||VV1|=|1|=|VV2|, |2|, |EE1|=|1|=|EE2|.2|.||VV1| |1| |VV2|, |2|, |EE1| |1| |EE2|.2|.
–– The number of vertices with degree The number of vertices with degree nn is the is the 

same in both graphssame in both graphssame in both graphs.same in both graphs.
–– For every proper subgraph For every proper subgraph gg of one graph, there of one graph, there 

i b h f th th h th t ii b h f th th h th t iis a proper subgraph of the other graph that is is a proper subgraph of the other graph that is 
isomorphic to isomorphic to gg..
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Isomorphism Example

•• If isomorphic, label the 2nd graph to show If isomorphic, label the 2nd graph to show 
the isomorphism, else identify difference.the isomorphism, else identify difference.

b d

a
b

cd
b a

e
e

fce
f

fc
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Are These Isomorphic?

•• If isomorphic, label the 2nd graph to show If isomorphic, label the 2nd graph to show 
the isomorphism, else identify difference.the isomorphism, else identify difference.

* Same # ofa
b

 Same # of
vertices

* Same # of

d

edges
* Different
# of verts of

c e
# of verts of
degree 2! 

(1 vs 3)
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§8.4: Connectivity

•• In an undirected graph, a In an undirected graph, a path of length n path of length n 
from u to vfrom u to v is a sequence of adjacent edges is a sequence of adjacent edges 
going from vertex u to vertex v.going from vertex u to vertex v.g gg g

•• A path is a A path is a circuitcircuit if if u=vu=v..
hh h i l ih i l i•• A path A path traversestraverses the vertices along it.the vertices along it.

•• A path isA path is simplesimple if it contains no edge moreif it contains no edge moreA path is A path is simplesimple if it contains no edge more if it contains no edge more 
than once.than once.
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Paths in Directed Graphs

•• Same as in undirected graphs, but the path Same as in undirected graphs, but the path 
must go in the direction of the arrows.must go in the direction of the arrows.
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Connectedness

•• An undirected graph is An undirected graph is connectedconnected iff there is iff there is 
a path between every pair of distinct a path between every pair of distinct 
vertices in the graph.vertices in the graph.g pg p

•• Theorem: There is a Theorem: There is a simplesimple path between path between 
any pair of vertices in a connectedany pair of vertices in a connectedany pair of vertices in a connected any pair of vertices in a connected 
undirected graph.undirected graph.

•• Connected componentConnected component: connected subgraph: connected subgraph
•• AA cut vertexcut vertex oror cut edgecut edge separates 1separates 1
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Directed Connectedness

•• A directed graph is A directed graph is strongly connectedstrongly connected iff iff 
there is a directed path from there is a directed path from aa to to bb for any for any 
two verts two verts aa and and bb.  .  

•• It is It is weakly connectedweakly connected iff the underlying iff the underlying 
di t ddi t d graph (graph (ii with edge directionswith edge directionsundirectedundirected graph (graph (i.e.i.e., with edge directions , with edge directions 

removed) is connected.removed) is connected.
•• Note Note stronglystrongly implies implies weaklyweakly but not vicebut not vice--

versa.versa.
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Paths & Isomorphism

•• Note that connectedness, and the existence Note that connectedness, and the existence 
of a circuit or simple circuit of length of a circuit or simple circuit of length kk are are 
graph invariants with respect to graph invariants with respect to g p pg p p
isomorphism.isomorphism.

2008-08-09 (c)2001-2002, Michael P. Frank 40



Module #19 - Graphs

Counting Paths w Adjacency Matrices

•• Let Let AA be the adjacency matrix of graph be the adjacency matrix of graph GG..
•• The number of paths of length The number of paths of length kk from from vvii to to vvjj

is equal to (is equal to (AAkk))i ji j (The notation ((The notation (MM))i ji jis equal to (is equal to (AA ))i,ji,j.  (The notation (.  (The notation (MM))i,ji,j
denotes denotes mmi,ji,j where [where [mmi,ji,j] = ] = MM..))
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§8.5: Euler & Hamilton Paths

•• An An EEuler circuituler circuit in a graph in a graph GG is a simple is a simple 
circuit containing every circuit containing every eedge of dge of GG..

•• AnAn EEuler pathuler path inin GG is a simple pathis a simple pathAn An EEuler pathuler path in in GG is a simple path is a simple path 
containing every containing every eedge of dge of GG..

ll i i i hi i i h•• A A HamilHamiltton circuiton circuit is a circuit that traverses is a circuit that traverses 
each vereach verttex in ex in GG exactly once.exactly once.

•• A A HamilHamiltton pathon path is a path that traverses is a path that traverses 
each vereach verttex in G exactly onceex in G exactly once
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Some Useful Theorems

•• A connected multigraph has an Euler circuit A connected multigraph has an Euler circuit 
iff each vertex has even degree.iff each vertex has even degree.

•• A connected multigraph has an Euler pathA connected multigraph has an Euler pathA connected multigraph has an Euler path A connected multigraph has an Euler path 
(but not an Euler circuit) iff it has exactly 2 (but not an Euler circuit) iff it has exactly 2 
vertices of odd degreevertices of odd degreevertices of odd degree.vertices of odd degree.

•• If (but If (but notnot only if) only if) GG is connected, simple, is connected, simple, 
has has nn≥≥3 vertices, and 3 vertices, and ∀∀vv deg(deg(vv))≥≥nn/2, then /2, then GG
has a Hamilton circuit.has a Hamilton circuit.
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