
Simulating
a Real-Time Scheduler

using OMNet++
Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

The School of Computer Science and Engineering

Seoul National University

Real-Time Scheduling Overview g
• Tasks that need to be completed by specific

deadlines are real-time tasksdeadlines are real-time tasks
– Cell phones, PDAs
– Digital cameras
– Microwave ovens
– Network adaptor box (e.g., ISDN adaptor)
– Multimedia systems such as DVR, VOD server, etc
– Factory process control
– Radar systems
– Avionics

Types of Real-Time Tasks
• Periodic tasks

– A Task that invokes the same job periodically
– Usually have hard deadlines (equal to period)y (q p)

• Non-Periodic Tasks
– Soft aperiodic tasks:

• random arrivals such as a Poisson distribution:random arrivals such as a Poisson distribution:
• the execution time can also be random such as exponential distribution
• typically it models users’ requests.

– Firm aperiodic tasks (Sporadic tasks):
• there is a minimal separation between 2 consecutive arrivals
• there is a worst-case execution time bound
• models emergency requests such as the warning of engine overheat

Acceptance
Test

Sporadic Task

rejection

Processor

Test

Periodic Task

Aperiodic Task

Periodic Task Model
• A periodic task Ti is characterized by

– phase: θi

– Period: pi

– Execution time : ei

– Relative deadline: Di from the beginning of the period.

J11

θ1 d11 θ1+p1 d12 θ1+2*p1 d13 θ1+3*p1

J12 J13

0

(Power On)

•Default assumption: Di = pi. That is, a periodic task deadline is located at the end of
the period

()

FIFO Scheduler?

k 1task 1

task 2

Schedule

Priority-Driven Scheduler

• {T1=(p1=10, e1=4), T2=(p2=15, e2=8), T3=(p3=30, e3=2)}

0 10 20 30

Fixed Priority Schedule (RM)

Miss!

0 10 20 30

Dynamic Priority Schedule (EDF)

OK !OK !

Fixed-Priority Scheduling

• How to assign Priorities?
• How to check the schedulability?

i i A iPriority Assignment
{T (10 4) T (15 7) T (30 4)}• {T1=(p1=10, e1=4), T2=(p2=15, e2=7), T3=(p3=30, e3=4)}

J1,1 J1,2 J1,3 J1,4

J2 1 J2 2

T1

T

1

2

Assignment 1
10 20 300

J2,1 J2,2T2

T3

2

3 J3,1

15 300

0 30

J1,1 J1,2 J1,3 J1,4T12Assignment 2
10 20 300

J2,1 J2,2T21

10 20 30

15 30

0

0

T33 J3,1
0 30

Intuitive priority assignments

• Random – mostly perform poorly

• Functional Criticality (Semantic importance)
T i id di l t k– T1 is a video display task

– T2 is a task monitoring and controlling patient’s blood pressure

• Urgency
– If all tasks are feasibly schedulable, the critical task doesn’t have to y ,

be the highest priority task
– RM and DM are examples

Optimal Fixed Priority Algorithm

• RM (Rate Monotonic) is an optimal static priority
assignment for periodic tasks with deadlines at the end ofassignment for periodic tasks with deadlines at the end of
the period.
– Higher priority is assigned to a task with higher rate (inverse ofHigher priority is assigned to a task with higher rate (inverse of

period)

• DM (Rate Monotonic) is an optimal static priority
assignment for periodic tasks with arbitrary relative
d dlideadlines.
– Higher priority is assigned to a task with shorter relative deadline

Schedulability Check!Schedulability Check!
• Important forImportant for

– Offline design phaseOffline design phase
• period selection
• algorithm selection
• identifying modules to be optimized

– Online admission phase (in dynamic real-time systems)Online admission phase (in dynamic real-time systems)
• periodic tasks are dynamically created by external events

– In case that the system becomes unschedulable by adding the new task,
e cannot admit it Instead e ha e to ring a arning alarm ASAP forwe cannot admit it. Instead, we have to ring a warning alarm ASAP for

alternative action.
• control frequency and algorithm negotiation

f d Q S i i i l i di• frame rate and QoS parameter negotiation in multimedia

Formulation (Exact Analysis)

∑∑
−

+ =⎥
⎤

⎢
⎡

+=
i

jij

i k
i

i
k

i ererer 0
1

1 where,

Test terminates when r k+1 > p (not schedulable)

∑∑
== ⎥

⎥
⎥⎢

⎢
⎢

+
j

jij
j j

ii ere
p

er
11

 where,

Test terminates when ri > pi (not schedulable)
or when ri

k+1 = ri
k < pi (schedulable).

• Tasks are ordered according to their priority: T1 is the s s e o de ed cco d g o e p o y: 1 s e
highest priority task.

Th E t S h d l bilit T tThe Exact Schedulability Test

•Basically, “Enumerate” the schedule
•“Task by Task” schedulability test•“Task by Task” schedulability test

4 4 4 4

0 10 20 30

40)104(111 === Upe 4 4 4 4

15 300
4 4 4

4.0),10,4(111 Upe

27.0),15,4(222 === Upe

350
2 1 1 628.0),35,10(333 === Upe

Q: Now, we can say Task 3 is schedulable.
Is this correct?

0 10 20 30

4

15 300
4

4.0),10,4(111 === Upe

270)154(222 === Upe

350

4

10

27.0),15,4(222 Upe

28.0),35,10(333 === Upe

r3
0 = 18

0 10 20 30

4

0 10 20 30

15 300
4 4

44.0),10,4(111 === Upe

270)154(222 === Upe

350

4

2

4

1 7

27.0),15,4(222 Upe

28.0),35,10(333 === Upe

r3
1 = 26

0 10 20 30

4

0 10 20 30

15 300
4 4

4 44.0),10,4(111 === Upe

270)154(222 === Upe

350

4

2

4

1 61

27.0),15,4(222 Upe

28.0),35,10(333 === Upe

r3
2 = 30

Intuitions of Exact Schedulability Test

• Obviously, the response time of task 3 should
l h llarger than or equal to e1+e2+e3

181044321

3
0

3 =++=++==∑ eeeer j
1
∑
=j

j

Intuitions of Exact Schedulability Test

• Obviously, the response time of task 3 should larger than or equal to
e1+e2+e3e1 e2 e3

181044321

3

1

0
3 =++=++==∑

=

eeeer
j

j

• The high priority jobs released in r3
0, should lengthen the response

time of task 3time of task 3

2641841810
2 0

3
3

1
3 =⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=⎥

⎤
⎢
⎡

+= ∑ jerer
15101

33 ⎥⎥⎢⎢⎥⎥⎢⎢⎥
⎥
⎥⎢

⎢
⎢

∑
=

j
j jp

Intuitions of Exact Schedulability Test

• Keep doing this until either r3
k no longer increases or r3

k > p3

304
15
264

10
2610

2

1

1
3

3
2

3 =⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=
j

j j

e
p
rer

304
15
304

10
3010

2

1

2
3

3
3

3 =⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=
j

j j

e
p
rer Done!
⎥⎥⎢⎢j j

Class Exercise 1Class Exercise 1
Suppose that we have two tasks
• e1 = 3, p1 = 5
• e2 = 5, p2 = 14

U h k h h d l bili f k 2 D h h d l• Use exact test to check the schedulability of task 2. Draw the schedule
timeline to confirm that

0 3 5 8

113851

0
2

2
1
2 =⎥⎥

⎤
⎢⎢
⎡+=⎥

⎤
⎢
⎡

+= erer

• r2
0 = e1 + e2 = 3 + 5 = 8

113
5

51
1

22 ⎥⎥⎢⎢
+⎥

⎥
⎢
⎢

+ e
p

er

143
5

1151

1
2

2
2

2 =⎥⎥
⎤

⎢⎢
⎡+=⎥

⎥

⎤
⎢
⎢

⎡
+= erer

51
1

22 ⎥⎥⎢⎢
⎥
⎥

⎢
⎢ p

1431451

2
2

2
3

2 =⎥⎥
⎤

⎢⎢
⎡+=⎥

⎤
⎢
⎡

+= erer Done! the task set is schedulable
51

1
22 ⎥⎥⎢⎢

⎥
⎥

⎢
⎢ p

Class Exercise 1
Suppose that we have two tasks
• e = 3 p = 5• e1 = 3, p1 = 5
• e2 = 5, p2 = 14

• Can we add a task 3 with e3 = 1 and p3 = 50? What would be the
h t t i d f th t it till t it d dli ? A l th tshortest period of p3 that it can still meet its deadlines? Apply the exact

test formulation to confirm that.

Class Exercise 1 (continued)Class Exercise 1 (continued)
0 10 20 305 15 25 35 40

3

0 10 20 30

14 280
2

5 15

3

25 35 40

3 3

2 1

3 3 3 3 3

1 2 2
42

2 2 1

0

2

1

2 1 1 2 2 2 2 1

3 26262 5 ⎤⎡⎤⎡⎤⎡
∑ r

125
14
93

5
91

9153

2

1

0
3

3
1
3

1

0
3

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=++==

∑

∑

=

=

j
j j

j
j

C
T
rCr

Cr

345293291

295
14
263

5
261

2 6
3

3
7

3

1

3
3

6
3

=⎥
⎤

⎢
⎡+⎥

⎤
⎢
⎡+=⎥

⎤
⎢
⎡

+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

∑

∑
=

j

j
j j

CrCr

C
T
rCr

205153151

155
14
123

5
121

2 2
33

2

1

1
3

3
2

3

⎥
⎤

⎢
⎡+⎥

⎤
⎢
⎡+⎥

⎤
⎢
⎡

+

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

⎥⎢⎥⎢⎥⎥⎢⎢

∑

∑
=

j
j j

j j

CrCr

C
T
rCr

375
14
343

5
341

345
14

3
5

1

2

1

7
3

3
8
3

1
33

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

⎥⎥⎢⎢
+⎥⎥⎢⎢

+
⎥
⎥
⎥⎢

⎢
⎢

+

∑

∑

=

=

j
j j

j
j j

C
T
rCr

C
T

Cr

235
14
203

5
201

205
14

3
5

1

2

1

3
3

3
4

3

1

3
33

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥⎢⎢
+⎥⎥⎢⎢

+=
⎥
⎥
⎥⎢

⎢
⎢

+=

∑

∑

=

=

j
j j

j
j j

C
T
rCr

C
T

Cr

405
14
373

5
371

145

2

1

8
3

3
9

3

1

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

⎥⎢⎥⎢⎥⎥⎢⎢

∑
=

=

j
j j

j j

C
T
rCr

T

265
14
233

5
231

2

1

4
3

3
5

3 =⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=
j

j j

C
T
rCr 405

14
403

5
401

2

1

9
3

3
10
3 =⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=
j

j j

C
T
rCr

Schedulable utilization bound

• Simpler method for the schedulabiity check

The L&L BoundThe L&L Bound
A se t o f p e rio d ic task is sch ed u lab le if :n

1 /1 2

1 2

... (2 1)nn

n

ee e n
p p p

+ + + ≤ −

• U(1) = 1.0 U(4) = 0.756 U(7) = 0.728
• U(2) = 0.828 U(5) = 0.743 U(8) = 0.724
• U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

• For harmonic task sets, the utilization bound is U(n)=1.00 for all n. For large o a o c as se s, e u a o bou d s U() .00 o a . o a ge
n, the bound converges to ln 2 ~ 0.69.

• The L&L bound for rate monotonic algorithm is one of the most significant• The L&L bound for rate monotonic algorithm is one of the most significant
results in real-time scheduling theory. Its derivation also shows a wealth of
analysis techniques that are useful in many new situations when considering
static priority schedulingstatic priority scheduling.

Handling Aperiodic RequestsHandling Aperiodic Requests

AcceptanceSporadic Task

rejection

Processor

Test
p

Periodic Tasks

Aperiodic Task

Interrupt Handling Background PollingInterrupt Handling, Background, Polling
0.2

1.2

T1 = (3,1)

Interrupt
Handling

0 3 6 9

100

(,)

T1 = (5,2)
Deadline miss

12

5

0 3 6 9
T1 = (3,1)

T1 = (5,2)
12

100 5
Background

0 3 6 9
T1 = (3,1)

12

S = (2.5,0.5)
2.5 5 7.5 10 12.5

Polling

100

T1 = (5,2)
5

Polling - 1
• The simplest form of integrated aperiodic and periodic service is

polling.
For each aperiodic task we assign a periodic service with budget e and– For each aperiodic task, we assign a periodic service with budget es and
period ps. This creates a server (es, ps)

– The aperiodic requests are buffered into a queue
When polling server starts– When polling server starts,

• Resumes the existing job if it was suspended in last cycle.
• it checks the queue.

The polling server runs until– The polling server runs until
• All the requests are served
• Or suspends itself when the budget is exhausted.

– Remark: a small improvement is to run the tasks in background priority
instead of suspend. This background mode can be applied to all the
servers discussed later.

Polling - 2
• A polling server is just a periodic task and thus the

schedulability of periodic tasks is easy to analyze. For
example if we use L&L boundexample, if we use L&L bound,

()12)1()1/(1 −+≤+ +∑ ns
n

i nee

• Quiz: How can we analyze the aperiodic performance for
each polling server?

())(
1=
∑

si i pp

each polling server?

• Answer: Simulation

Deferrable Server 1Deferrable Server - 1

• Comparing polling with interrupt handling, interrupt
handling serves aperiodic requests right away whereas the
P lli S t f h lf i d itiPolling Server creates an average of half a period waiting
time.

• Deferrable Server is the 1st attempt to simulate interrupt
handling service but bounds the service time of aperiodics
so that it ensures periodic tasks are schedulable.

Th id i t l t th b d t fl t j t lik tti• The idea is to let the budget float, just like getting a
monthly salary. The salary allocation is periodical, but one
can spend it anytime he likes.p y

Deferrable Server 2Deferrable Server - 2
0.2

0.5

T1 = (3 1)

S = (2.5,0.5)
2.5 5 7.5 10 12.5

Polling
Server

0 3 6 9

100

T1 = (3,1)

T1 = (5,2)
12

5

S = (2.5,0.5)Deferrable

0.2

0.5

0 3 6 9
T1 = (3,1)

T1 = (5,2)
12

2.5 5 7.5 10 12.5Server

100 5

Deferrable Server 3Deferrable Server - 3
• Example: e = 50 ms; p = 250 ms.

• Every 250ms the budget is RESET to 50 ms (no savings of unused budget!)Every 250ms, the budget is RESET to 50 ms (no savings of unused budget!)
• Aperiodic requests arrive at a queue.
• The head of queue request checks if there is budget available.

• If there is budget left,
th i di t til ith th t i d• the aperiodic request runs until either the request is served

• or the budget is exhausted
• and therefore the aperiodic request is suspended until there is new budget available
• else the aperiodic request is suspended and it waits until there is new budget

available

Deferrable Server vs. periodic taskp
• A Deferrable Server is not equivalent to a periodic task!

Deferrable Server 5Deferrable Server - 5
• Schedulability of periodic tasks using RMS. Let the period of the sever y p g p

be p. For any lower priority task with period pi, it generates at most
ceiling (pi/p) times preemption, if it was a regular periodic task.
However, it can generate (1 + ceiling(pi/p)) times the preemption.However, it can generate (1 ceiling(pi/p)) times the preemption.

…4 8

…
0 10

…

…
0 10

1 5 9

• Note that task 1 originally starts at t = 0 and the interval for the preemption
is [0, 10]. In the second example, a 1 unit shifting lets the deferred unit to
come in. The starting time is now 1 and the interval for preemption is still
[0, 10]

Deferrable Server 6Deferrable Server - 6
• Scheduling bound under RMS: Considering the 1Scheduling bound under RMS: Considering the 1

additional unit of preemption, we will get the following
bound

⎤⎡ ⎞⎛ 2
/1 n

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

= 1
12
2

lub
s

s

U
UnU

⎦⎣ ⎠⎝
where Us is the utilization of the Deferrable Server (e/p).

• It is worth noting that the tasks’ pattern that provides the worst-case condition for the
periodic tasks under the RM algorithm is:

cs

Deferrable Server - 7
• Given a set of n periodic tasks and a Deferrable Server

with utilization factors U and U respectively thewith utilization factors Up and Us, respectively, the
schedulability of the periodic task set is guaranteed under
RM if:

⎥
⎥
⎤

⎢
⎢
⎡

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=≤ 1
12
2

/1

lub

n

s
p U

UnUU
⎥⎦⎢⎣

⎟
⎠

⎜
⎝ +12 s

p U

where Us is the utilization of the Deferrable Server (e/p).

Deferrable Server - 8Deferrable Server 8
• Time demand analysis: since there could be an additional

ti ffi i t diti i t th ld tipreemption, a sufficient condition is to use the old time
demand analysis and add 1 to the preemption of the
deferrable task’s term.

1

1
() (1)

i

i i j
j j

t ta t e e e
p p

−

=

⎡ ⎤⎡ ⎤
= + + + ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥
∑

An improvement can be made by noting that we can substract e out of t
in the ceiling function for the deferrable server, since we shift the starting
time to t

j j⎢ ⎥ ⎢ ⎥

he right by e units to let the deferred units to come in.time to t
1

1

he right by e units to let the deferred units to come in.

() (1)

if h h h i d h k

i

i i j
j j

t e ta t e e e
p p

i

−

=

⎡ ⎤⎡ ⎤−
= + + + ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥
∑

1

1

if we have m servers have shorter periods than task

() (1)
i

s
i i s

js j

i

t e ta t e e
p p

−

=

⎡ ⎤⎡ ⎤−
= + + + ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥1

m

j
s

e
=
∑ ∑

Remark: the textbook has an addition b term for blocking. We assume it is 0 for now

Deferrable Server - 9
• The effect of shifting to the right can best be illustrated as

follows.

• 1 + ceiling(9/4) = 4; over count 1 unit
• 1 + ceiling ((9-1)/4) = 3; exact.

…

…
0 9

1 5 9

Class exercise (1)Class exercise (1)
• Consider the following task setConsider the following task set

– T1 {e1=1, p1= 4}
– T2 {e2=2, p2= 6}
– Ts {es=1, ps= 5}

• Are the periodic task set and the deferrable server T• Are the periodic task set and the deferrable server Ts
schedulable?

⎤⎡⎤⎡
Use the time demand analysis j

i

j j
ii e

p
te

p
eteta ⋅

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+⎥

⎥

⎤
⎢
⎢

⎡ −
++= ∑

−

=

1

1
)1()(

Class exercise (2)C ss e e c se ()
• Consider the following task setConsider the following task set

– T1 {e1=1, p1= 4}
– T2 {e2=2, p2= 6}
– Ts {es=1, ps= 5}

• Schedule the following aperiodic activities by using the• Schedule the following aperiodic activities by using the
deferrable server

T1

T2

2 1
T2

TS

aperiodic
requests

0 6 12

TS

Sporadic Server - 1
• The deferrable server has this one additional preemption and reduces

the schedulability of periodic tasks. So we tried to get rid of this
additional preemption.

• The SS differs from DS in the way it replenishes its capacity WhereasThe SS differs from DS in the way it replenishes its capacity. Whereas
DS periodically replenishes its capacity at the beginning of each server
period, SS replenishes its capacity only after it has been consumed by
aperiodic task execution.ape od c as e ecu o .

• Idea: Spread the budget replenishment at least P time units

• We will see that Sporadic Server can be treated as if it is a periodic
task.

Sporadic Server 2Sporadic Server - 2
• A Sporadic Server with priority Prio is said to be active when it is• A Sporadic Server with priority Prios is said to be active when it is

executing or another task with priority PrioT≥Prios is executing. Hence,
the server remains active even when it is preempted by a higher
priority taskpriority task.

• If the server is not active, it is said to be idle

• Replenishment Time (RT): it is set as soon as “SS becomes active
and the server capacity Cs>0”. Let TA be such a time. The value of RT s
is set equal to TA plus the server period (RT= TA+ ps).

• Replenishment Amount (RA): The RA to be done at time RT isReplenishment Amount (RA): The RA to be done at time RT is
computed when “SS becomes idle or the server capacity Cs has been
exhausted”. Let TI be such a time. The value of RA is set equal to the
capacity consumed within the interval [TA, TI]. p y [A, I]

Sporadic Server - 3Sporadic Server 3
• Example of a medium-priority Sporadic Server.Example of a medium priority Sporadic Server.

e pe p
T1 1 5
TS 5 10S 5 0
T2 4 15

Sporadic Server - 4Spo d c Se ve
• Example of a high-priority Sporadic Server.Example of a high priority Sporadic Server.

e pe p
TS 2 8
T1 3 101 3 0
T2 4 15

Sporadic Server vs. periodic taskp p
• A Sporadic Server ≤ a periodic task!

Periodic
0 10 20 30

Periodic
Task =
(10, 5)

3Sporadic

0 10 20 30

3 33Sporadic
Server =
(10, 5)

3

2 2

3

Sporadic Server - 5Sporadic Server 5
• A periodic task set that is schedulable with a task Ti is also p i

schedulable if Ti is replaced by a Sporadic Server with the
same period and execution time.

Proof: ???Proof: ???

Class exercise (3)Class exercise (3)
• Consider the following task setConsider the following task set

– T1 {e1=1, p1= 4}
– T2 {e2=2, p2= 7}
– Ts {es=?, ps= 5}

• What is the maximum possible e if it is deferrable server?• What is the maximum possible es if it is deferrable server?
– 2*1+3*es + 2 <= 7. Thus, es < 1

• What is the maximum possible es if it is sporadic server?p s p
– 2*1+2*es + 2 <= 7. Thus, es < 1.5

T1

Ts

T2

Schedule Simulation for
Mixed Tasks

• 2 periodic tasks
– T1 {e1=1, p1= 4}
– T2 {e2=2, p2= 10}

• Four methods to process aperiodic jobs
b k d– background

– polling server
• highest priority, period = 2, server budget = 1

– deferrable server
• highest priority, period = 2, server budget = 5/6=0.833333

– sporadic serversporadic server
• highest priority, period = 2, server budget = 1

H k 6Homework 6

• Simulate the RM scheduler with aperiodic processing by
– background
– polling server (+ background if the server is idle)
– deferrable server (+ background if the server is idle)

sporadic server (+ background if the server is idle)– sporadic server (+ background if the server is idle)
• Compare the response time of aperiodic jobs for the above four

cases as decreasing the average inter-arrival time from 10 to g g
0.4 while fixing the average execution time to 0.1

• Do the same as decreasing the average inter-arrival time from
1000 to 40 hile fi ing the a erage e ec tion time to 101000 to 40 while fixing the average execution time to 10

• Explain your results

M d l d C tiModules and Connections

aperiodicGen
out

periodicTask[1]
out

outin[] in

scheduler sink
[]

periodicTask[2]
out

