
Intro to DB

CHAPTER 9
OBJECT-BASED DATABASES

Chapter 9: Object-Based Databases

Complex Data Types
Structured Data Types and Inheritance in SQL
Table Inheritance
Array and Multiset Types in SQL
Object Identity and Reference Types in SQL
Implementing O-R Features
Persistent Programming Languages
Object-Oriented vs Object-Relational Databases

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 2

Need for Complex Data Types

Traditional database applications had simple data types
R l i l f d fi l fRelatively few data types, first normal form

Complex data types have grown more important in recent years
E g Addresses can be viewed as aE.g. Addresses can be viewed as a

Single string, or
Separate attributes for each part, or
Composite attributes (which are not in first normal form)

E.g. it is often convenient to store multivalued attributes as-is, without
creating a separate relation to store the values in first normal formcreating a separate relation to store the values in first normal form

Applications
computer-aided design, computer-aided software engineeringcomputer aided design, computer aided software engineering
multimedia and image databases, and document/hypertext databases.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 3

Object Structure

Loosely speaking, an object corresponds to an entity in the E-R
modelmodel.
The object-oriented paradigm is based on encapsulating code and data
related to an object into single unitrelated to an object into single unit.
An object has:

A set of variables that contain the data for the object The value of eachA set of variables that contain the data for the object. The value of each
variable is itself an object.
A set of messages to which the object responds; each message may have
zero, one, or more parameters.
A set of methods, each of which is a body of code to implement a
message; a method returns a value as the response to the messageg ; p g

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 4

Class Definition Example

class employee {
/*Variables */

string name;
string address;
date start-date;
int salary;y

/* Messages */
int annual-salary();
string get-name();
string get-address();g g ();
int set-address(string new-address);
int employment-length();

};

M h d d d h h i bl l d d i hMethods to read and set the other variables are also needed with
strict encapsulation
Methods are defined separatelyMethods are defined separately

E.g. int employment-length() { return today() – start-date; }
int set-address(string new-address) { address = new-address;}

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 5

Object Classes

Similar objects are grouped into a class

Each individual object is called an instance of its class
All objects in a class have the same

variables, with the same types
message interface
methodsmethods

They may differ in the values assigned to variables

e.g., group objects for people into a person classe.g., group objects for people into a person class
Classes are analogous to entity sets in the E-R model

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 6

Inheritance

Class of bank customers VS class of bank employees
Share some variables and messages e g name and addressShare some variables and messages, e.g., name and address.
But others are specific to each class

e.g., salary for employees and credit-rating for customers.

Employee and customer are persons
every employee is a person; thus employee is a specialization of person
customer is a specialization of personcustomer is a specialization of person.

Create classes person, employee and customer
variables/messages applicable to all persons => associate with class person./ g pp p p
variables/messages specific to employees => associate with class employee
similarly for customer

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 7

Inheritance (Cont.)

Place classes into a specialization/IS-A hierarchy
i bl / b l i l i h i d b l lvariables/messages belonging to class person are inherited by class employee as

well as customer

Result is a class hierarchy (or inheritance hierarchy)Result is a class hierarchy (or inheritance hierarchy)

Note analogy with ISA Hierarchy in the E-R model

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 8

Class Hierarchy Definition

class person{
string name;g
string address:
};

class customer isa person {
int credit-rating;
};

class employee isa person {
date start-date;
int salary;
};

l ffi i l {class officer isa employee {
int office-number,
int expense-account-number,
}};
.
. .

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 9

Multiple Inheritance (Example)

Class DAG for banking example.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 10

Multiple Inheritance

A class may have more than one superclass.
Represented by a directed acyclic graph (DAG)Represented by a directed acyclic graph (DAG)
Particularly useful when objects can be classified in more than one way

A class inherits variables and methods from all its superclassesp
Potential for ambiguity

when a variable/message N with the same name is inherited from two
l A d Bsuperclasses A and B

No problem if the variable/message is defined in a shared superclass
Otherwise, do one of the followingg

flag as an error,
rename variables (A.N and B.N)
choose one.choose one.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 11

Object Identity

An object retains its identity even if some or all of the values of
ariables or definitions of methods change o er timevariables or definitions of methods change over time.

Object identity is a stronger notion of identity than in
programming languages or other data modelsprogramming languages or other data models
Identity by

Value data value; e g primary key value used in relational systemsValue – data value; e.g. primary key value used in relational systems.
Name – supplied by user; file names in UNIX
Built-in – identity built into data model or programming language.p g g g g

no user-supplied identifier is required
the form of identity used in object-oriented systems

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 12

Object Identifiers

Object identifiers are used to uniquely identify objects
Object identifiers are unique:

no two objects have the same identifier
each object has only one object identifiereach object has only one object identifier

Can be stored as a field of an object, to refer to another object.
E g the spouse field of a person object may be an identifier of another personE.g., the spouse field of a person object may be an identifier of another person
object.

Can be
system generated (created by database) or
external (such as social-security number)

System generated identifiers:
Are easier to use, but cannot be used across database systems

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 13

Object-Relational Model

Extended relational model to support
N d l iNested relations
Complex types
Object orientationObject orientation

Most commercial DBMS claim to be OR
Oracle, DB2, Informix, …, , ,

Relational model
First Normal Form: all attributes have atomic domains

Nested relational model
Domains may be atomic or relation-valued

tuple (complex structure)
set (multiset)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 14

Example of a Nested Relation

Example: library information system
Each book has

title,
a set of a thorsa set of authors,
publisher, and
a set of keywordsy

Non-1NF relation books

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 15

1NF Version of Nested Relation

1NF version of books

flat-books

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 16

Decomposition

Dependencies in doc
titl →→ th (MVD)title →→ author (MVD)
title →→ keyword
title → pub_name, pub_branch

Decomposed version
4NF (BCNF extended to include MVD)
Loose 1-to-1 correspondence between a tuple and a doc

MVD: multi-valued dependency; X → → Y means that a set of Y values is associated

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 17

y
with each X value

Complex Types and SQL:1999

Extensions to SQL to support complex types include:
C ll i d l bjCollection and large object types

Nested relations are an example of collection types
Structured typesyp

Nested record structures like composite attributes
Inheritance
Object orientation

Including object identifiers and references

Our description is mainly based on the SQL:1999 standardOur description is mainly based on the SQL:1999 standard
Not fully implemented in any database system currently
But some features are present in each of the major commercial database p j
systems

Read the manual of your database system to see what it supports

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 18

Structured Types and Inheritance in SQL

Structured types can be declared and used in SQL
create type Name asyp

(firstname varchar(20),
lastname varchar(20))
final

create type Address as
(street varchar(20),
city varchar(20),
ip d r h r(20))zipcode varchar(20))

not final
Note: final and not final indicate whether subtypes can be created

Structured types can be used to create tables with composite attributes
create table customer (

name Name,
dd Addaddress Address,

dateOfBirth date)
Dot notation used to reference components: name.firstname

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 19

Structured Types (cont.)

User-defined row types
C T (create type CustomerType as (

name Name,
address Address,address Address,
dateOfBirth date)
not final

Can then create a table whose rows are a user-defined type

create table customer of CustomerType

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 20

Methods

Can add a method declaration with a structured type.
method g OnD t (onD t date)method ageOnDate (onDate date)

returns interval year

Method body is given separatelyMethod body is given separately.
create instance method ageOnDate (onDate date)

returns interval year

for CustomerType
begin

D lf d OfBi hreturn onDate - self.dateOfBirth;
end

We can now find the age of each customer:We can now find the age of each customer:
select name.lastname, ageOnDate (current_date)
from customer

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 21

Inheritance

Suppose that we have the following type definition for people:
Pcreate type Person

(name varchar(20),
address varchar(20))

Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

Subtypes can redefine methods by using overriding method in
place of method in the method declaration

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 22

Multiple Inheritance

SQL:1999 and SQL:2003 do not support multiple inheritance
If t t t lti l i h it d fiIf our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:

create type Teaching Assistantcreate type Teaching Assistant
under Student, Teacher

To avoid a conflict between the two occurrences of department we
can rename them

create type Teaching Assistant
under
Student with (department as student_dept),
Teacher with (department as teacher_dept)(p p)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 23

Object-Identity and Reference Types

An attribute can be a reference to a tuple in a table
D fi t D p t t ith fi ld d fi ld h d hi hDefine a type Department with a field name and a field head which
is a reference to the type Person, with table people as scope:

create type Department (create type Department (
name varchar (20),
head ref (Person) scope people)

We can then create a table departments as follows
create table departments of Department

We can omit the declaration scope people from the type
declaration and instead make an addition to the create table
statement:statement:

create table departments of Department
(head with options scope people)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 24

Initializing Reference-Typed Values

To create a tuple with a reference value, we can first create the
t ple ith a n ll reference and then set the reference separateltuple with a null reference and then set the reference separately:

insert into departments
values (`CS’, null)

update departments
set head = (select p.person id(p p _

from people as p
where name = `John’)

where name = `CS’where name CS

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 25

Path Expressions

Dot (.) notation is used for composite attributes
l t titl bli hselect title, publisher.name

from books

Pointer (->) notation is used for reference attributes

select head >name head >addressselect head->name, head->address
from departments

references can be used to hide join operations

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 26

Collection-Valued Attributes

Can be treated much like relations, using the keyword unnest
Th b k l i h l d ib h d l dThe books relation has array-valued attribute author-array and set-valued
attribute keyword-set

Find all books that have the word “database” as keywordFind all books that have the word database as keyword
select title
from books

h ‘d b ’ i ((k d))where ‘database’ in (unnest(keyword-set))
Note: the only collection type supported by SQL:1999 is the array type

To get a relation containing pairs of the form “title author name”To get a relation containing pairs of the form title, author-name
for each book and each author of the book

select B title Aselect B.title, A
from books as B, unnest(B.author-array) as A

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 27

Collection Valued Attributes (Cont.)

We can access individual elements of an array by using indices
E If k h i l b k h h h ld iE.g. If we know that a particular book has three authors, we could write:

select author-array[1], author-array[2], author-array[3]
from booksfrom books
where title = `Database System Concepts’

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 28

Unnesting

The transformation of a nested relation into a form with fewer
(or no) relation al ed attrib tes(or no) relation-valued attributes
select title, A as author, publisher.name as pub_name,

publisher.branch as pub_branch, K as keywordp p _ , y
from books as B, unnest(B.author-array) as A,

unnest (B.keyword-list) as K

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 29

Nesting

Opposite of unnesting: creates a collection-valued attribute
NOTE: SQL:1999 does not support nestingQ pp g

Similar to aggregation, but using the function set()

select title, author, Publisher(pub_name, pub_branch) as publisher,
set(keyword) as keyword-list

from flat-books
b i l h bli hgroup by title, author, publisher

select title, set(author) as author-list, , () ,
Publisher(pub_name, pub_branch) as publisher,
set(keyword) as keyword-list

from flat-books
r p b titl p bli hgroup by title, publisher

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 30

Nesting (Cont.)

Another approach to creating nested relations is to use
s bq eries in the select cla sesubqueries in the select clause.
select title,

(select author(select author
from flat-books as M
where M.title=O.title) as author-set,

Publisher(pub name pub branch) as publisherPublisher(pub-name, pub-branch) as publisher,
(select keyword

from flat-books as N
h N i l O i l) k dwhere N.title = O.title) as keyword-set

from flat-books as O

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 31

Nesting & Unnesting
Unnesting Nesting

select title, A as author, publisher.name as
pub_name, publisher.branch as
pub branch, K as keyword

select title, author, (pubname, pubbranch) as
publisher, set(keyword) as keyword_list

from flat docsp _ , y
from doc as B, unnest(B.author_list) as A,

unnest(B.keyword_set) as K

from flat_docs
group by title, author, publisher

l i h b l
result is flat_books

result is shown below

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 32

Object-Oriented Languages

Object-oriented concepts can be used in different ways
Object-orientation can be used as a design tool

and then encode into, for example, a relational database
analogo s to modeling data with E R diagram and then converting to a setanalogous to modeling data with E-R diagram and then converting to a set
of relations

Object orientation can be incorporated into a programming j p p g g
language that is used to manipulate the database.

Object-relational systems – add complex types and object-orientation to
relational language
Persistent programming languages – extend object-oriented
programming language to deal with databases by adding concepts such as p g g g g y g p
persistence and collections.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 33

Persistent Programming Languages

Persistent Programming languages
ll bj b d d d i d ballow objects to be created and stored in a database,

and used directly from a programming language

Allow data to be manipulated directly from the programmingAllow data to be manipulated directly from the programming
language

No need to go through SQLg g Q
No need for explicit format (type) changes

Drawbacks
Flexibility and power of programming languages => it is easy to make
programming errors that damage the database
C l it f l k t ti ti i ti diffi ltComplexity of languages makes automatic optimization more difficult
Do not support declarative querying as well as relational databases

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 34

OO vs OR

OO
ffi i i l i i f i defficient in complex main memory operations of persistent data

susceptible to data corruption

OROR
declarative and limited power of (extended) SQL (compared to PL)
data protection and good optimizationp g p
extends the relational model to make modeling and querying easier

Relational
simple data types, good query language, high protection

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 35

END OF CHAPTER 9

