Intro to DB

CHAPTER 9
OBJECT-BASED DATABASES

Chapter 9: Object-Based Databases

* Complex Data Types

= Structured Data Types and Inheritance in SQL
* Table Inheritance

* Array and Multiset Types in SQL

* Object Identity and Reference Types in SQL

* Implementing O-R Features

= Persistent Programming L.anguages

" Object-Oriented vs Object-Relational Databases

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 2

Need for Complex Data Types

* 'Traditional database applications had simple data types

o Relatively few data types, first normal form

= Complex data types have grown more important in recent years
o E.g. Addresses can be viewed as a
= Single string, or
= Separate attributes for each part, or

* Composite attributes (which are not in first normal form)

o H.g. it 1s often convenient to store multivalued attributes as-is, without
creating a separate relation to store the values in first normal form

* Applications
o computer-aided design, computer-aided software engineering

o multimedia and image databases, and document/hypertext databases.

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 3

Object Structure

* Loosely speaking, an object corresponds to an entity in the E-R
model.

* 'The obyject-oriented paradigm 1s based on encapsulating code and data
related to an object into single unit.

= An object has:

o A set of variables that contain the data for the object. The value of each
variable is itself an object.

o A set of messages to which the object responds; each message may have
ZCro, ONe, Of MOre paramelers.

o A set of methods, each of which 1s a body of code to implement a
message; a method returns a value as the response to the message

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 4

Class Definition Example

class employee {
/*Variables */
string name;
string address;
date start-date,

int salaryy
/* Messages */
int annual-salary();

string get-name();

string get-address();

int set-address(string new-address);
int employment-length();

b
= Methods to read and set the other variables are also needed with
strict encapsulation

* Methods are defined separately

o E.g. int employment-length() { return today() — start-date; }
int set-address(string new-address) { address = new-address;}

Original Slides: Intro to DB (2008-1)

© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 -5

Object Classes

= Similar objects are grouped into a class
* Fach individual object is called an instance of its class

= All objects in a class have the same
o variables, with the same types
o message interface
o methods

They may differ in the values assigned to variables
" c.g., group objects for people into a person class

» (lasses are analogous to entity sets in the E-R model

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 -6

Inheritance

= (lass of bank customers VS class of bank employees
o Share some variables and messages, e.g., name and address.

o But others are specific to each class

" e.g, salary for employees and credit-rating for customers.

* Employee and customer are persons
o every employee 1s a person; thus employee 1s a specialization of person

o customer 1S a specialization of person.

= Create classes person, employee and customer

o variables/messages applicable to all persons => associate with class person.

o variables/messages specific to employees => associate with class ezployee

o similarly tor customer

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 7

Inheritance (Cont)

= Place classes into a specialization/IS-A hierarchy

o variables/messages belonging to class person are inberited by class employee as
well as customer

= Result is a class hierarchy (or inheritance hierarchy)

person

T

employee customer

N

officer teller secretary

Note analogy with ISA Hierarchy in the E-R model

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 8

Class Hierarchy Definition

class personi
string name;
string address:

class customer isa person {
int credit-rating,
class employee isa person {
date start-date,
int salary,
class officer isa employee {
int office-nunmiber,
int expense-account-number,

5

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 9

Multiple Inheritance (Example)

Class DAG tor banking example.

person

employee customer

temporary permanent officer teller secretary

permanent-officer permanent-teller permanent-secretary

temporary-secretary temporary-teller

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 10

Multiple Inheritance

= A class may have more than one superclass.
o Represented by a directed acyclic graph (DAG)

o Particularly useful when objects can be classified in more than one way

* A class inherits variables and methods from 4/ its superclasses
= Potential for ambiguity

m]

when a variable/message N with the same name is inherited from two
superclasses A and B

No problem if the variable/message is defined in a shared superclass
o Otherwise, do one of the following
" flag as an error,

* rename variables (A.N and B.N)

= choose one.

Original Slides:

Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan

Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 11

Object Identity

= An object retains its identity even if some or all of the values of
variables or definitions of methods change over time.

= Obiject identity is a stronger notion of identity than in
programming languages or other data models

* [dentity by
o Value — data value; e.g. primary key value used in relational systems.

o Name — supplied by user; file names in UNIX

o Built-in — identity built into data model or programming language.
" no user-supplied identifier is required

" the form of identity used in object-oriented systems

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 12

Object Identitiers

* Object identifiers are used to uniquely identify objects

* Object identifiers are unique:
o no two objects have the same identifier

o each object has only one object identifier

= (an be stored as a field of an object, to refer to another object.

o E.g., the spouse tield of a person object may be an identifier of another person
object.

= (Can be

o system generated (created by database) or

o external (such as social-security number)

= System generated 1dentifiers:

o Are easier to use, but cannot be used across database systems

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 -13

Object-Relattonal Model

Extended relational model to support
o Nested relations
o Complex types

o Object orientation

= Most commercial DBMS claim to be OR
o Oracle, DB2, Informix, ...

Relational model

o First Normal Form: all attributes have atomic domains

Nested relational model

o Domains may be atomic or relation-valued
" tuple (complex structure)

" set (multiset)

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 14

Example of a Nested Relation

* Example: library information system
* Fach book has

o title,

o a set of authors,

o publisher, and

o aset of keywords

= Non-1NF relation books

title

author-set

publisher

keyword-set

(name, branch)

Compilers | {Smith, Jones}

(McGraw-Hill, New York)

{parsing, analysis|

Networks | {Jones, Frick}

(Oxtord, London)

|Internet, Web}

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee

Chap 9-15

INF Version of Nested Relation

= INF version of books

title author pub-name pub-branch keyword
Compilers | Smith | McGraw-Hill | New York parsing
Compilers | Jones McGraw-Hill | New York parsing
Compilers | Smith McGraw-Hill New York analysis
Compilers | Jones McGraw-Hill New York analysis
Networks Jones Oxtord London Internet
Networks Frick Oxtord London Internet
Networks Jones Oxtord London Web
Networks Frick Oxford London Web

Original Slides:
© Silberschatz, Korth and Sudarshan

flat-books

Intro to DB (2008-1)

Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 16

Decomposition

* Dependencies in doc
title — —> author (MVD)
title — —> keyword
title —> pub_name, pub_branch
* Decomposed version
o 4ANF (BCNF extended to include MVD)

o Loose 1-to-1 correspondence between a tuple and a doc

title author title keyword title pub-name | pub-branch
Compilers | Smith Compilers | parsing Compilers | McGraw-Hill | New York
Compilers | Jones Compilers | analysis Networks Oxford London
Networks | Jones Networks | Internet books4
Networks | Frick Networks | Web
authors keywords

MVD: multi-valued dependency; X — — Y means that a set of Y values is associated
with each X value

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 17

Complex Types and SQL:1999

= Extensions to SQL to support complex types include:
o Collection and large object types

= Nested relations are an example of collection types
o Structured types

* Nested record structures like composite attributes
o Inheritance

o Object orientation
* Including object identifiers and references

[| f\11“ /Jmnn“:hl—:f\n 5 4~ .4«-\11—Y L, ,J ~ 4 nl—pu\f],nuzl
WUl (UOCSLL PL Ul 9 olallllalCl

4 Ve B | L 1
115 lllcllllly o1

\®)

00
77

o Not fully implemented in any database system currently

o But some features are present in each of the major commercial database
systems

* Read the manual of your database system to see what it supports

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 18

Structured Types and Inheritance 1n SQL

= Structured types can be declared and used in SQL

create type Nanze as

(tirstname varchar(20),
lastname varchar(20))
final

create type Address as
(street varchar(20),
city varchar(20),
zipeode varchar(20))

not final

o Note: final and not final indicate whether subtypes can be created

» Structured types can be used to create tables with composite attributes
create table customer (

name Narne,
address _Address,
dateOfBirth date)

= Dot notation used to reference components: name.firstname

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 19

Structured Types (cont.)

* User-defined row types
create type Customerlype as (

name Narnze,

address Address,
dateOfBirth date)

not final

= (an then create a table whose rows are a user-defined type

create table customer of CustomerType

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 20

Methods

* (Can add a method declaration with a structured type.

method ageOnDate (onDate date)
returns interval year

* Method body is given separately.

create instance method ageOnDate (onDate date)

returns interval year
for Customerlype
begin
return onDate - self.dateOfBirth;

end

* We can now find the age of each customer:
select name.lastname, ageOnDate (current_date)

from customer

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 21

Inheritance

= Suppose that we have the following type definition for people:

create type Person

(name varchar(20),
address varchar(20))

= Using inheritance to define the student and teacher types
create type Student
under Person
(degree varchar(20),
department varchar(20))
create type eacher
under Person
(salary integer,
department varchar(20))

= Subtypes can redefine methods by using overriding method in
place of method in the method declaration

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 22

Multiple Inheritance

= SQL:1999 and SQL.:2003 do not support multiple inheritance

= [f our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:
create type eaching Assistant
under Student, Teacher
* 'To avold a conflict between the two occurrences of department we

can rename them

create type eaching Assistant

under
Student with (department as student_dept),
Teacher with (department as teacher_dept)

Original Slides: Intro to DB (2008-1)

© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 23

Object-Identity and Reference Types

= An attribute can be a reference to a tuple in a table

* Define a type Department with a tield name and a tield head which
is a reference to the type Person, with table people as scope:

create type Department (
name varchar (20),

head ref (Person) scope people)
* We can then create a table departments as tollows
create table departments of Department

* We can omit the declaration scope people from the type
declaration and instead make an addition to the create table
statement:

create table departments of Department
(head with options scope people)

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 24

Initializing Reference-Typed Values

= 'To create a tuple with a reference value, we can first create the
tuple with a null reference and then set the reference separately:

insert into departments
values ("CS’, null)
update departments
set head = (select p.person_id
from people as p
where name = "John)
where name = "CS’

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 25

Path Expressions

= Dot (.) notation is used for composite attributes

select title, publisher.name
from books

= Pointer (->) notation 1s used for reference attributes

select head->name, head->address
from departments

o references can be used to hide join operations

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 26

Collection-Valued Attributes

* (Can be treated much like relations, using the keyword unnest

o The books relation has array-valued attribute author-array and set-valued
attribute keyword-set

Find all books that have the word “database” as keyword

select 7t/e
from books
where ‘database’ in (unnest(keyword-sel))

o Note: the only collection type supported by SQL:1999 is the array type

To get a relation containing pairs of the form “title, author-name”
for each book and each author of the book

select B.#tle, A
from books as B, unnest(B.author-array) as A

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 27

Collection Valued Attributes (Cont)

= We can access individual elements of an array by using indices

o H.g. If we know that a particular book has three authors, we could write:

select author-array|1], author-array|2), author-array|3]
from books
where #t/e = "Database System Concepts’

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 28

Unnesting

Original Slides:

(or no) relation-valued attributes

select #itle, A as author, publisher.name as pub_name,

publisher.branch as pub_branch, K as keyword

from books as B, unnest(B.author-array) as A,

unnest (B.keyword-list) as K

The transformation of a nested relation into a form with fewer

title author pub-name pub-branch keyword
Compilers | Smith McGraw-Hill | New York parsing
Compilers | Jones McGraw-Hill New York parsing
Compilers | Smith McGraw-Hill New York analysis
Compilers | Jones McGraw-Hill New York analysis
Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web
Networks Frick Oxford London Web

© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 29

Nesting

* Oppostte of unnesting: creates a collection-valued attribute
o NOTE: SQL:1999 does not support nesting

* Similar to aggregation, but using the function set()

select #itle, anthor, Publisher(pub_name, pub_branch) as publisher,
set(keyword) as keyword-list

from flat-books

group by #tle, author, publisher

select Ztle, set(author) as anthor-list,
Publisher(pub_name, pub_branch) as publisher,
set(keyword) as keyword-list

from flat-books

group by #itle, publisher

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 30

Nesting (Cont,)

* Another approach to creating nested relations 1s to use

subqueries in the select clause.

select #tle,
(select author
from flat-books as M
where M.Z#tle=0.1title) as anthor-set,
Publisher(pub-name, pub-branch) as publisher,
(select keyword
from flat-books as N
where N.7itle = O.1itle) as keyword-set
from flat-books as O

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 31

Nesting & Unnesting
* Unnesting .

select Zitle, A as author, publisher.name as
Dpub_name, publisher.branch as
pub_branch, K as keyword

from doc as B, unnest(B.author_list) as A,
unnest(B. keyword_set) as K

o result is flat_books

Nesting

select #tle, author, (pubname, pubbranch) as
publisher, set(keyword) as keyword_list

from flat_docs
group by #itle, anthor, publisher

o result is shown below

title author publisher keyword-set
(pub-name, pub-branch)
Compilers | Smith (McGraw-Hill, New York) | {parsing, analysis}
Compilers | Jones (McGraw-Hill, New York) | {parsing, analysis}
Networks Jones (Oxtord, London) {Internet, Web}
Networks Frick (Oxford, London) {Internet, Web]}

Original Slides: Intro to DB (2008-1)

© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 32

Object-Oriented Languages

* Object-oriented concepts can be used in different ways

* Object-orientation can be used as a design tool
o and then encode into, for example, a relational database
o analogous to modeling data with E-R diagram and then converting to a set
of relations
= Obiject ortentation can be incorporated into a programming
language that 1s used to manipulate the database.

o Object-relational systems — add complex types and object-orientation to
relational language

o Persistent programming languages — extend object-oriented
programming language to deal with databases by adding concepts such as
persistence and collections.

Original Slides: Intro to DB (2008-1)

© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Chap 9 - 33

Persistent Programming [.anguages

» Persistent Programming languages
o allow objects to be created and stored in a database,

o and used directly from a programming language

* Allow data to be manipulated directly from the programming
language
o No need to go through SQL
o No need for explicit format (type) changes

= Drawbacks

o Flexibility and power of programming languages => it is easy to make
programming errors that damage the database

o Complexity of languages makes automatic optimization more difficult

o Do not support declarative querying as well as relational databases

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 34

OO0 vs OR

= OO

o efficient in complex main memory operations of persistent data

o susceptible to data corruption

= OR
o declarative and limited power of (extended) SQL (compared to PL)
o data protection and good optimization
o extends the relational model to make modeling and querying easier
= Relational

o simple data types, good query language, high protection

Original Slides: Intro to DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Chap 9 - 35

END OF CHAPTER9

