
CHAPTER 16
Advanced DB

CHAPTER 16
CONCURRENCY CONTROLCONCURRENCY CONTROL

Chapter 16: Concurrency Controlp y

Lock-Based Protocols
Timestamp-Based Protocols
Validation Based ProtocolsValidation-Based Protocols
Multiple Granularity
Multiversion Schemes
Deadlock Handlingg
Insert and Delete Operations
Concurrency in Index StructuresConcurrency in Index Structures

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 2

Implementation of Isolationp

Schedules must be conflict (or view serializable), and recoverable ()
(for database consistency)

and preferably cascadeless

A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of g , p p g
concurrency.
Concurrency-control schemes tradeoff between the amount ofConcurrency control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they
incur.incur.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 3

Lock-Based Protocols

A lock is a mechanism to control concurrent access to a data
item
Two modes :Two modes :
1. exclusive (X) mode: both read and write

(lock-X instruction)(lock X instruction)
2. shared (S) mode: only read

(lock-S instruction)(lock S instruction)
Lock requests are made to concurrency-control manager
T i d l f i dTransaction can proceed only after request is granted.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 4

Granting of Locksg

Lock-compatibility matrix

A t ti b t d l k it if th t dA transaction may be granted a lock on an item if the requested
lock is compatible with lock(s) already held on the item by other
transactionstransactions
Any number of transactions can hold shared locks on an item
If any transaction holds an exclusive on the item no otherIf any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 5

Examplep

T2: lock-S(A);2 ()
read (A);
unlock(A);unlock(A);
lock-S(B);
read (B);
unlock(B);()
display(A+B)

Locking as above is not sufficient to guarantee serializabilityLocking as above is not sufficient to guarantee serializability
— if A and B get updated in-between the read of A and B, the
di l d ld bdisplayed sum would be wrong.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 6

Two-Phase Locking Protocolg

Locking Protocolg
A set of rules followed by all transactions while requesting
and releasing locks

k l h f bl h d lLocking protocols restrict the set of possible schedules.
2PL

Phase 1: Growing Phase
transaction may obtain locks

can acquire a lock S or lock X on itemcan acquire a lock-S or lock-X on item
can convert a lock-S to a lock-X (upgrade)

transaction may not release locksy
Phase 2: Shrinking Phase

transaction may release locks
l l k S l k Xcan release a lock-S or lock-X

can convert a lock-X to a lock-S (downgrade)
transaction may not obtain locks

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 7

transaction may not obtain locks

Examplep

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 8

Features of 2PL

Serializability: the protocol assures conflict serializabilitySerializability: the protocol assures conflict serializability
It can be shown that the transactions can be serialized in the
order of their lock points (i.e. the point where a transaction
acquired its final lock). q)
There can be conflict serializable schedules that cannot be
obtained if two-phase locking is usedobtained if two phase locking is used

Deadlocks: Two-phase locking does not ensure freedom
f d dl kfrom deadlocks

starvation also possible

Cascading rollback: is possible under two-phase locking

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 9

Strict / Rigorous 2PL

Strict 2PL

g

Strict 2PL
To avoid cascading roll-back
A transaction must hold all its exclusive locks until itA transaction must hold all its exclusive locks until it
commits/aborts

Rigorous 2PL
ll l k h ld il i / ball locks are held until commit/abort

transactions can be serialized in the order in which they commit

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 10

Timestamp-Based Protocolsp

Each transaction is issued a timestamp when it enters the system. p y
Older transaction Ti has smaller time-stamp than newer transaction Tj

TS(Ti) <TS(Tj).TS(Ti) TS(Tj).
The protocol manages concurrent execution such that the time-
stamps determine the serializability orderstamps determine the serializability order.
In order to assure such behavior, the protocol maintains for each
d t Q t tim st mp l sdata Q two timestamp values:

W-timestamp(Q) is the largest time-stamp of any transaction that executed
write(Q) successfullywrite(Q) successfully.
R-timestamp(Q) is the largest time-stamp of any transaction that executed
read(Q) successfully.(Q) y

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 11

Timestamp-Ordering Protocolp g

The timestamp ordering protocol ensures that any conflicting p g p y g
read and write operations are executed in timestamp order.

1. Transaction Ti issues read(Q)
If TS(T) < W timestamp(Q)If TS(Ti) < W-timestamp(Q)

reject read operation, and Ti is rolled back.
Since this means Ti needs to read a value of Q that was already overwritten.i Q y

If TS(Ti)≥ W-timestamp(Q)
execute read operation
set R-timestamp(Q) = max(R-timestamp(Q), TS(Ti))

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 12

Timestamp-Ordering Protocol (Cont.)p g ()

2. Transaction Ti issues write(Q).i (Q)
If TS(Ti) < R-timestamp(Q)

reject write operation, and Ti is rolled back.
Since the value of Q that Ti is producing was needed previously, and the
system assumed it would never be produced.

If TS(T) < W timest mp(Q)If TS(Ti) < W-timestamp(Q)
reject write operation, and Ti is rolled back.
Since Ti is attempting to write an obsolete value of Q.Since Ti is attempting to write an obsolete value of Q.

Otherwise
execute write operation
set W-timestamp(Q) = TS(Ti)

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 13

Example - Timestamp-Ordering Protocolp p g

TS(T14) < TS(T15)

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 14

Example - Timestamp-Ordering Protocolp p g

Timestamp: 1 2 3 4 5

T1 T2 T3 T4 T5

read(Y)
read(Z)

read(Y)

it (Y)
read(X)

read(Y)
write(Y)

read(Z) ()

read(X)
read(Z)

write(X)

read(Z)

write(Z)

it (Y) write(Y)
write(Z)

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 15

Correctness of Timestamp-Ordering Protocol

The timestamp-ordering protocol guarantees serializability since all the arcs in
the precedence graph are of the form:

transaction
with smaller
timestamp

transaction
with larger
timestamptimestamp timestamp

Thus, there will be no cycles in the precedence graph
Timestamp protocol ensures freedom from deadlock as no transaction ever waits.
But the schedule may not be cascade-free, and may not even be recoverable.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 16

Multiple Granularityp y

Allow data items to be of various sizes
and define a hierarchy of data granularities,
where the small granularities are nested within larger ones

Can be represented graphically as a tree
An explicitly lock on a node implies implicit locks on all the node's descendents
i h din the same mode.
Granularity of locking (level in tree where locking is done):

fi l it (l r i tr) hi h rr hi h l ki rh dfine granularity (lower in tree): high concurrency, high locking overhead
coarse granularity (higher in tree): low locking overhead, low concurrency

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 17

Example - Granularity Hierarchyp y y

Sample hierarchy: database => area => file => record

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 18

Intention Lock Modes

Three additional lock modes with multiple granularity:p g y
intention-shared (IS): explicit shared locking at a lower level
intention-exclusive (IX): explicit locking at a lower level with exclusive or
shared locks
shared and intention-exclusive (SIX):

the subtree rooted by that node is locked explicitly in shared mode and
explicit locking at a lower level with exclusive-mode locks

i i l k ll hi h l l d b l k d i S Xintention locks allow a higher level node to be locked in S or X
mode without having to check all descendent nodes.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 19

Compatibility Matrixp y

The compatibility matrix for all lock modes including intention p y g
locks

IS IX S S IX XIS IX S S IX X

IS O O O O ×

IX O O × × ×

S O O× ××

S IX

X

O × ×× ×

X × × × × ×

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 20

Multiple Granularity Locking Schemep y g

Ti can lock node Q, using the following rules:i Q g g
1. The lock compatibility matrix must be observed.
2. Root of the tree must be locked first
3. Q can be locked by Ti in S or IS mode only if Ti currently holds IX or IS

mode lock on the parent of Q
4 Q b l k d b T i X SIX IX d l if T l h ld IX4. Q can be locked by Ti in X, SIX, or IX mode only if Ti currently holds IX

or SIX mode lock on the parent of Q
5 T can lock a node only if it has not previously unlocked any node (i e5. Ti can lock a node only if it has not previously unlocked any node (i.e.,

observe is 2PL).
6. Ti can unlock a node Q only if none of the children of Q are currently

l k d b Tlocked by Ti.

Locks are acquired in root-to-leaf order, whereas they are
l d i l f dreleased in leaf-to-root order.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 21

Multiple Granularity Locking Schemep y g

Enhances concurrency and reduces lock overheady
Mix of short transactions that access few data items and long transactions
that access entire tables.

Ensures serializability
Is not deadlock freeIs not deadlock free
Example

T18: read(r)T18: read(ra2)
T19: write(ra9)
T20: read(F)T20: read(Fa)
T21: read(DB)

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 22

Insert and Delete Operationsp

If two-phase locking is used :p g
A delete operation may be performed only if the transaction deleting the
tuple has an exclusive lock on the tuple to be deleted.
A transaction that inserts a new tuple into the database is given an X-mode
lock on the tuple

Insertions and deletions can lead to the phantom phenomenon.
T29: select sum(balance) from account where branch-name=‘Perryridge’
T30: insert into account values (‘A201’, ‘Perryridge’, 1000)
may conflict in spite of not accessing any tuple in common.

If only tuple locks are used, non-serializable schedules can result:
T29 may not see the new account, yet may be serialized to come after the T30

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 23

Insert and Delete Operations (Cont.)p ()

Can multiple granularity locking protocol be a solution?
How? Or why not?

Observation
The scan transaction must use (read) information that indicates what tuples the
relation contains,
while the insert transaction updates the same information.

One solution:
Associate a data item with the relation, to represent the information about
what tuples the relation contains.
Transactions scanning the relation acquire a shared lock in the data itemTransactions scanning the relation acquire a shared lock in the data item,
Transactions inserting or deleting a tuple acquire an exclusive lock on the data
item.
(Note: locks on the data item do not conflict with locks on individual tuples)

Above protocol provides very low concurrency for insertions/deletions.

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 24

Index Locking Protocolg

Every relation must have at least one index.
A transaction Ti can access tuples of a relation only after first
finding them through one or more of the indices.
A transaction Ti that performs a lookup must lock all the index
buckets that it accesses, in S-mode.
A transaction Ti may not insert a tuple ti into a relation r without
updating all indices to r.
Ti must perform a lookup on every index to find all index
buckets that could have possibly contained a pointer to tuple ti,
h d i i d l d d b i l k i X d ll hhad it existed already, and obtain locks in X-mode on all these
index buckets. Ti must also obtain locks in X-mode on all index
buckets that it modifiesbuckets that it modifies.
The rules of the two-phase locking protocol must be observed

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 25

Index Locking Protocol (cont.)g ()

account

A101 A102 A103 A201
Index on branch-name

Index on acc#

A101
Perryridge

500

A102
Perryridge

700

A103
Perryridge

100

A201
Perryridge

1000
…
…
…

……

…
…
…

…
Perryridge
…

…
…
…

…
…

…
…
…

…
T29: select sum(balance) from account where branch-name=‘Perryridge’

T30: insert into account values (‘A201’, ‘Perryridge’, 1000)

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 26

Weak Levels of Consistencyy

Degree-two consistency: S-locks may be g y y
released at any time, and locks may be
acquired at any time

X-locks must be held till end of transaction
Serializability is not guaranteed, programmer
must ensure that no erroneous database state
will occur

C biliCursor stability:
For reads, each tuple is locked, read, and lock is
i di t l l dimmediately released
X-locks are held till end of transaction
Special case of degree two consistencySpecial case of degree-two consistency

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 27

Concurrency in Index Structuresy

Indices are unlike other database items in that
their only job is to help in accessing data.
they are typically accessed very often, much more than other database
items

Treating index-structures like other database items leads to low
concurrency

Two-phase locking on an index may result in transactions executing
practically one-at-a-time

It is acceptable to have nonserializable concurrent access to an
index as long as the accuracy of the index is maintained.

the exact values read in an internal node of a B+-tree are irrelevant so long
as we land up in the correct leaf node

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 28

Concurrency in Index Structures (Cont.)y ()

There are index concurrency protocols where locks on internal y p
nodes are released early, and not in a two-phase fashion
Crabbing Protocol (for nodes of the B+-tree index)Crabbing Protocol (for nodes of the B tree index)
During search/insertion/deletion:

First lock the root node in shared modeFirst lock the root node in shared mode.
After locking all required children of a node in shared mode, release the
lock on the node.
During insertion/deletion, upgrade leaf node locks to exclusive mode.
When splitting or coalescing requires changes to a parent, lock the parent p g g q g p , p
in exclusive mode.

can cause excessive deadlocks
Better protocols are available

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 29

END OF CHAPTER 16END OF CHAPTER 16

