Advanced DB

CHAPTER 16

N YN AT AN TYT T YA T

CUNUURRNIVIN

C

X 7

C

T

N

YT
1 NUL,

Chapter 16: Concurrency Control

" Lock-Based Protocols

* Timestamp-Based Protocols
» Validation-Based Protocols

* Multiple Granularity

" Multiversion Schemes

* Deadlock Handling

* Insert and Delete Operations

* Concurrency in Index Structures

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 2

Implementation ot Isolation

= Schedules must be contlict (or view serializable), and recoverable
(for database consistency)

o and preferably cascadeless

= A policy in which only one transaction can execute at a time

generates serial schedules, but provides a poor degree of
concurrency.

= Concurrency-control schemes tradeoff between the amount of

concurrency they allow and the amount of overhead that they
incut.

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 3

Lock-Based Protocols

" A lock is a mechanism to control concurrent access to a data
1tem
= Tswo modes :

1. exclusive (X) mode: both read and write
(lock-X instruction)

2. shared (8) mode: only read
(lock-S instruction)

" Lock requests are made to concurrency-control manager

* ‘Transaction can proceed only after request 1s granted.

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 4

Granting of Locks

Original Slides:
© Silberschatz,

Lock-compatibility matrix

S X
S | true | false
X | false | false

A transaction may be granted a lock on an item if the requested
lock 1s compatible with lock(s) already held on the item by other
transactions

Any number of transactions can hold shared locks on an item
If any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.

Advanced DB (2008-1)

Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 5

Example

T, lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)
* Locking as above is not sufficient to guarantee serializability

— if A and B get updated in-between the read of A and B, the

displayed sum would be wrong.

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 6

‘Two-Phase Locking Protocol

* [Locking Protocol

o A set of rules followed by all transactions while requesting

and releasing locks

o Locking protocols restrict the set of possible schedules.

= 2PL
o Phase 1: Growing Phase

" transaction may obtain locks

* can acquire a lock-S or lock-X on item

* can convert a lock-S to a lock-X (upgrade)
" transaction may not release locks

o Phase 2: Shrinking Phase

" transaction may release locks

= can release a lock-S or lock-X

* can convert a lock-X to a lock-S (downgrade)
" transaction may not obtain locks

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

Silberschatz Chap 16 - 7

Example

Is Ts I7
lock-X(A)
read(A)
lock-S(B)
read(B)
write(A)
unlock(A)

lock-X(A)
read(A)
write(A)
unlock(A)
lock-S(A)
read(A)

Original Slides: Advance d DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 8

Features of 2PL

= Serializability: the protocol assures conflict serializability

o It can be shown that the transactions can be serialized in the
order of their lock points (i.e. the point where a transaction

acquired its final lock).

o There can be conflict serializable schedules that cannot be
obtained if two-phase locking is used

* Deadlocks: Two-phase locking does not ensure freedom
from deadlocks

o starvation also possible

» (Cascading rollback: is possible under two-phase locking

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 9

Strict / Rigorous 2PL.

= Strict 2PL

o To avoid cascading roll-back

o A transaction must hold all its exclusive locks until 1t
commits/aborts

= Rigorous 2PL

o g//locks are held until commit/abort

o transactions can be serialized in the order in which they commit

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 10

Timestamp-Based Protocols

* FHach transaction 1s issued a timestamp when it enters the system.

o Older transaction T, has smaller time-stamp than newer transaction T,
TS(T) <TS(T).

* The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

* In order to assure such behavior, the protocol maintains for each
data 0 two timestamp values:

o W-timestamp(Q) is the largest time-stamp of any transaction that executed
write(()) successfully.

o R-timestamp(Q) is the largest time-stamp of any transaction that executed
read(Q) successfully.

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 11

Timestamp-Ordering Protocol

* The timestamp ordering protocol ensures that any conflicting
read and write operations are executed in timestamp order.

1. Transaction T, 1ssues read(Q)
o It TS(T) < W-timestamp(Q)

reject read operation, and T; 1s rolled back.

Since this means T needs to read a value of Q that was already overwritten.
o If 'TS(T)= W-timestamp(Q)
execute read operation

set R-timestamp(¢)) = max(R-timestamp(Q), TS(T))

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 12

Timestamp-Ordering Protocol (Cont.)

2. Transaction T issues write(Q).
o If TS(T) < R-timestamp(Q)
" reject write operation, and T 1s rolled back.

= Since the value of Q that T 1s producing was needed previously, and the
system assumed it would never be produced.

o If TS(T) < W-timestamp(Q)

" reject write operation, and T 1s rolled back.

= Since T;1s attempting to write an obsolete value of (.
o Otherwise

" execute write operation

= set W-timestamp(Q) = TS(T)

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 13

Example - Timestamp-Ordering Protocol

Ty I'15
read (B)
read (B)
B:=B - 50
write (B)
read(A)
read (A)
display(A + B)
A:=A+50
write (A)
display (A + B)

TS(T14) <TS(Tys)

Original Slides: Advance d DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 14

Example - Timestamp-Ordering Protocol

Timestamp: 1 2 3 4 5

read(Y) read(2)

read(X)
write(Y)

write(X)
read(X)

read(2)
write(2)
write(Y)

write(2)

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 15

Correctness of Timestamp-Ordering Protocol

* The timestamp-ordering protocol guarantees serializability since all the arcs in
the precedence graph are of the form:

transaction transaction

with smaller

with Jarger
timestamp

timestamp

Thus, there will be no cycles in the precedence graph
* Timestamp protocol ensures freedom: from deadlock as no transaction ever waits.

* But the schedule may not be cascade-free, and may not even be recoverable.

Original Slides: Advanced DB (2008-1)

© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 16

Multiple Granularity

Allow data items to be of various sizes
o and define a hierarchy of data granularities,

o where the small granularities are nested within larger ones
= (Can be represented graphically as a tree

" An explicitly lock on a node implies zzplicit locks on all the node's descendents
in the same mode.

* Granularity of locking (level in tree where locking is done):
o fine granularity (lower in tree): high concurrency, high locking overhead

O coarse granularr. 1oher in tree): low lockine overhead, low concurrenc
g / gh t low locking head, 1 y

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 17

Example - Granularity Hierarchy

Sample hierarchy: database => area => file => record

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee

Silberschatz Chap 16 - 18

Intention L.ock Modes

* Three additional lock modes with multiple granularity:

o intention-shared (IS): explicit shared locking at a lower level

o gntention-exclusive (IX): explicit locking at a lower level with exclusive ot
shared locks

o shared and intention-exclusive (SIX):
" the subtree rooted by that node is locked explicitly in shared mode and

" explicit locking at a lower level with exclusive-mode locks

" intention locks allow a higher level node to be locked in S or X
mode without having to check all descendent nodes.

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 19

Compatibility Matrix

* The compatibility matrix for all lock modes including intention

locks

IS X S S IX
IS O O O O
IX O O X X
S O X O X
S IX O X X X
X X X X X

Original Slides:
© Silberschatz, Korth and Sudarshan

Advanced DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee

Silberschatz Chap 16 - 20

Multiple Granularity Locking Scheme

* T’ can lock node), using the following rules:
1. The lock compatibility matrix must be observed.

2. Root of the tree must be locked first

3. (O can be locked by T:1n S or IS mode only if T, currently holds IX or IS
mode lock on the parent of

4. (O can be locked by T’ 1n X, SIX, or IX mode only if T, currently holds IX
or SIX mode lock on the parent of 0

5. T, can lock a node only if 1t has not previously unlocked any node (i.e.,
observe is 2PL).

6. T, can unlock a node Q only if none of the children of O are currently
locked by T.

* Locks are acquired in root-to-leat order, whereas they are
released in leaf-to-root order.

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 21

Multiple Granularity Locking Scheme

* Enhances concurrency and reduces lock overhead

o Mix of short transactions that access few data items and long transactions
that access entire tables.
= Ensures serializability

= [s not deadlock free

= BExample
o T18: read(7,)
o 'T19: write(74)
o T20: read(F,)
o T21: read(DB)

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 22

Insert and Delete Operations

* [f two-phase locking 1s used :

o A delete operation may be performed only if the transaction deleting the
tuple has an exclusive lock on the tuple to be deleted.

o A transaction that inserts a new tuple into the database is given an X-mode
lock on the tuple

* Insertions and deletions can lead to the phantom phenomenon.
o T, select sum(balance) from account where branch-name=‘Perryridge’
o T, insert into account values (‘A201°, ‘Perryridge’, 1000)

o may contlict iz spite of not accessing any tuple in common.

= [f only tuple locks are used, non-serializable schedules can result:

T,y may not see the new account, yet may be serialized to come after the T5,

Original Slides: Advanced DB (2008-1)

© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 23

Insert and Delete Operations (Cont.)

* (Can multiple granularity locking protocol be a solution?
o How? Or why not?

= (Observation

o The scan transaction must use (read) information that indicates what tuples the
relation contains,

o while the insert transaction updates the same information.

= (One solution:

o Associate a data item with the relation, to represent the information about
what tuples the relation contains.

o Transactions scanning the relation acquire a shared lock in the data item,

o Transactions inserting or deleting a tuple acquire an exclusive lock on the data
item.

o (Note: locks on the data item do not conflict with locks on individual tuples)

= Above protocol provides very low concurrency for insertions/deletions.

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 24

Index Locking Protocol

= Every relation must have at least one index.

= A transaction T, can access tuples of a relation only after first
finding them through one or more of the indices.

* A transaction T, that performs a lookup must lock all the index
buckets that it accesses, in S-mode.

* A transaction T, may not insert a tuple # into a relation » without
updating all indices to .

* T must perform a lookup on every index to find all index
buckets that could have possibly contained a pointer to tuple 7,
had it existed already, and obtain locks in X-mode on all these

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 25

Index Locking Protocol (cont.)

~
~
S
Index on accH S o
\,5 - Index on branch-name
,’ A201 »
\
[Perryridge
‘1000 ,f
NS o - P d
N
Tve-o o[Perryridge

T,: select sum(balance) from account where branch-name=Perryridge’

T,: insert into account values (‘A201°; ‘Perryridge’, 1000)

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 26

Weak Levels of Consistency

* Degree-two consistency: S-locks may be
released at any time, and locks may be
acquired at any time
o X-locks must be held till end of transaction

o Sertalizability is not guaranteed, programmer
must ensure that no erroneous database state
will occur

= Cursor stability:

o For reads, each tuple is locked, read, and lock is
immediately released

o X-locks are held till end of transaction

Qimminl mncm L A
Ope€cial case Or aegree-

0

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee

T3 T4

lock-S(Q)

read(Q)

unlock(Q)
lock-X(Q)
read(Q)
write(Q)
unlock(Q)

lock-S(Q)

read(Q)

unlock(Q)

Silberschatz Chap 16 - 27

Concurrency in Index Structures

" Indices are unlike other database items in that
o their only job 1s to help in accessing data.
o they are typically accessed very often, much more than other database
items
* Treating index-structures like other database items leads to low
concurrency
o Two-phase locking on an index may result in transactions executing
practically one-at-a-time
= [t 1s acceptable to have nonserializable concurrent access to an
index as long as the accuracy of the index is maintained.

o the exact values read in an internal node of a BT-tree are irrelevant so long
as we land up 1n the correct leaf node

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 28

Concurrency in Index Structures (Cont.)

* There are index concurrency protocols where locks on internal
nodes are released early, and not in a two-phase tashion

= Crabbing Protocol (for nodes of the B'-tree index)

During search/insertion/deletion:
o First lock the root node in shared mode.

o After locking all required children of a node in shared mode, release the
lock on the node.

o During insertion/deletion, upgrade leaf node locks to exclusive mode.
o When splitting or coalescing requires changes to a parent, lock the parent
in exclusive mode.
" can cause excessive deadlocks

o Better protocols are available

Original Slides: Advanced DB (2008-1)
© Silberschatz, Korth and Sudarshan Copyright © 2006 - 2008 by S.-g. Lee Silberschatz Chap 16 - 29

END OF CHAPTER 16

