
Advanced DB

CHAPTER 17
RECOVERY SYSTEM

Chapter 17: Recovery System

Failure Classification
Storage Structure
Recovery and Atomicity
Log-Based Recovery
Shadow Paging
Recovery With Concurrent Transactions
Buffer Management
Failure with Loss of Nonvolatile Storage
Advanced Recovery Techniquesy q
ARIES Recovery Algorithm
Remote Backup Systems

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 2

Remote Backup Systems

Failure Classification

Transaction failure
Logical errors: transaction cannot complete due to some internal error conditiong p
System errors: the database system must terminate an active transaction due to an
error condition (e.g., deadlock)

System crashSystem crash
a power failure or other hardware or software failure causes the system to crash.
Fail-stop assumption: non-volatile storage contents are assumed to not have been
corrupted by system crashcorrupted by system crash

Database systems have numerous integrity checks to prevent corruption of disk data

Disk failure
h d h i il di k f il d ll f di ka head crash or similar disk failure destroys all or part of disk storage

Destruction is assumed to be detectable: disk drives use checksums to detect
failures

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 3

Recovery Algorithms

Recovery algorithms are techniques to ensure database
consistenc and transaction atomicit and d rabilit despiteconsistency and transaction atomicity and durability despite
failures

Focus of this chapterFocus of this chapter

Recovery algorithms have two parts
1. Actions taken during normal transaction processing to ensure enough g p g g

information exists to recover from failures
2. Actions taken after a failure to recover the database contents to a state that

ensures atomicity consistency and durabilityensures atomicity, consistency and durability

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 4

Storage Structure

Volatile storage:
d i hdoes not survive system crashes
examples: main memory, cache memory

Nonvolatile storage:Nonvolatile storage:
survives system crashes
examples: disk, tape, flash memory, p , p , y,

non-volatile (battery backed up) RAM

Stable storage:
a theoretical form of storage that survives all failures
approximated by maintaining multiple copies on distinct nonvolatile media

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 5

Data Access

Data blocks
Physical blocks: blocks residing on the diskPhysical blocks: blocks residing on the disk
Buffer blocks: blocks residing temporarily in main memory (disk buffer).

Each transaction Ti has its private work-area
local copies of all data items accessed and updated by it are kept here
Ti's local copy of a data item X is called xi.

Block movements between disk and main memory:Block movements between disk and main memory:
input(B) transfers the physical block B to main memory.
output(B) transfers the buffer block B to the disk, and replaces the appropriate
physical block there.

We assume that no data item spans two or more blocks.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 6

Data Access (Cont.)

Transaction transfers data items between system buffer blocks and its private
work-area using the following operations :g g p

read(X)
If BX in which X resides is not in memory, issue input(BX)
assign to the local variable xi the value of X from the buffer blockg i

write(X)
If BX in which X resides is not in memory, issue input(BX)
assign the value xi to X in the buffer block.

Transactions
perform read(X) when accessing X for the first time;
All subsequent accesses are to the local copy xiAll subsequent accesses are to the local copy xi.
After last access, transaction executes write(X) if updated.

output(BX) need not immediately follow write(X)
S f h i h i d fiSystem can perform the output operation when it deems fit.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 7

Example of Data Access

buffer

Xbuffer block A input(A)

X
Y

block A

buffer block B

Y block B
output(B) read(X)

(Y)
x2

x1

y1

write(Y) 2

work area
of T1

work area
of T2

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 8

DiskMain Memory

Recovery and Atomicity

Several output operations may be required for Ti
A f il f f h difi i h b d bA failure may occur after one of these modifications have been made but
before all of them are made
Modifying the database without ensuring that the transaction will commit y g g
may leave the database in an inconsistent state

To ensure atomicity despite failures
we first output information describing the modifications to stable storage
without modifying the database itself
Log-based recoveryLog based recovery
Shadow-paging (not covered in this class)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 9

Log-Based Recovery

Log
a sequence of log records that describe update activities on the databasea sequence of log records that describe update activities on the database
Log is kept on stable storage

Log records
When transaction Ti starts: <Ti start>
Before Ti executes write(X): <Ti, X, V1, V2>

V : the value of X before the writeV1: the value of X before the write
V2: the value to be written to X.

When Ti finishes its last statement: <Ti commit>

Assume that
transactions execute serially
log records are written directly to stable storage (they are not buffered)log records are written directly to stable storage (they are not buffered)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 10

Deferred Database Modification

Record all modifications to the log, but defer all the writes to after
p rti l commitpartial commit
Logging for Deferred DB Modification
1 Transaction start: <T st rt>1. Transaction start: <Ti start>
2. A write(X) operation results in

<Ti, X, V> being written to log, where V is the new value for X (old value is i g g
not needed for this scheme)
The write is not performed on X at this time, but is deferred.

3 When T partially commits3. When Ti partially commits
<Ti commit> is written to the log (and Ti commits)

4. Finally, the log records are read and used to actually execute the
previously deferred writes.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 11

Deferred Database Modification (Cont.)

Recovery after a crash
a transaction needs to be redone if and only ifa transaction needs to be redone if and only if

both <Ti start> and<Ti commit> are in the log.
redo Ti (redoing a transaction Ti) sets the value of all data items updated by the

i h ltransaction to the new values.

example transactions T0 and T1 (T0 executes before T1):
T0: read(A) T1 : read(C)T0: read(A) T1 : read(C)

A :- A - 50 C :- C-100
write(A) write(C)() ()
read(B)
B :- B + 50
write(B)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 12

Deferred Database Modification (Cont.)

The log as it appears at three instances of time.

If log on stable storage at time of crash is as in case:
(a) no redo actions need to be taken
(b) redo(T0), since <T0 commit> is present () (0), 0 p
(c) redo(T0) and redo(T1) since <T0 commit> and <Ti commit> are present

Crashes can also occur while recovery action is being taken

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 13

Immediate Database Modification

Allows database updates of an uncommitted transaction to be
made as the rites are iss edmade as the writes are issued
Logging for Immediate DB Modification
1 Transaction start: <T st rt>1. Transaction start: <Ti start>
2. A write(X) operation results in

a. <Ti, X, V1, V2> being written to log (undoing may be needed)i g g g
b. followed by the write operation

3. When Ti partially commits, <Ti commit> is written to the log

Output of updated blocks can take place at any time before or
after transaction commit

Ord r in hi h bl ks r tp t n b diff r nt fr m th rd r inOrder in which blocks are output can be different from the order in
which they are written

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 14

Immediate Database Modification (Cont.)

Log Write Output

<T0 start>
<T0, A, 1000, 950>
<To, B, 2000, 2050>o, , ,

A = 950
B = 2050

<T0 commit><T0 commit>
<T1 start>
<T1, C, 700, 600>

C = 600C = 600
BB, BC

<T1 commit>
BBA

(BX denotes block containing X)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 15

Immediate Database Modification (Cont.)

Recovery procedure has two operations:
undo(Ti): restores the value of all data items updated by Ti to their old values(i) p y i

going backwards from the last log record for Ti

redo(Ti) sets the value of all data items updated by Ti to the new values,
going forward from the first log record for Tig g g i

Both operations must be idempotent
even if the operation is executed multiple times, the effect is the same as if it is
executed onceexecuted once
needed since operations may get re-executed during recovery

Recovery after a crach:
U d T if h l i h d T b d i h dUndo Ti if the log contains the record <Ti start>, but does not contain the record
<Ti commit>.
Redo Ti if the log contains both the record <Ti start> and the record <Ti
commit>commit>.

(Undo operations are performed before redo operations)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 16

Immediate Database Modification (Cont.)

Example
The log s it ppe rs t three inst n es of timeThe log as it appears at three instances of time.

If log on stable storage at time of crash is as in case:
(a) undo (T0)
(b) undo (T1) and redo (T0)
(c) redo (T0) and redo (T1)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 17

Checkpoints

Problems in previous recovery procedures
hi h i l i i isearching the entire log is time-consuming

we might unnecessarily redo transactions which have already output their
updates to the databasep

Checkpoints Reduce recovery overhead
Checkpoint processp p
1. Output all log records currently residing in main memory onto stable

storage
2. Output all modified buffer blocks to the disk
3. Write a log record < checkpoint> onto stable storage

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 18

Checkpoints (Cont.)

During recovery we need to consider only
h i T h d b f h h k ithe most recent transaction Ti that started before the checkpoint

and transactions that started after Ti.

Recovery procedureRecovery procedure
1. Scan backwards from end of log to find the most recent <checkpoint>
2. Continue scanning backwards till a record <Ti start> is found.g i

Need only consider the part of log following above start record
Earlier part of log can be ignored during recovery (and can be erased)

3 F ll i (i f T l) i h <T i >3. For all transactions (starting from Ti or later) with no <Ti commit>,
execute undo(Ti). (in case of immediate modification)

4. Scanning forward in the log, for all transactions (starting from Ti or later) g g (g i)
with a <Ti commit>, execute redo(Ti).

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 19

Example of Checkpoints

tc tf

T
time

T1

T2

T3T3

T4

checkpoint system failure

T1 can be ignored (updates already output to disk due to checkpoint)
T4 undone
T2 and T3 redone

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 20

Recovery With Concurrent Transactions

Extend the log-based recovery schemes
All i h i l di k b ff d i l lAll transactions share a single disk buffer and a single log
A buffer block can have data items updated by one or more transactions

We assume concurrency control using strict two phase locking;We assume concurrency control using strict two-phase locking;
i.e. updates of uncommitted transactions should not be visible to other
transactions => recoverable

Logging is as described earlier
Log records of different transactions may be interspersed in the log

Checkpointing and recovery actions have to be changed
since several transactions may be active at checkpoint time

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 21

tc tf
T11

T22

T3

time
T4

T

T7

T6

T5

Checkpoint Crash!

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 22

Recovery With Concurrent Transactions

Checkpoints for concurrent transactions
Save list of active transactions at checkpoint timeSave list of active transactions at checkpoint time
Checkpoint record: <checkpoint L>, where L is the list of transactions active at
the time of the checkpoint
Th i id i l i l iThe rest is identical to serial executions

Recovery after a crash: Preparation
1. Initialize undo-list and redo-list to emptyp y
2. Scan the log backwards from the end, up to the first <checkpoint L>

For each record found during the backward scan:
if th d i <T mmit> dd T t d li tif the record is <Ti commit>, add Ti to redo-list
if the record is <Ti start>, then if Ti is not in redo-list, add Ti to undo-list

3. For every Ti in L,
if Ti is not in redo-list, add Ti to undo-list

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 23

Recovery With Concurrent Transactions

After the preparation phase
d li i f i l i hi h b dundo-list consists of incomplete transactions which must be undone

redo-list consists of finished transactions that must be redone

Recovery after a crash: Recover processRecovery after a crash: Recover process
1. Scan log backwards from most recent record, until <Ti start> records

have been found for every Ti in undo-list.
During the scan, perform undo for each log record that belongs to a
transaction in undo-list.

2 Scan log forwards from the most recent <checkpoint L> record till the2. Scan log forwards from the most recent <checkpoint L> record till the
end of log

During the scan, perform redo for each log record that belongs to a
transaction on redo listtransaction on redo-list

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 24

Example of Recovery

Suppose the log is as shown below:

<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start> /* Scan in Step 4 stops here */

T C 0 10<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1, T2}>
<T start><T3 start>
<T3, A, 10, 20>
<T4 start>
<T4 D 0 10><T4, D, 0, 10>
<T3 commit>

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 25

Log Record Buffering

Log records are buffered in main memory
i d f b i di l blinstead of being output directly to stable storage
several log records can be output using a single output operation

Log records are output to stable storage whenLog records are output to stable storage when
a block of log records in the buffer is full, or
A log force operation is performed to commit a transaction by forcing all its g f p p y g
log records (including the commit record) to stable storage.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 26

Log Record Buffering (Cont.)

Rules that must be followed
1. Log records are output to stable storage in the order in which they are

created.
2 Transaction T enters the commit state only when the log record2. Transaction Ti enters the commit state only when the log record

<Ti commit> has been output to stable storage
3. Before a block of data in main memory is output to the database, all y p ,

log records pertaining to data in that block must have been output to
stable storage.

=> called the write-ahead logging or WAL rule

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 17 - 27

END OF CHAPTER 17

