
Graphics PrimitivesGraphics Primitives

Chapter 3 & 4
Intro. to Computer Graphicsp p
Spring 2008, Y.G. Shin

Graphic Output and Input
Pipeline

Scan conversion
converts primitives such as lines circles etcconverts primitives such as lines, circles, etc.
into pixel values
geometric description ⇒ a finite scene areageometric description ⇒ a finite scene area

Clipping
the process of determining the portion of athe process of determining the portion of a
primitive lying within a region called clip region

Graphic Output Pipeline

Output pipeline (rendering process)

application model : descriptions of
objects

application program : generates a
sequence of functions to
display a modeldisplay a model

hi k li igraphics package : clipping, scan
conversion, shading, etc.

display H/W

Graphic Input Pipeline

Input pipeline
user interaction (e g mouse click)user interaction (e.g., mouse click)

graphic package (by sampling orgraphic package (by sampling or
event-driven input functions)

application program

modify the model or the image on
the screen

Graphic Output Pipeline

displays with frame buffers and display
controllerscontrollers

common in pug-in graphics card
i b hi k d di lscan conversion by a graphic package and display

processor

di l ith f b ff ldisplays with frame buffers only
scan conversion by a graphic package

Output Pipeline in Software

When scan conversion and clipping?

Clipping before scan conversion
for lines, rectangles, and polygons
clipping after scan converting each
primitive (scissoring)

Clipping after scan converting the
entire collection of primitives into a
temporary canvas

for text

Scan Converting Lines

A line from (x0,y0) to (x1,y1) ⇒ a series of pixels

[Criteria]
Straight lines should appear straightStraight lines should appear straight
Line end-points should be constrained - grids,
snaps
Uniform density and intensity
Line algorithms should be fast

Why Studyy y
Scan Conversion Algorithms?

Every high-end graphics card support this.

You will never have to write these routines yourselfYou will never have to write these routines yourself,
unless you become a graphics hardware designer.

So why learn this stuff?So why learn this stuff?
Maybe you will become a graphics hardware designer.

But seriously the same basic tricks underlie lots ofBut seriously, the same basic tricks underlie lots of
algorithms:

3-D shaded polygons

Texture mapping

etc.

Simple Scan Converting Lines

Based on slope-intercept
l ith f l balgorithm from algebra:

y = mx + b

Simple approach:
increment x, solve for y

Floating point
h darithmetic required

Digital Differential Analyzer(DDA)

Idea
1 Go to starting end),(ii yx))(,1(myRoundx ii ++1. Go to starting end

point
2 Increment x and y

ii))(,(yii

2. Increment x and y
values by constants
proportional to x p p
and y such that one
of them is 1.

3. Round to the
closest raster
position

))(,(ii yRoundx),1(myx ii ++

position

Digital Differential Analyzer(DDA)

Drawbacks
di t i t t k tirounding to an integer takes time

floating-point operations

Is there a simpler way ?
Can we use only integer arithmetic ?g

Easier to implement in hardware.

Midpoint Line Algorithm

(Bresenham's Line Algorithm)

Assume a line from
(x1,y1) to (x2,y2) that
0<slope<1 and x1<x2.p 1 2

Use symmetry

Midpoint Line Algorithm
(Bresenham's Line Algorithm)

Suppose that we have just finished drawing a
pixel P = (x y) and we are interested inpixel P = (xp, yp) and we are interested in
figuring out which pixel to draw next.

If distance(NE,M) >
distance(E,M)distance(E,M)

then
select E = (xp+1, yp)

NEselect E (xp+1, yp)
else

select NE = (x +1 y +1)
M

select NE (xp+1, yp+1)
EP

Midpoint Line Algorithm
(Bresenham's Line Algorithm)

A line eq. in the implicit form:

F() b 0F(x, y) = ax + by + c = 0

Using y = Δy/Δx·x + B,

where a = Δy, b = -Δx, c = B.

F(x y) Δy·x Δx·y + B·Δx 0F(x,y) = Δy·x - Δx·y + B·Δx = 0.

Let's use an equivalent representation:

F(x,y) = 2ax + 2by + 2c = 0.

Midpoint Line Algorithm
(Bresenham's Line Algorithm)

Making slope assumptions,
observe that b < 0 andobserve that b < 0, and
this implies:

F(x,y) < 0 for points aboveF(x,y) < 0 for points above
the line

F(x,y) > 0 for points below
th li M

NE

the line

To apply the midpoint
criterion we need only to

M

Ecriterion, we need only to
compute F(M) = F(xp+1,

yp+½) and to test its sign.

EPrevious
Pixel

(xp,yp)yp ½) and to test its sign. (xp,yp)

Midpoint Line Algorithm
(Bresenham's Line Algorithm)

To determine which one to pick up, we
define a decision variabledefine a decision variable

D = F(xp+1, yp+½)

D 2 (+1) + 2b(+½) + 2D = 2a(xp+1) + 2b(yp+½) + 2c

= 2axp + 2byp + (2a + b + c)

If D > 0 then M is below the line, so
select NE, otherwise select E.select NE, otherwise select E.

NE

E

M

P

Midpoint Line Algorithm
(Bresenham's Line Algorithm)

How to compute D incrementally?
Suppose we know the current D valueSuppose we know the current D value,
and we want to determine the next D.
If we decide on going to E next,e dec de o go g to e t,

Dnew = F(xp + 2, yp + ½)
= 2a(xp + 2) + 2b(yp + ½) + c NE

= D + 2a = D + 2Δy

If we decide on going to NE next, E

M

P

Dnew = F(xp + 2, yp + 1 + ½)
= 2a(xp + 2) + 2b(yp + 1 + ½) + c
= D + 2(a + b) = D + 2(Δy - Δx)= D + 2(a + b) = D + 2(Δy - Δx).

Midpoint Line Algorithm
(Bresenham's Line Algorithm)

Since we start at (x0,y0), the initial
value of D can be calculated byvalue of D can be calculated by
Dinit = F(x0 + 1, y0 + ½)

= (2ax0 + 2by0 + c) + (2a + b)(2ax0 2by0 c) (2a b)
= 0 + 2a + b
= 2Δy - Δx

NE

E

M

P

Advantages
Only need add integers and multiply by 2

EP

y g p y y
(which can be done by shift operations)
Incremental algorithm

Example code
void MidpointLine(int x0, int y0,

int x1, int y1, int value) {
int dx = x1 - x0;
int dy = y1 - y0;
int d = 2 * dy - dx;
int incrE = 2 * dy;
int incrNE = 2 * (dy - dx);
int x = x0;
int y = y0;

writePixel(x, y, value);

while (x < x1) {
if (d <= 0) { // East Case

d = d + incrE;
} else { // Northeast Case

d = d + incrNE;
y++;

}
x++;
writePixel(x, y, value);

} /* while */
} /* MidpointLine */

Midpoint Line Algorithm- Example

Line end points:

(x0,y0) = (5,8); 13(x0,y0) (5,8);

(x1,y1) = (9,11)

Δx = 4; Δy = 3

13
12
11

Δx = 4; Δy = 3

Dinit = 2Δy – Δx = 2 > 0

l t NE

10
9
8select NE

Dnew = D + 2(Δy - Δx) = 0
4 5 6 7 8 9 10 11

8
7
6

Select E

Dnew = D + 2Δy = 0 + 6 = 6

4 5 6 7 8 9 10 11

e

Select NE

Scan Converting Lines (issues)

Endpoint order
S01 is a set of pixels that lie on the line from P0 to P1S01 is a set of pixels that lie on the line from P0 to P1

S10 is a set of pixels that lie on the line from P1 to P0

⇒ S01 should be the same as S10

V i i t it f li f ti f lVarying intensity of a line as a function of slope
For the diagonal line, it is longer than the horizontal line
but has the same number of pixels as the latterp
⇒ needs antialiasing

Outline primitives composed of lines
C b k d h d f l lCare must be taken to draw shared vertices of polylines
only once

Scan Converting Lines (issues)

Starting at the edge of a clip rectangle
Starting point is not the intersection point of the lineSta t g po t s ot t e te sect o po t o t e e
with clipping edge
⇒ Clipped line may have a different slope

Scan Converting Circles

Eight-way symmetry

l d f lWe only consider 45° of a circle

Midpoint Circle Algorithm

Suppose that we have just finished drawing a
pixel (x y) and we are interested in figuring outpixel (xp,yp) and we are interested in figuring out
which pixel to draw next.

Midpoint Circle Algorithm

F(x,y) = x2 + y2 - R2

= 0 on the circle
> 0 outside the circle
< 0 inside the circle

If F(midpoint between E and SE) > 0
then

select SE = (xp+1,yp-1)

else
l t E (1)select E = (xp+1, yp);

Midpoint Circle Algorithm

Decision variable dold = F(xp+1, yp-½)

= (xp+1)2 + (yp-½)2 - R2(xp+1) + (yp ½) R
If dold < 0, select E.

dnew = F(xp+2, yp-½) = dold + (2xp + 3)new (p , yp) old (p)

If dold ≥ 0, select SE.

dnew = F(xp+2, yp-½-1) = dold + (2xp - 2ypp p p p

+ 5)

We have to calculate dnew based on the
point of evaluation P=(xp, yp), but this
is not expensive computationally.

Midpoint Circle Algorithm

Since we start at (0,R), the initial value of d can be
calculated bycalculated by
dinit = F(1, R - ½)

= 5/4 - R.

By substituting d - 1/4 by h, we can get the integer
midpoint circle scan-conversion algorithm.

Scan Converting Ellipses

F(x,y) = b2x2 + a2y2 -a2b2

Divide the quadrant into two regions;Divide the quadrant into two regions;
the boundary of two regions is the point
at which the curve has a slope of 1at which the curve has a slope of -1.
And then apply any midpoint algorithm.

a
b

Area Filling

How to generate a solid color/patterned
polygon area

Which pixels?

What value?

polygon area

What value?

Scan line approach

Area Filling (Scan line Approach)

Take advantage of
span coherence - all pixels on a span are set top p p
the same value
scan-line coherence - consecutive scan lines are
identical
edge coherence - edges intersected by scan line i
are also intersected by scan line i+1

Area Filling (Scan line Approach)

For each scan line
(1) Find intersections (the extrema of spans)(1) Find intersections (the extrema of spans)

Use Bresenham's line-scan algorithm
Note that in a line drawing algorithm there is
no difference between interior and exterior
pixels
BUT it is better to draw interior onlyBUT it is better to draw interior only

(2) Sort intersections (increasing x order)
(3) Fill in between pair of intersections(3) Fill in between pair of intersections

Find intersections

xk+1 = xk + Δx / Δy
example (left edge)example (left edge)

m = 5/2
x 3xmin = 3
the sequence of x values

3 3+2/5 3+4/5 3+5/6 4+1/53, 3+2/5, 3+4/5, 3+5/6=4+1/5

y 1 2 3 4y

x

1 2 3 4

3 3+2/5 3+4/5 4+1/5

pixel (3,1) (4,2) (4,3) (5,3)

How to decide interior

Parity Fill ApproachParity Fill Approach

For each pixel, determine if it is
inside or outside of a given polygon.
A hApproach

from the point being tested cast a ray
in an arbitrary direction y
if the number of crossings is odd then
the point is inside
if th b f i i thif the number of crossings is even then
the point is outside

Parity Fill ApproachParity Fill Approach

PP

Edge Crossing Rules
an upward edge includes its starting endpoint, and excludes
its final endpoint;
a downward edge excludes its starting endpoint, and
includes its final endpoint; p ;
horizontal edges are excluded;
the edge-ray intersection point must be strictly right of the

i t Ppoint P.

Parity Fill ApproachParity Fill Approach

Very fragile algorithm
Ray crosses a vertexRay crosses a vertex
Ray is coincident with an edge

Commonly used in ECAD

Suitable for H/W

Winding Number ApproachWinding Number Approach

A winding number is an attribute of a point with respect to a
polygon that tells us how many times the polygon encloses (or

d) h i I i i h lwraps around) the point. It is an integer, greater than or equal
to 0. Regions of winding number 0 (unenclosed) are obviously
outside the polygon, and regions of winding number 1 (simply
enclosed) are obviously inside the polygon.

Initially 0
+1: edge crossing the line
from right to left

1: left to right-1: left to right
Use the sign of the cross product
of the line and edge vectors
The line does not cross any vertex

How to decide interior

Vertices are numbered: 0 1 2 3 4 5 6 7 8 9

Span Rules

intersection at integer coordinate
leftmost : interiorleftmost : interior
rightmost: exterior

shared verticesshared vertices
count parity at ymin vertices only
shorten edgesg

horizontal edges
do not count vertices

A standard convention is to say that a point on a
left or bottom edge is inside and a point on a rightleft or bottom edge is inside, and a point on a right
or top edge is outside.

Span Rules

Area Filling

Use edge coherence and the scan-line
algorithmalgorithm

ET
Contains all the non-horizontal edges.o a a o o o a dg
Edges are sorted by their smaller y coordinates.

AET
Contains edges which intersect the current scan
line.

d d h i i i lEdges are sorted on their x intersection values.

Area Filling (Scan line method)

S li 9Scan line 9

Scan line 10

Area Filling(Filling Methods)

Pixel Adjacency

4-connected

8-connected

Boundary-Fill Algorithm
starting a point inside the figure and painting
the interior in a specified color or intensity.

Boundary Filling
procedure boundary_fill4(

x,y : integer starting point in region
boundaryValue value that defines boundaryboundaryValue value that defines boundary
newvalue : color); replacement value

var
c : color

b ibegin
c := readPixel(x,y);
if c <> boundaryValue and

c <> newValue thenc <> newValue then
begin

writePixel(x,y,newValue);
boundary_fill4(x,y-1,boundaryValue,newValue);
b d f ll (b d l l)boundary_fill4(x,y+1,boundaryValue,newValue);
boundary_fill4(x-1,y,boundaryValue,newValue);
boundary_fill4(x+1,y,boundaryValue,newValue);

endend
end;

Boundary Filling

• There is the following problem with boundary_fill4:

Solve with 8-
connectedconnected

• Involve heavy duty recursion which may consume
memory and time

Boundary Filling

Efficiency in space!
finish the scan line
containing the
starting positionstarting position
process all lines
below the start line
process all lines
above the start line

Flood Filling

: Start a point inside the figure, replace
a specified interior color only.

procedure flood_fill4(
x,y : integer starting point in region
oldValue value that defines interior

a specified interior color only.

oldValue value that defines interior
newvalue : color); replacement value

begin
if readPixel(x,y) = oldValue thenif readPixel(x,y) oldValue then

begin
writePixel(x,y,newValue);
flood fill4(x,y-1,oldValue,newValue);_ (,y , ,);
flood_fill4(x,y+1,oldValue,newValue);
flood_fill4(x-1,y,oldValue,newValue);
flood_fill4(x+1,y,oldValue,newValue);

end
end;

Problems of Filling Algorithm
What happens if a vertex is
shared by more than one
polygon, e.g. three triangles?
What happens if the polygon
intersects itself?intersects itself?
What happens for a “sliver”?

Solutions?
Redefine what it means to be inside of a triangleRedefine what it means to be inside of a triangle
Different routines for nasty little triangles

Patterned Lines

Patterned line from P to Q is not same as patterned
line from Q to P.Q

P Q

P Q

Patterns can be geometric or cosmetic
Cosmetic: Texture applied after transformations
G t i P tt bj t t t f tiGeometric: Pattern subject to transformations

Cosmetic Geometric

Character, Symbols

Stroke tables : a set of vectors which are scan
converted as linesconverted as lines

(Example) outline font

move 0 0
draw 1 1
move 0 1move 0 1
draw 1 0
move 1 1
….

Bitmaps : array of 0's and 1's, scan converted asBitmaps : array of 0 s and 1 s, scan converted as
points

Character, Symbols

Stroke table Bitmap

Comparison of Methods

Stroke table Bitmap
easy to rotate rotate by multiples of 90°
easy to scale scale by powers of 2easy to scale scale by powers of 2
variable length storage fixed length storage
Scan convert lines scan convert points
fill if polygons draw as filled or outline
may be anti-aliased or
smoothed via curve fitting may be pre-anti-aliasedsmoothed via curve fitting y p

best for linear designs arbitrary patterns with
many colors

Line Attributes

Butt cap

Round cap

Projecting square cap

Miter join

Round Join

Bevel joinBevel join

Aliasing in CG

Which is
th b tt ?the better?

Aliasing in CG

Digital technology can only approximate analog
signals through a process known as sampling.g g p p g
Aliaising : the distortion of information due to low-
frequency sampling (undersampling).
Choosing an appropriate sampling rate depends on
data size restraints, need for accuracy, the cost per
sample…
Errors caused by aliasing are called artifacts.
C li i tif t i t hiCommon aliasing artifacts in computer graphics
include jagged profiles, disappearing or improperly
rendered fine detail and disintegrating texturesrendered fine detail, and disintegrating textures.

