3 Graphics Primitives

Chapter 3 & 4
Intro. to Computer Graphics
Spring 2008, Y.G. Shin

Graphic Output and Input

i Pipeline

s Scan conversion

= converts primitives such as lines, circles, etc.
into pixel values

= geometric description = a finite scene area
= Clipping

« the process of determining the portion of a
primitive lying within a region called c/jp region

||||||||||||

i Graphic Output Pipeline

= Qutput pipeline (rendering process)

application model : descriptions of
ﬂ objects

application program : generates a
sequence of functions to
display a model

graphics package : clipping, scan
@ conversion, shading, etc.

display H/W

i Graphic Input Pipeline

m [Nput pipeline
= User interaction (e.g., mouse click)

!

= graphic package (by sampling or
event—driven input functions)

!

= application program

!

= modify the model or the image on
the screen

i Graphic Output Pipeline

= displays with frame buffers and display
controllers
= common in pug-in graphics card

= Scan conversion by a graphic package and display
processor

= displays with frame buffers only
= Scan conversion by a graphic package

i Output Pipeline In Software

When scan conversion and clipping?

s Clipping before scan conversion

= for lines, rectangles, and polygons
clipping after scan converting each
primitive (scissoring)
= Clipping after scan converting the
entire collection of primitives into a
temporary canvas

= for text

i Scan Converting Lines

A line from (x0,y0) to (x1,yl) = a series of pixels
:i ar \
s
—
[Criteria]

= Straight lines should appear straight

= Line end-points should be constrained - grids,
snaps

=« Uniform density and intensity
= Line algorithms should be fast

Why Study
Scan Conversion Algorithms?

= Every high-end graphics card support this.

= You will never have to write these routines yourself,
unless you become a graphics hardware designer.

= So why learn this stuff?
= Maybe you wi//become a graphic hardware designer.

= But seriously, the sam
algorithms:
= 3-D shaded polygons
= Texture mapping

= efc.

i Simple Scan Converting Lines

Based on s/ope-intercept
algorithm from algebra.

y=mx+b

Simple approach:
> increment X, solve fory

Floating point
arithmetic required

i Digital Differential Analyzer(DDA)

= Idea
1. Gotostartingend %) (% +1, Round (y; +m))
point /

2. Increment x and y
values by constants
proportional to x
and y such that one

//
N
\JV

\\ a
L/

of them is 1.) \ T
3. Round to the \ \
closest raster (x;,Round (y;)) (% +1y,+m)

position

i Digital Differential Analyzer(DDA)

= Drawbacks
= rounding to an integer takes time
= floating-point operations

= Is there a simpler way ?

= Can we use only integer arithmetic ?
= Easier to implement in hardware.

Midpoint Line Algorithm
(Bresenham's Line Algorithm)

=l>m>»=—00 : 1<m< oo

= Assume a line from

(X1,Y1) to (X3,y,) that
O<slope<1 and x;<X,.

n<@m ::pn<mnp

.." I < Ig
“ 0<m<1

s Use symmetry

W<y <
l<m<oo " =1>m>—00

Midpoint Line Algorithm
i (Bresenham's Line Algorithm)

Suppose that we have just finished drawing a
pixel P = (x,, y,) and we are interested in
figuring out which pixel to draw next.

If distance(NE,M) >

()

distance(E,M)

D,
then -
select E = (x,+1, yp,))

|
S
else /—M

select NE = (x,+1, y,+1) /' -

()
W/

N
W/
P E

Midpoint Line Algorithm
i (Bresenham's Line Algorithm)

= A line eq. in the implicit form:
F(x,y)=ax+by+c=0

= Using y = Ay/Ax'x + B,
where a = Ay, b = -Ax, c = B.
F(x,y) = Ay'x - Ax'y + B'Ax = 0.

= Let's use an equivalent representation:
F(x,y) = 2ax + 2by + 2c = 0.

Midpoint Line Algorithm
i (Bresenham's Line Algorithm)

= Making slope assumptions,
observe that b < 0, and o)
this implies:
= F(x,y) <0 for points above
the line
= F(x,y) > 0 for points below
the line
= [0 apply the midpoint —
criterion, we need only to Previols E
compute FIM) = F(x,+1, Pivel

y,*+#) and to test its sign. (X, 1)

_— |

Midpoint Line Algorithm
i (Bresenham's Line Algorithm)

= To determine which one to pick up, we
define a decision variable

D = F(x,+1, y,+2)
D = 2a(x,+1) + 2b(y,+"2) + 2c
= 2ax, + 2by, + (2a + b + ()
= If D > 0 then M is below the line, so
select NE, otherwise select E. |

Midpoint Line Algorithm
i (Bresenham's Line Algorithm)

s How to compute D incrementally?

= Suppose we know the current D value,
and we want to determine the next D.

= If we decide on going to E next, |
= Dpew = F(X, + 2, ¥, + ¥2)
= 2a(x, + 2) + 2b(y, + ¥2) + C — NE
=D+ 2a =D + 2Ay - M
= If we decide on going to NE next, oTTE

= Dpew = F(X, + 2, ¥, + 1 + 12)
= 2a(x, +2) + 2b(y, + 1 + ¥2) + C
=D+ 2(a+ b) =D + 2(Ay - Ax).

Midpoint Line Algorithm
i (Bresenham's Line Algorithm)

= Since we start at (X,Y,), the initial
value of D can be calculated by

Dinit = F(Xo + 1, yo + V2) |

= (2ax, + 2by, + ¢) + (2a + b)
=0+2a+b
= 20y - AX -

= Advantages T

= Only need add integers and multiply by 2
(which can be done by shift operations)
= Incremental algorithm

Example code

void MidpointLine(int x0, int yO0,

int
int
int
int
int
int
int

int x1, int y1, int value) {

dx = x1 — x0;

dy =yl - y0;
d=2*dy — dx;

incrg = 2 * dy;

incrNE = 2 * (dy — dx);
X = X0;

y =y0;

writePixel(x, y, value);

while (x < x1) {

if (d<=0){ // East Case
d =d + incrk;
}else { // Northeast Case
d =d + incrNE;
y++;
}
X++;
writePixel(x, y, value);
/* while */
/* MidpointLine */

i Midpoint Line Algorithm- Example

Line end points:

(XorYo) = (5,8); 13
(X1,¥1) = (9,11) 12 1
= AX =4; Ay =3 1(1))4
« D= 20y —Ax=2>0 N %
> select NE 8¢
s D, =D+ 2(QAy-Ax)=0 Z
45 67 8 910 11

=>» Select E
= D, ,=D+20y=0+6=6
> Select NE

i Scan Converting Lines (issues)

= Endpoint order
= S, is a set of pixels that lie on the line from P, to P,
= Sy, is a set of pixels that lie on the line from P, to P,
= S,; should be the same as S,

= Varying intensity of a line as a function of slope

= For the diagonal line, it is longer than the horizontal line
but has the same number of pixels as the latter

— needs antialiasing
= Outline primitives composed of lines

= Care must be taken to draw shared vertices of polylines
only once

i Scan Converting Lines (issues)

= Starting at the edge of a clip rectangle

= Starting point is not the intersection point of the line
with clipping edge
— Clipped line may have a different slope

i Scan Converting Circles

= Eight-way symmetry

"" _E._ l_‘_ >
{"}"J '—x)ky {]"’1 —J'f}
(x,

(=X —y)

We only consider 45° of a circle

i Midpoint Circle Algorithm

= Suppose that we have just finished drawing a
pixel (x,,y,) and we are interested in figuring out
which pixel to draw next.

Paix, y,) /‘\E /il

Pre}rious Choices for Choices for
pixel current pixel next pixel

i Midpoint Circle Algorithm

s F(X,y) =x2+y2 - R?
= 0 on the circle
> 0 outside the circle
< 0 inside the circle

= If F(midpoint between E and SE) > 0
then
select SE = (x,+1,y,—1)
else
select E = (X +1, y,):

i Midpoint Circle Algorithm

= Decision variable d,q = F(x,+1, y,-12)
= (Xp+1)2 + (y,-¥2)? - R?
« Ifd,y <0, select E.
Onew = F(X,+2, ¥p-12) = dgy + (2%, + 3)

P=(x, ¥,) e ‘4

T , « Ifd,4 >0, select SE.
g Aew = F(Xp+2, ¥p-¥2-1) = dyg + (2%, - 2y,
+ 5)

= We have to calculate d., based on the
point of evaluation P=(x,, Y,), but this
iS not expensive computationally.

i Midpoint Circle Algorithm

= Since we start at (0,R), the initial value of d can be
calculated by
dinie = F(1, R - ¥2)
= 5/4 - R.
= By substituting d - 1/4 by h, we can get the integer
midpoint circle scan-conversion algorithm.

i Scan Converting Ellipses

= F(Xx,y) = b2x2 + a2y? -a2b?
= Divide the quadrant into two regions;

the boundary of two regions is the point
at which the curve has a slope of -1.

= And then apply any midpoint algorithm.

.

i Area Filling

How to generate a solid color/patterned
polygon area

] . . 5
- C Which pixels”

= What value?

Scan line approach 2+
10

8
6
4
2

i Area Filling (Scan line Approach)

= Take advantage of

= Span coherence - all pixels on a span are set to
the same value

= Scan-line coherence - consecutive scan lines are
identical

= edge coherence - edges intersected by scan line /7
are also intersected by scan line /+1

121

i Area Filling (Scan line Approach)

s For each scan line

(1) Find intersections (the extrema of spans)
= Use Bresenham's line-scan algorithm

= Note that in a line drawing algorithm there is
no difference between interior and exterior
pixels

= BUT it is better to draw interior only
(2) Sort intersections (increasing x order)
(3) Fill in between pair of intersections

i Find intersections

example (left edge)
m = 5/2

Xmin =3
the sequence of x values
3, 3+2/5, 3+4/5, 3+5/6=4+1/5

y 1 2 3 4

X 3 3+2/5 | 3+4/5 | 4+1/5

pixel (3,1) | (4,2) (4,3) | (5,3)

How to decide interior

Parity Fill Approach

Parity Fill = For each pixel, determine if it is
inside or outside of a given polygon.
= Approach

= from the point being tested cast a ray
in an arbitrary direction

= if the number of crossings is odd then
the point is inside

= if the number of crossings is even then
the point is outside

i Parity Fill Approach

IRt

= Edge Crossing Rules

= an upward edge includes its starting endpoint, and excludes
its final endpoint;

= a downward edge excludes its starting endpoint, and
includes its final endpoint;

= horizontal edges are excluded;
= the edge-ray intersection point must be strictly right of the
point P.

i Parity Fill Approach

= Very fragile algorithm
= Ray crosses a vertex
= Ray is coincident with an edge

= Commonly used in ECAD
= Suitable for H/W

i Winding Number Approach

A winding number is an attribute of a point with respect to a
polygon that tells us how many times the polygon encloses (or
wraps around) the point. It is an integer, greater than or equal
to 0. Regions of winding number 0 (unenclosed) are obviously
outside the polygon, and regions of winding number 1 (simply
enclosed) are obviously inside the polygon.

m Inltla”y 0

= +1: edge crossing the line
from right to left

= -1: left to right

= Use the sign of the cross product
of the line and edge vectors

= The line does not cross any vertex

How to decide interior

8

exterior

QOdd Even rule Nonzero Winding Number Rule
(a) (b)

i Span Rules

= intersection at integer coordinate

leftmost : interior + 11 | | L
rightmost: exterior
= Shared vertices
= count parity at y,.;, vertices only
=« shorten edges

= horizontal edges
= do not count vertices

A standard convention is to say that a point on a
left or bottom edge is inside, and a point on a right
or top edge is outside.

AFAFAFAF AR AR AR AF AF I E T F

i Area Filling

= Use edge coherence and the scan-line
algorithm
« ET

= Contains all the non-horizontal edges.
= Edges are sorted by their smaller y coordinates.

= AET

=« Contains edges which intersect the current scan
line.

= Edges are sorted on their x intersection values.

‘L Area Filling (Scan line method)

11 A
10 A
Q A
8 AL Er- DE
£ 7 —t—{s[z[=[{11715 2]
;% (5 A oD
- —+—={11]13] 0| 4|
< A A
3 ———[EiEai |
2 A AB BC
4 o o FEEEEEE—s [73] 2]
(0] A :-Ef xE —=
AET
i FA EF DE cD

P 9|2 0 e 9|23 eP11(10 L] e=tP{11[13] 0]

Scan line 9

Scan line 10

i Area Filling(Filling Methods)

= Pixel Adjacency

4—-connecte

LI
000
00O

Start Position

(a) (b)

8—connecte \

= Boundary-Fill Algorithm

= starting a point inside the figure and painting
the interior in a specified color or intensity.

Boundary Filling

procedure boundary_fill4(
X,y : integer starting point in region
boundaryValue value that defines boundary
newvalue : color); replacement value
var
C : color
begin
c := readPixel(x,y);
if ¢ <> boundaryValue and
C <> newValue then
begin
writePixel(x,y,newValue);
boundary_fill4(x,y-1,boundaryValue,newValue);
boundary_fill4(x,y+1,boundaryValue,newValue);
boundary_fill4(x-1,y,boundaryValue,newValue);
boundary_fill4(x+1,y,boundaryValue,newValue);
end
end;

i Boundary Filling

e There is the following problem with boundary_fill4:

ﬁm with 8-
connected

e Involve heavy duty recursion which may consume
memory and time

i Boundary Filling

Efficiency in space!
= finish the scan line

containing the
starting position

hrocess all lines
below the start line

hrocess all lines
above the start line

(b)

Filled Pixel Spans

2
00 e
1

PN
L @

) f
SPNBOBESHEOS®
1 ®se®
[[@ J
1

; 860
eeeRe008Re
: 28e8e
o0 0

1

Flood Filling

: Start a point inside the figure, replace

a specified interior color only. TeTE oix

procedure flood_fill4(
X,y . integer starting point in region
oldValue value that defines interior
newvalue : color); replacement value
begin
If readPixel(x,y) = oldValue then
begin
writePixel(x,y,newValue);
flood_fill4(x,y-1,0ldValue,newValue);

flood_fill4(x,y+1,0ldValue,newValue);
flood_fill4(x-1,y,oldValue,newValue);
flood_fill4(x+1,y,oldValue,newValue);
end
end;

i Problems of Filling Algorithm

= What happens if a vertex is 16
shared by more than one
polygon, e.g. three triangles?

= What happens if the polygon
intersects itself? 8

= What happens for a “sliver™?

e T~

= Solutions?

= Redefine what it means to be inside of a triangle
= Different routines for nasty little triangles

&

A sliver

i Patterned Lines

= Patterned line from Pto Qis not same as patterned
line from Qto P.

-—————%

o— - ——— o

= Patterns can be geometric or cosmetic
= Cosmetic: Texture applied after transformations
= Geometric: Pattern subject to transformations

e Cosmetic = Geometric

i Character, Symbols

s Stroke tables : a set of vectors which are scan
converted as lines

(Example) outline font

111]1]1]1]0]o0

moveoo o 4 6 0 0 50 % Y,
ol1|1(ofof1]1]0

draw 1 1 ol1|1|1]1]1]0]0
move 0 1 ol1f{1]ofo1]1]o0
draw 1 O ol1]1]ofol1]1]o0
move 1 1 1111]1]1]0]o0
ololo|ofofo]o]o

—_—
o]

(b)

= Bitmaps : array of 0's and 1's, scan converted as
points

i Character, Symbols

Comparison of Methods

Stroke table

Bitmap

easy to rotate

rotate by multiples of 90¢°

easy to scale

scale by powers of 2

variable length storage

fixed length storage

Scan convert lines

scan convert points

fill if polygons

draw as filled or outline

may be anti-aliased or
smoothed via curve fitting

may be pre-anti-aliased

best for linear designs

arbitrary patterns with
many colors

i Line Attributes

—_— Butt cap
e=== Round cap

E=——u Projecting square cap
=== Miter join
> Round Join
> Bevel join

i Aliasing in CG

= Digital technology can only approximate analog
signals through a process known as sampling.

= Aliaising : the distortion of information due to low-
frequency sampling (undersampling).

= Choosing an appropriate sampling rate depends on
data size restraints, need for accuracy, the cost per
sample...

= Errors caused by aliasing are called artifacts.
Common aliasing artifacts in computer graphics
include jagged profiles, disappearing or improperly
rendered fine detail, and disintegrating textures.

