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i A Simple Image Model

= Image: a 2-D light-
intensity function 7x,y)
= The value of Fat (x,y) =2

the intensity (brightness)
of the image at that point

O O<f()(,y)<00




ﬁ Digital Image Acquisition
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FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination™) source. (b) An el-
ement of a scene. (¢} Imaging svstem. (d) Projection of the scene onto the image plane. (e) Digitized image.



i Sampling & Quantization

= Sampling: partitioning xy plane into a grid
= the coordinate of the center of each grid is a pair

of elements from the Cartesian product Z x Z (Z2),
Z: set of real integers

= Where Does Sampling Occur?

= Almost all data we are dealing with is discrete
Evaluation of sampled functions at arbitrary sites
Volume rendering
Isosurface extraction

Ray tracing




i Sampling & Quantization

= Quantization: once the signal has been sampled, it
needs to be quantized to turn the samples into
numbers which we can process.
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Quantization means that we break
the full positive and negative range
of the sample value into N sections
and then code it in log2 (N) bits.



Digital Image
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image,
used toillustrate the concepts of sampling and quantization. (¢) Sampling and quantization. (d) Digital scan line.



* Sampling & Quantization

ab

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.



i Sampling & Quantization

= The digitization process requires decisions about:
= Values for N,M (where N x M: the image array)
= AND, the number of discrete gray levels, G, allowed
for each pixel.

= Usually, these quantities are integer powers of
two: N=2" , M=2™m and G=2k

= Another assumption is that the discrete levels
are equally spaced between 0 and L-1 in the
gray scale.




Examples
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FIGURE 2.20 (a) 1024 x 1024.8-bit image. (b) 512 X 512 image resampled into 1024 X 1024 pixels by row and

column duplication. (¢) through (1) 256 X 256, 128 x 128, 64 x 64, and 32 X 32 images resampled into
1024 x 1024 pixels.
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FIGURE 2.21
{Continued)
(e)—(h) Image
displayed in 16,8,
4,and 2 gray
levels. (Original
courtesy of

Dr. David

R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)




Sampling & Quantization

= If b is the number of bits required to store a
digitized image then:

« b=NxMxk (if M=N, then b=N2K)

= Storage for various values of N and k

TABLE 2.1

Number of storage bits for various values of Nand k.

Nlk 1(L=2 2(L=4 3(L=8 4(L=160 5(L =32 6(L=064 T =128 8( = 256)
32 1,024 2,048 3,072 4.096 5.120 6.144 1,168 8,192

64 4,096 8,192 12,288 16.384 20,480 24.576 28,672 32,768
128 16,354 32,768 49152 65.536 81.920 08.304 114,688 131,072
256 65,536 131,072 196,608 262,144 327.680 393216 458,752 524,288
512 262,144 524288 186,432 1.045.576 1,310,720 1.572.864 1,835,008 2,097,152
1024 1,048,576 2,097,152 3,145,728 4.194.304 5.242.880 6.291.456 7,340,032 8,388,608
2045 4,194,304 8,388,608 12582912 16777216 20971520 25165824 29369128 33,554,432
4096 16777216 33554432 50,331,648  67.108864  B3A886.080 100,663.296 117440512 134217728
8192 67105864 134217728 201,326,592 268435456 335544320 402653184 469762048 536,870,912




ﬁ Sampling & Reconstruction

Reconst uction
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i Continuous Luminosity signal

Original

scene

Luminosity

signal

Slide © Rosalee Nerheim-Wolfe



i Sampled Luminosity

Sampling at

pixel centers

Sampled

||\H|1|| signal

Slide © Rosalee Nerheim-Wolfe



i Reconstructed luminosity

Rendered

image

Luminosity
signal

Slide © Rosalee Nerheim-Wolfe



i Reconstruction artefact

Original Rendered

Jagged profiles

Slide © Rosalee Nerheim-Wolfe



* Staircasing or Jaggies

The raster aliasing effect — removal is called
antialiasing

Images by Don Mitchell



i Can be a serious problem...

Original Rendered

Loss of detail

Slide © Rosalee Nerheim-Wolfe



Artifacts
i - Disintegrating textures




i Blurring does not work well.

Removed the jaggi/es, but also all the detail !
— Reduction in resolution



‘L Aliasing PROBLEM

Slightly aliased reconstruction

Original signal Poor sampling rate Severely aliased reconstruction




i How is antialiasing done?

= We need some mathematical tools to
= Analyse the sampling and reconstruction
= Find an optimum solution

= Process of sampling and reconstruction is
best understood in frequency domain

= Use Fourier transform to switch between time and
frequency domains

= Function in time domain: signal
=« Function in frequency domain: spectrum



i Time and Frequency

= [wo independent windows to see one signal

High

Frequency is measured in hertz (Hz) (the number of cycles of

change per second).
= A given bandwidth is the difference in hertz between the highest

and the lowest frequency.




Time and Frequency

= Any analog signal consists of components at various
frequencies.

= The simplest case is the sine wave, in which all the signal
energy is concentrated at one frequency.

= Analog signals usually have complex waveforms, with
components at many frequencies.

= All non-periodic signals can be represented as a summation
of sin’s and cos’s of all freuencies.

£ (x) = i [ Flw)e“do

'™ = coS X + i Sin aX
F(w)=[ f(x)e " dx



i Time and Frequency

= [ransform: rule that tells how to
obtain a function F(/) from another
function 7(¢)
= Reveal important properties of 7
= More compact representation of
s Fourier transform, DCT, wavelet



‘L Time and Frequency

« example : (1) =sin(2zft) + %sin(Zﬂ(?)f)t)
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‘L Time and Frequency

1, —-al2<t<al?

= example : f(t) = 0, elsewhere
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i Time and Frequency

1, —-al2<t<al?

= example : f(t) = 0, elsewhere
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i Time and Frequency

1, —-al2<t<al2
0, elsewhere

= example : f(t) = {

:




‘L Time and Frequency

1, —al2<t<al?
0, elsewhere

= example : f(t) = {

. AZ%sin(Zﬂkt)
k=1

[T




i Fourier Transform

= Many functions 7-R = R can be written as sums
of sine (and cosine) waves that are integer
multiple of fundamental (basis) frequencies

f(x)=> a,sin(ex+6,)

w = 27 - frequency Is angular velocity
a_1samplitude

Q

@ 1s phase shift

w




i Fourier Transform

= Moving to complex numbers simplifies notation:
e™'™ = CoS wX —iSin wxX

F(w) = j“; f (x)e “*dx

A

>

frequency = f  __- o f  frequency

f(x) = % [ Fw)e“do

inverse Fourier transform



i The Fourier Transform of a Cosine

1

s [
"

-l a

Example: cos(y) = [exp(i) + exp(-i)]

Fleos(2max) (@) = %J. exp(—2micx)[exp(2mi ax) + exp(—2m ox) Jdx

1

=3 j [exp@mi(a —w)x)+exp(—2mix(e + @)x) Jdx = {
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The Fourier Transform of a Box

‘L Function
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The Fourier Transform of a Box
Function
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ourier Transform
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2D Fourier Transform

Images are 2D, discrete functions and FT will only contain
discrete frequencies in quantized amounts

Numerical algorithm: Fast Fourier Transform (FFT) computes
discrete Fourier transforms

1 3 5 7

spatial domain

Every pixel of the Fourier image is a spatial frequency value,
the magnitude of that value is encoded by the brightness of
the pixel.

There is also a "DC term" corresRonding to zero frequency,
that represents the average brightness across the whole

image




i Fourier Transform

1 1+3 1+3+5 1+3+5+7

spatial domain

frequency
domain

Bnechtness Imace Fomner transform
t—J

B S High frequency!!




‘L 2D Fourier Transform

= What F(u, v) means in spatial \
domain? \
N

= There is a signal S with \/u2 +V° \
frequency

= The orientation of S is tan-1(v/u)

= The weight of S in the whole
image is the value of F(u, v)

spatial domain

0
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2D Fourier Transform

i - Examples

spatial domain frequency domain



2D Fourier Transform

* - Examples
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i 2D Fourier Filtering

Low pass filter High pass filter



‘L 2D Fourier Filtering

Image enhancement Noise removal



i Convolution

= One of the most common methods for filtering a
function is called convolution.

= In 1D, convolution is defined as:
f()®g(x)= | f(t)g(x—t)dt

= [he convolution operator is a generalized formula to
express weighted averaging of an input signal Fand
a weight function or filter kernel g
Qualitatively: Slide the filter to each position, x, then sum
up the function multiplied by the filter at that position
= One important application of convolution is
reconstructing sampled signals



i Convolution

Q0

f (%) ® (%)= [ F()g(x, —t)dt

—00

Ty /i i

-

A

o f fxg‘




i Convolution

= Green curve is the convolution of the Red curve,
f(x), and the Blue curve, g(x).

= The grey region indicates the product f(t)g(t — x)

3 s s oo -,
. : P,

N P S
-2 -1.5 -1 -0.5 0.5 1 1.5 2



i Convolution Theorem

= Convolution theorem: Convolution in the spatial
domain is equivalent to multiplication in the
frequency domain.

f®g=F-G

= Symmetric theorem: Convolution in the frequency
domain is equivalent to multiplication in the spatial
domain.

f-g=F&®H



i Delta Function

= The impulse (Dirac delta function), 0(Xx), is a
handy tool for sampling theory.

= It has zero width, infinite height, and unit area.

0 x=0

5(X):ia =0 o (X)

T5(x)dx:1

s Fourier transform of the delta function is a constant



i Delta Function

= For sampling, the delta function has two important
properties.

« Sifting: f(x)S(x—a) = f (a)5(x—a)

M y ‘5(x—a) _ f(a)5(x—a)
. > T » X

| X a a

= Shifting: T(X)®o(x—a)=f(x—a)

| f(x—a)
) ® > — i

X a a X




i Comb Function

= Comb function is an infinite series of equidistant

Dirac impulses 0
¢, (X) = > S(x—KT)

K =—0o0

I O O
\_v_/

T

s Fourier transform of the comb function takes the
same form:

T
/T



i Sampling Function

= The Fourier transform of the sampling function(e.q.,
comb function) is itself a sampling function.
= The sample spacing is the inverse.

S; (X) & S% (@)

= Remember convolution in the spatial domain is the
same as multiplication in the frequency domain



i Sampling and Reconstruction
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Sampling and Reconstruction

T

|

) X
Reconstruction

filtering




i Reconstruction

= [0 reconstruct, we must restore the original
spectrum

= That can be done by multiplying by a filter like
square pulse

AR -

= Multiplying by a square pulse in the frequency domain
is the same as convolving with a s/nc function in the
spatial domain




sin(7zx
sinc(X) = ()
//‘\\//\\//'\\
Spatial: sinc Frequency: box

Perfect low-pass filter

Cuts off all frequencies above a threshold
Oscillates to infinity: need too many samples
We use other functions similar to a sinc to filter



‘L Box Filter

Smooths out function by
averaging neighbors

Keeps low frequencies and
reduces high frequencies
(low-pass filter)

Equally weights all samples
In frequency domain,
contains sidelobes to infinity

[V S N w—t




Lousy for steadily varying signals, for instance, sin(x)




_rl if |xkT, TeR*
bOX(X) — L0, elsewhere

Spatial: Box Frequency: sinc



i Tent Filter
X

tent,(x) =1-— if [X <o
0
=0 otherwise

NI

—Q @

2z 27

Spatial: Tent _
Frequency: sinc squared



i Tent Filter

= Acts as linear interpolation filter
= Reduces high frequencies more
= Weights center sample more

= Other samples weighted linearly

weight =0.3-x,+0.7 - X,







i Tent Filter

= Reconstructing a function using linear interpolation.

= the Bartlett filter not only does not separate the original
spectrum from the replications, it also aliases high-
frequency components into the reconstruction due to its

infinite support.

(fe, )= i, * {Eo, iz




i Gaussian Filter

VANEEEVIIN

Spatial: Gaussian Frequency: Gaussian

= Reduces high frequences even more
= No sharp edges like in box, tent




i Qualitative Filters

F G

H
[\//I Low-pass
A ‘\High-pass
) Band-pass




i Filtering in spatial domain

= Work in the discrete spatial domain
= Convert the filter into a matrix, the filter mask

= Move the matrix over each point in the image,

multiply the entries by the pixels below, then
sum

= Eg. 3x3 box filter 11 1
= averages =11 1 1
111




i Filtering in Spatial domain

10l 11[10/ 0o [1 x | XIx| x|x |x
o[10] 14 1 Jo |1 % |10 X
0
r 10/ 91002 |1 X | | X
11/10|9 10| 9 |11 X| | X
ol10[11] 9 [99]11 F || X
10| 9| 9] 11]10[10] |1 |1 [1] [X|X]|X]X|X |X
gl 111 11
1|1

/ 1
1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) =
1/9.(90) = 10



The Nyquist Theorem

When we can reconstruct the original
continuous-time signal from its samples ?

= Thereis a minimum frequency

with which functions must be / N\ / N\
sampled — the Nyguist frequency N/ N/
= Twice the maximum frequency 1 T T t 1 T T T T

present in the signal
= Example: Human ear hears .

frequencies up to 20 kHz — CD
sample rate is 44.1 kHz.

= Not all sampling schemes allow T T T T TT T T T
reconstruction

= eg: Sampling with a box

POINT SAMPLING BEYOND THE NYQUIST LIMIT



The Nyquist Theorem

- Example 1

Frequency of original signal: 0.5 Hz

Sampling frequency: 0.7 Hz

sample points x[n]
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~original signal x,
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Sampling freq. < 2*bandwidth

The original wave cannot be recovered.




The Nyquist Theorem
- Example 2

Frequency of original signal: 0.5 Hz
Sampling frequency: 1.0 Hz

sample points X[n]

./ _;" _\ )  original signal x, N
SO e e v R P D!
)/ (l_,l": || Tl / | III \ “"‘él *' | | l\l | T\ lﬂh
S AR EE RS e
o \'! e \4 \.. \;b o l | o \I \\i \I
_O‘Bf \. )j \-l _.’f H ||'III I\., Jf 5. f __:z ¥ ll*. / I'ni ,"’ \ / llllH /'
14 - / v l v V) /
Sampling freq. = 2*bandwidth

The original wave may be recovered.



i Sources of Aliasing

= Non-bandlimited signal

= Low sampling rate (below Nyquist)

A PaV.VaN

= Non perfect reconstruction




i Prefiltering

= Before sampling the image, use a low-pass filter
to eliminate frequencies above the Nyquist limit

= This blurs the image, but ensures that no high
frequencies will be misrepresented as low
frequencies

=« Determines pixel intensity based on the amount
that a particular pixel is covered by an object in
the scene. Determining such areas requires
extensive calculations and integral approximations




‘L Basis for Prefiltering

Treat a pixel as an $
area

2. Compute weighted
amount of object
Overlap 0123455?%&1:311

L T o R P R
1T T 1T 1

What weighting _

function should we : }
use? _ A\
How in volume %
rendering?

Subvolume Wy



‘L Prefiltering - example

Prefiltering




i Postfiltering

= Postfiltering, also known as supersampling

= Sample image at higher resolution than final image,
then “average down”

= "Average down” means multiply by low-pass function
in frequency domain

= Doesn't eliminate aliasing, just shifts the Nyquist limit
higher

=« Cannot fix some scenes (e.g., checkerboard)

« Badly inflates storage requirements
= Relatively easy and often works all right in practice
s (Can be added to a standard renderer ! A-buffer



i Postfiltering

= The two steps in the postfiltering process are:

1.  Sample the scene at n times the display
resolution.

2. The color of each pixel in the rendered
image will be an average of several samples.

= A filter provides the weights used to compute
the average.




Sampling in the postfiltering
method

= Supersampling from a 4x3 image.

= Compute the weighted average of many
samples (9 samples for each pixel)

= Sampling can be done randomly or regularly.
The method of perturbing the sample
positions is known as "jittering."

1]

Jittered




SX3 supersampling

3Ix3 unweighted filter

Antialiasing

No antialiasing

SX3 supersampling
5x5 weighted filter

http.//www.siggraph.org/education/materials/HyperGraphy/aliasing



Antialiasing in the
continuous domain

= Problem with Prefiltering:

= Sampling and image generation inextricably linked in most
renderers

= Z-buffer algorithm
= Ray tracing

= Still, some approaches try to approximate the effect
of convolution in the continuous domain - splatting

P (Cone Weighting Function W

\




Antialiasing in the
‘L continuous domain
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Antialiasing in the
i continuous domain

= The good news

» Exact polygon coverage of the filter kernel
can be evaluated

s What does this entail?

= Clipping
=« Hidden surface determination

7 RN
’.
4 }
<A A

Cilter Kernel




Antialiasing in the
continuous domain

= The bad news
= Evaluating coverage is very expensive

= The intensity variation is too complex to
integrate over the area of the filter
Q: Why does intensity make it harder?
A: Because polygons might not be flat- shaded
Q: How bad a problem is this?

A: Intensity varies slowly within a pixel, so shape

changes are more important

Filter Kernel



‘L Catmull’s Algorithm

= Find fragment
areas

= Multiply by
fragment colors

= Sum for final
pixel color




i Catmull’s Algorithm

= First real attempt to filter in continuous domain

= Very expensive
= Clipping polygons to fragments
= Sorting polygon fragments by depth
(What's wrong with this as a hidden surface algorithm?)

= Equates to box filter (/s that good?)




i A-Buffer

= Accumulation buffer

= Idea: approximate continuous filtering by subpixel
sampling

= Summing areas now becomes simple

= Commonly used in software to generate high
quality renderings but not in real-time

" g




i A-Buffer

s Z-buffer: one visible surface per pixe/
s A-buffer: linked list of surfaces

. | Z2=0r.0.b

ol "'h-__l

g

| z<0 I

surf & | e——=suif B | ...



= Supersampling: sample
at higher resolution,
then filter down

= Pros:
= Conceptually simple

= Easy to retrofit existing
renderers

= Works well most of the
time

= Cons:

Hi

= Doesn’t eliminate

aliasing, just shifts
Nyquist limit upwards

i Antialiasing Strategies

= A-Buffer: approximate
pre-filtering of continuous
signal by sampling
= Pros:

= Integrating with scan-line
renderer keeps storage
costs low

= Can be efficiently
implemented with clever
bitwise operations

= Cons:

= Still basically a super-
sampling approach

= Doesn't integrate with ray-
tracing



i What you learn?

= Sampling

= Transform (signal < frequency)
= Filters

= Aliasing & Anti-alising

= Nyquist Limit

= Why jagged effects in CG image?
= How you solve that?




