Two-Dimensional

!'_ Viewing

Chapter 6
Intro. to Computer Graphics
Spring 2008, Y. G. Shin

i Viewing Pipeline

Viewing and
Projection Coordinates

~ 1

/ \ ! Video Monitor

Modeling
Coordinates |
|
/ Normalized 1 Plotter
World Coordinates
v Coordinates
p,
Other Output
) Device

Coordinates

Two-Dimensional Viewing

= Two dimensional viewing transformation

= From world coordinate scene description to
device (screen) coordinates

Clipping Window

Viewport
Yomax [~ r—- T TTTT— 1

Yoin— FmmmTm——————

World Coordinates Viewport Coordinates

Normalization and Viewport
Transformation

= World coordinate clipping window
= Normalization square: usually [-1,1]x[-1,1]
= Device coordinate viewport

. . Normalization Screen
yw 4 - 9 1_1p_pln_g_W_1 Ild_ofv - (x norms Y norm) 1 Square Viewpor t

max |]| \(_] YVmax T r-——=—7"7>"7"77
' ® | e ' ° :
| (xw, yw) . | | | \ |
| | —1i 1 Yomin T == 7=d—=—=

YWpipn T —————————————— T (xv, yv)
I I -1 I I

XWhin xwrnax X vmin xvmax
Figure 6-8

A point (xw yw) in a clipping window is mapped to a normalized coordinate
position (Xporm» Ynorm)» then to a screen-coordinate position (xv, yv) in

a viewport. Objects are clipped against the normalization square before

the transformation to viewport coordinates.

i Clipping

= Remove portion of line outside viewport or
screen boundaries

= Two approaches:

= Clip during scan conversion: per-pixel bounds check,
or span endpoint tests.

= Clip analytically, then scan-convert the modified
primitive.

i Two-Dimensional Clipping

Point clipping trivial
Line clipping

= Cohen-Sutherland

= Cyrus-beck

= Liang-Barsky
Fill-area clipping

= Sutherland-Hodgeman
= Weliler-Atherton
Curve clipping

Text clipping

i Line Clipping

= Basic calculations:
= Is an endpoint inside or outside the clip rectangle?

= Find the point of intersection, If any, between a line
segment and an edge of the clip rectangle.

\ v'Both endpoints inside:
/ trivial accept
/ v'One inside: find

Intersection and clip
v'Both outside: either
clip or reject

Cohen-Sutherland
i Line-Clipping Algorithm

1001 | 1000 | 1010

View port

0001 | 0000 | 0010
0101‘ 0100 ‘OHO

< Region code for each endpoint >

above | below | right left
Bit 4 3 2 1

Cohen-Sutherland
i Line-Clipping Algorithm

= Trivially accepted
If (both region codes = 0000)
= Trivially rejected
If (AND of region codes = 0000)

= Otherwise, divide line into two segments
= test intersection edges in a fixed order.
(e.g., top-to-bottom, right-to-left)

Cohen-Sutherland
i Line-Clipping Algorithm

* fixed order testing and clipping cause
needless clipping (external intersection)

_____ [B R 4 !
A H
Clip iy e G
rectangle

Cohen-Sutherland
i Line-Clipping Algorithm

= Midpoint Subdivision for locating
Intersections

1. trivial accept/reject test

2. midpoint subdivision:

Xm = (Xp + X)/2, Y = (y1 + Y2)/2
(one addition and one shift)

3. repeat step 1 with two halves of line
= good for hardware implementation

Cohen-Sutherland
i Line-Clipping Algorithm

= When this Is good
= If it can trivially reject most cases
= Works well if a window is large w.r.t. to data
= Works well if a window Is small w.r.t. to data
= I.e., it works well in extreme cases
= Good for hardware implementation

Parametric Line Clipping
i (Cyrus-beck Technique)

= Use a parametric line eguation
Pt)=P,+t(P-P), 0<t<1
= Reduce the number of calculating

Intersections by simple comparisons of
parameter .

Parametric Line Clipping
(Cyrus-beck Technique)

Algorithm
= For each edge E. of the clip region

= N, : outward normal of E

Outside of clip region | Inside of clip rectangle
Edge E;
FE:

‘ P;(t) - Pg,
P
N; * [P(t)— Pg,] <0

Po A&~ | NP -Pgl=0

N« [P(t) = Pg]>0

L

N;

Parametric Line Clipping
i (Cyrus-beck Technique)

= Choose an arbitrary point F. on edge E; and
consider three vectors P(t)— P
—
N; o (P(t) - P) <0< a point in the side halfplane
N; e (P(t) — P;) =0 <> a point on the line containing the edge
N; e (P(t) - P;) > 0 <> a point in the outside halfplane

Outside of clip region | Inside of g!ip rectangle
Edge E;

PE;' ry

Pi'(tJ_PEf

N; * [P(1) - Pg,]1 <0

N« [P(t) - Pg1=0
N,--[P(r]+PEF.]>0

N;

Parametric Line Clipping
i (Cyrus-beck Technique)

= Solve for the value of f at the intersection
of P,P, with the edge:

N - [P(t) - Pe] = 0.
P(t) = Py + t(P, - Po) and let D = (P, - Py),

T h e n Outside of clip region | Inside of q_l_ip rectangle
N . [P — P] Eng E,'
t _ | 0 El Pe #
— ! E;

o Ni) D N, * [P(f) — Pg,1 < 0

b
N.=0 Fo & “N; [P - Pg] =0
|)

N; * [P(t) - Pg;]> 0
D =0 (that is P, = P,), 0

N: - D # 0 (if not, no intersection)

Parametric Line Clipping
(Cyrus-beck Technique)

= Given the four values of t for a line segment,
determine which pair of s are internal
Intersections.

If t z [0,1] then discard

else choose a (PE, PL) pair
that defines the
clipped line.

= PE(potentially entering) intersection:

If moving from P, to P, causes us to cross an edge to
enter the edge's inside half plane;

Parametric Line Clipping
i (Cyrus-beck Technique)

= PL(potentially leaving) intersection:

= if moving from P, to P, causes us to leave the
edge's inside half plane.

l.e., N.ePP, <0 =PE
N.ePP, >0 =PL

= Intersections can be categorized!
= Inside the clip rectangle (T¢,T),)
= T: select PE with largest t value > 0

= T,: select PL with the smallest T value < 1.

Parametric Line Clipping
i (Cyrus-beck Technique)

— — ——
—_—— o == —

I
| ctangle
i L rectang ‘

= This is an efficient algorithm when many line
segments need to be clipped

= Can be extended easily to convex polygon windows

i Liang-Barsky line clipping

= The ideas for clipping line of Liang-Barsky and
Cyrus-Beck are the same. The only difference is
Liang-Barsky algorithm has been optimized for
an upright rectangular clip window.

= Finds the appropriate end points with more
efficient computations.

i Liang-Barsky line clipping
Let PQ be the line

which we want to study

Parametric equation of
the line segment

X = X1+ (X2—xDt = x1+dxxt
y=Yyl+(y2-yDt = yl+dyxt

t=0= P(x1 vyl
t=1=Q(x2,y2)

=Qandt =1

min max

i Liang-Barsky Line Clipping

1. Sett

2. Calculate the values of t, t5 t, tg,

L R
tr /

/

Top edge:y =1

vitt*(y-v) =T

Ha T Wy

Bottom edge: vy = B

vi+t*(yv;-v) = B

E"_.}H
He T W

tE —

Left edge: x = L

X Ft*(x;-x)) = L

L—x

Kz ™ &

tp =

Right edge: x = R

X T+ t$(}ig - Kl::l = R

RE-x

Az T4

tR —

i Liang-Barsky Line Clipping

s Ift<t, ort>t_,, Ignore it and go to the

next edge. N

= Otherwise classify the t value as entering or
exiting value (using the inner product to

classify) /

= Let PQ be the line and N is normal vector
» If Ne(Q-P)<0, the parameter fis entering

= IfNe(Q-P)>0, the parameter tis exiting

= If £ Is entering value, set ¢, = ¢, If £is exiting
valueset ¢, = ¢

i Liang-Barsky Line Clipping

3. If t. <t .. then draw a line

min max

from (x1+dxxt ., yl+dyxt .)

to (x1+dxxt__ ,yl+dyxt

max)

Q(x2,y2) th

i Clipping

= Clipping rotated windows, circles

= trivial acceptance/rejection test with respect to
bounding rectangle of the window

= Line clipping using nonrectangular clip
windows

= extend Cyrus-Beck algorithm

Polygon clipping

= Sutherland-Hodgeman Algorithm
= Clip against 4 infinite clip edge in succession

Original
Polygon

Clip Clip
Bottom Top

Sutherland-Hodgeman Algorithm

= Accept a series of vertices (polygon) and outputs
another series of vertices

= Four possible outputs

L I vy, Vir Ty, Vv] !

| | | Tl Vet s | |

| I | I | I | |

| I [I | | | |

I | I | | I | I

| I | I | | | |
./I+/’. : I : | : : :
V2| I Vll I | |

v, Vi] I B A

(1) (2) (3) (4)
out = 1n In —> 1n 1N =——3= Out out —> out

Output: V,V, Output: V, Output: V{ Output: none

i Sutherland-Hodgeman Algorithm

= The algorithm correctly clips convex polygons,
but may display extraneous lines for concave
polygons.

s How clip?

i How to correctly clip

[Way 1] Split the concave polygon into two
or more convex polygons and process each

convex polygon separate

[Way I1] Modify the algorit
final vertex list for multip

Y.
nm to check the

e vertex points

along any clip window boundary and
correctly join pairs of vertices.

[Way I11] Use a more general polygon

clipper

i Clipping concave polygons

= Split the concave polygon into two or more
convex polygons and process each convex
polygon separately.

= vector method for splitting concave polygons

—> calculate edge-vector cross products in a
counterclockwise order. If any z component turns out to

be negative, the polygon is concave.

‘L Weller-Atherton Polygon Clipping

~or an outside-to-inside pair of vertices, follow the
nolygon boundary.

= For an inside-to-outside pair of vertices, follow the
window boundary in a clockwise direction.

‘-L Weller-Atherton Polygon Clipping

= Polygon clipping using nonrectangular
polygon clip windows

Polygon
Fill Area

Chppmg ~ o

Window \ ’
‘- —

Figure 6-30

Fill Area

Clipping a polygon fill area against a concave-polygon
clipping window using the Weiler- Atherton algorithm.

i Texture Clipping

all-or-none text clipping : Using boundary box
for the entire text

all-or-none character clipping : Using boundary
box for each individual
clip individual characters

vector : clip line segments
bitmap : clip individual pixels

b TRING 1

________ o

|STRING 2. %

Before Clipping
Before Clipping
STRING 1
TRING 3
STRING 2 STRING 4

After Clipping After Clipping After Clipping

What we have got!

