
Two-DimensionalTwo Dimensional
ViewingViewing

Chapter 6
Intro. to Computer Graphics
Spring 2008, Y. G. Shin

Viewing Pipelinee g pe e

Two-Dimensional Viewingo e s o a e g

Two dimensional viewing transformationTwo dimensional viewing transformation
From world coordinate scene description to
d i () di tdevice (screen) coordinates

Normalization and ViewportNormalization and Viewport
TransformationTransformation

World coordinate clipping windowWorld coordinate clipping window
Normalization square: usually [-1,1]x[-1,1]
D i di t i tDevice coordinate viewport

ClippingC pp g

Remove portion of line outside viewport orRemove portion of line outside viewport or
screen boundaries
Two approaches:

Clip during scan conversion: per-pixel bounds check,Clip during scan conversion: per pixel bounds check,
or span endpoint tests.
Clip analytically then scan-convert the modifiedClip analytically, then scan-convert the modified
primitive.

Two-Dimensional Clippingo e s o a C pp g
Point clipping – trivialPoint clipping trivial
Line clipping

Cohen SutherlandCohen-Sutherland
Cyrus-beck
Liang BarskyLiang-Barsky

Fill-area clipping
S th l d H dSutherland-Hodgeman
Weiler-Atherton

C li iCurve clipping
Text clipping

Line Clippinge C pp g

Basic calculations:Basic calculations:
Is an endpoint inside or outside the clip rectangle?
Fi d th i t f i t ti if b t liFind the point of intersection, if any, between a line
segment and an edge of the clip rectangle.

Both endpoints inside:
trivial accept

One inside: find
intersection and clipp

Both outside: either
clip or rejectclip or reject

Cohen-SutherlandCohen-Sutherland
Line-Clipping AlgorithmLine Clipping Algorithm

10001001 1010

00000001 0010

View port

0101 0100 0110

< Region code for each endpoint >

above below right left

Bit 4 3 2 1Bit 4 3 2 1

Cohen-SutherlandCohen-Sutherland
Line-Clipping AlgorithmLine Clipping Algorithm

Trivially acceptedTrivially accepted
if (both region codes = 0000)

ll dTrivially rejected
if (AND of region codes ≠ 0000)(g)

Otherwise, divide line into two segments
test intersection edges in a fixed ordertest intersection edges in a fixed order.
(e.g., top-to-bottom, right-to-left)

Cohen-SutherlandCohen-Sutherland
Line-Clipping AlgorithmLine Clipping Algorithm

* fixed order testing and clipping cause* fixed order testing and clipping cause
needless clipping (external intersection)

Cohen-SutherlandCohen-Sutherland
Line-Clipping AlgorithmLine Clipping Algorithm

Midpoint Subdivision for locatingMidpoint Subdivision for locating
intersections
1. trivial accept/reject test
2. midpoint subdivision:

xm = (x1 + x2)/2, ym = (y1 + y2)/2
(one addition and one shift)

3. repeat step 1 with two halves of line
⇒ good for hardware implementation⇒ good for hardware implementation

Cohen-SutherlandCohen-Sutherland
Line-Clipping AlgorithmLine Clipping Algorithm

When this is goodWhen this is good
If it can trivially reject most cases
Works well if a window is large w.r.t. to data
Works well if a window is small w.r.t. to datao s e a do s s a t to data
i.e., it works well in extreme cases
Good for hardware implementationGood for hardware implementation

Parametric Line ClippingParametric Line Clipping
(Cyrus-beck Technique)

Use a parametric line equation

(Cyrus beck Technique)

Use a parametric line equation

10),()(010 ≤≤−+= tPPtPtP

Reduce the number of calculating

10),()(010 ≤≤+ tPPtPtP

educe t e u be o ca cu at g
intersections by simple comparisons of
parameter tparameter t.

Parametric Line ClippingParametric Line Clipping
(Cyrus-beck Technique)(Cyrus beck Technique)

Algorithmg
For each edge of the clip region

: outward normal ofN
iE

E: outward normal of iN iE

Parametric Line ClippingParametric Line Clipping
(Cyrus-beck Technique)

Choose an arbitrary point on edge and

(Cyrus beck Technique)

P EChoose an arbitrary point on edge and
consider three vectors

iEPtP −)(
iEP iE

⇒
halfplane side in thepoint a 0))((⇔<−•

iEi PtPN
i

edge thecontaining line on thepoint a 0))((⇔=−•
iEi PtPN

halfplaneoutsidein thepointa0))((⇔>−• EPtPN halfplaneoutsidein thepoint a0))((⇔>•
iEi PtPN

Parametric Line ClippingParametric Line Clipping
(Cyrus-beck Technique)(Cyrus beck Technique)

Solve for the value of t at the intersectionSolve for the value of t at the intersection
of P0P1 with the edge:
Ni · [P(t) - PEi] = 0.

P(t) = P0 + t(P1 - P0) and let D = (P1 - P0),() 0 (1 0) (1 0),
Then

PPNt Eii −⋅][0

N 0

DN
t

i

Eii

⋅−
=

][0

Ni ≠ 0,
D ≠ 0 (that is P0 ≠ P1),
Ni · D ≠ 0 (if not, no intersection)

Parametric Line ClippingParametric Line Clipping
(Cyrus-beck Technique)(Cyrus beck Technique)

Given the four values of t for a line segmentGiven the four values of t for a line segment,
determine which pair of t's are internal
intersections.intersections.

If t ∉ [0,1] then discard
else choose a (PE PL) pairelse choose a (PE, PL) pair
that defines the
clipped lineclipped line.

PE(potentially entering) intersection:(p y g)

if moving from P0 to P1 causes us to cross an edge to
enter the edge's inside half plane;enter the edge s inside half plane;

Parametric Line ClippingParametric Line Clipping
(Cyrus-beck Technique)(Cyrus beck Technique)

PL(potentially leaving) intersection:PL(potentially leaving) intersection:
if moving from P0 to P1 causes us to leave the
edge's inside half plane.g p

PE 0 i.e., 10 ⇒<• PPNi

PL 010 ⇒>• PPNi

Intersections can be categorized!
Inside the clip rectangle (TE,TL)p g (E, L)

TE: select PE with largest t value ≥ 0

T : select PL with the smallest t value ≤ 1TL: select PL with the smallest t value ≤ 1.

Parametric Line ClippingParametric Line Clipping
(Cyrus-beck Technique)(Cyrus beck Technique)

Thi i ffi i t l ith h liThis is an efficient algorithm when many line
segments need to be clipped
C b d d il l i dCan be extended easily to convex polygon windows

Liang-Barsky line clippinga g a s y e pp g
The ideas for clipping line of Liang-Barsky andThe ideas for clipping line of Liang Barsky and
Cyrus-Beck are the same. The only difference is
Liang-Barsky algorithm has been optimized forLiang Barsky algorithm has been optimized for
an upright rectangular clip window.
Finds the appropriate end points with moreFinds the appropriate end points with more
efficient computations.

Liang-Barsky line clippinga g a s y e pp g
Let PQ be the line Q
which we want to study

Parametric equation ofParametric equation of
the line segment

Q(x2,y2)

t

tR

tdxxtxxxx ×+=−+= 1)12(1
tdt ×++ 1)12(1P(x1 y1)

tT

tL tdyytyyyy ×+=−+= 1)12(1P(x1,y1)

tB

tL

)2,2(1
)1,1(0

yxQt
yxPt

⇒=
⇒=

Liang-Barsky Line ClippingLiang Barsky Line Clipping
1. Set tmin = 0 and tmax = 1min max

2. Calculate the values of tT, tB, tL, tR,

RL

T

RL

tT

BB
tB

Liang-Barsky Line Clipping
If t < tmin or t > tmax, ignore it and go to the

Liang Barsky Line Clipping

min max, g g
next edge.

Otherwise classify the t value as entering or
N

Otherwise classify the t value as entering or
exiting value (using the inner product to
classify)

tT

classify)

Let PQ be the line and N is normal vector tR
If , the parameter t is entering

If , the parameter t is exiting0)(>−• PQN
0)(≤−• PQN

R

If , the parameter t is exiting

If t is entering value, set tmin = t, if t is exiting
value set t t

0)(>PQN

value set tmax = t

Liang-Barsky Line Clippinga g a s y e C pp g
3 If t < t then draw a line3. If tmin < tmax then draw a line

)11(
)1,1(from minmin

dd
tdyytdxx ×+×+
)1,1(to maxmax tdyytdxx ×+×+

Q(x2,y2) tR

tT

tP(x1,y1)

t

tL

tB

ClippingC pp g

Clipping rotated windows circlesClipping rotated windows, circles
trivial acceptance/rejection test with respect to
bo nding ectangle of the indobounding rectangle of the window

Line clipping using nonrectangular clip
windows

extend Cyrus-Beck algorithmextend Cyrus Beck algorithm

Polygon clippingo ygo pp g
Sutherland-Hodgeman AlgorithmSutherland Hodgeman Algorithm

clip against 4 infinite clip edge in succession

Sutherland-Hodgeman AlgorithmSutherland Hodgeman Algorithm

Accept a series of vertices (polygon) and outputsAccept a series of vertices (polygon) and outputs
another series of vertices
Fo possible o tp tsFour possible outputs

Sutherland-Hodgeman AlgorithmSutherland Hodgeman Algorithm

The algorithm correctly clips convex polygonsThe algorithm correctly clips convex polygons,
but may display extraneous lines for concave
polygonspolygons.

How clip?

How to correctly clipo o o e y p

[Way I] Split the concave polygon into two
or more convex polygons and process each
convex polygon separately.

[Way II] Modify the algorithm to check the
final vertex list for multiple vertex points
along any clip window boundary and
correctly join pairs of vertices.

[Way III] Use a more general polygon
clipper

Clipping concave polygonsC pp g o a e po ygo s
Split the concave polygon into two or more p p yg
convex polygons and process each convex
polygon separatelypolygon separately.

vector method for splitting concave polygons
⇒ calculate edge vector cross products in a⇒ calculate edge-vector cross products in a

counterclockwise order. If any z component turns out to
be negative, the polygon is concave.be negative, the polygon is concave.

Weiler-Atherton Polygon ClippingWeiler Atherton Polygon Clipping
For an outside-to-inside pair of vertices, follow the p ,
polygon boundary.
For an inside-to-outside pair of vertices, follow theFor an inside to outside pair of vertices, follow the
window boundary in a clockwise direction.

Weiler-Atherton Polygon ClippingWeiler Atherton Polygon Clipping

Polygon clipping using nonrectangularPolygon clipping using nonrectangular
polygon clip windows

Texture ClippingTexture Clipping
1. all-or-none text clipping : Using boundary box pp g g y

for the entire text
2. all-or-none character clipping : Using boundary

box for each individual
3. clip individual characters

vector : clip line segments
bitmap : clip individual pixels

What we have got!g

