Three-Dimensional Viewing

Chap 7, 2008 Spring
Yeong Gil Shin

Viewing Pipeline

Rendering

"Create a picture (in a synthetic camera)"

- Specification of projection type
- Specification of viewing parameters:
- viewer's eye, viewing plane (viewing coordinates)
- Clipping in 3D: window, view volume
- Projection : the transformation of points from a coordinate system in n dimensions to a coordinate system in m dimensions where $m<n$
- Display: view port

General 3D Viewing Pipeline

- Modeling coordinates (MC)
- World coordinates (WC)
- Viewing coordinates (VC) - VRC, camera position
- Projection coordinates (PC) - window, projection type
- Normalized coordinates (NC)
- Device coordinates (DC) - view port in a screen

Projections

- Projection coordinate system:
- left-handed - Core, DirectX
- why? - screen coordinate system is left-handed
- right-handed - GKS, PHIGS, OpenGL, DirectX
- Projection plane (view plane): viewing surface where objects are projected.

Viewing-Coordinate Parameters

- View reference point (VRP)
- The viewing origin in WC: $\mathbf{P}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
- Eye position, camera position
- View-plane (Projection plane)
- Locates on $z_{\text {view }}$ axis : $z_{v p}$
- Perpendicular to $z_{\text {view }}$
- Viewing Coordinate : uvn
- Defined by $\mathrm{P}_{0}, \mathrm{~N}, \mathrm{VUP}$

Viewing-Coordinate Parameters

- How we specify a view plane normal vector \mathbf{N} [Way I] The origin of WC to a selected point position [Way II] The direction from a reference point $\mathrm{P}_{\text {ref }}$ to the viewing origin: $\mathbf{N}=\mathbf{P}_{\mathbf{0}}-\mathbf{P}_{\text {ref }}$ $P_{\text {ref }}$: look-at point Viewing direction: -N

Viewing-Coordinate Parameters

- View-up vector: VUP
- Specified in the world coordinates
- Used to establish the positive direction for the $y_{\text {view }}$ axis
- VUP should be perpendicular to \mathbf{N}, but it can be difficult to a direction for VUP that is precisely perpendicular to \mathbf{N}

Viewing-Coordinate Reference Frame (VRC)

- The camera orientation is determined by viewing reference frame $\mathbf{x}_{\text {view }}, \mathbf{y}_{\text {view }}, \mathbf{z}_{\text {view }}$ (or $\mathbf{u v n}$)
- The origin of the viewing reference frame : $\mathbf{P}_{\mathbf{0}}(=\mathbf{V R P})$
- uvn is called View Reference Coordinate (VRC)

$$
\begin{aligned}
& \mathbf{n}=\frac{\mathbf{N}}{\|\mathbf{N}\|}=\left(n_{x}, n_{y}, n_{z}\right) \\
& \mathbf{u}=\frac{\mathbf{V U P} \times \mathbf{n}}{\|\mathbf{V U P}\|}=\left(u_{x}, u_{y}, u_{z}\right) \\
& \mathbf{v}=\mathbf{n} \times \mathbf{u}=\left(v_{x}, v_{y}, v_{z}\right)
\end{aligned}
$$

World-to-Viewing Transformation

- Transformation from WC to VRC
- Translate the viewing-coordinate origin to the worldcoordinate origin
- Apply rotations to align the $\mathbf{u}, \mathbf{v}, \mathbf{n}$ axes with the world $\mathrm{X}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{Z}_{\mathrm{w}}$ axes, respectively

World-to-Viewing Transformation

$$
\mathbf{R}=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
n_{x} & n_{y} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{M}_{w c, v c}=\mathbf{R} \cdot \mathbf{T}=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & -\mathbf{u} \cdot \mathbf{P}_{0} \\
v_{x} & v_{y} & v_{z} & -\mathbf{v} \cdot \mathbf{P}_{0} \\
n_{x} & n_{y} & n_{z} & -\mathbf{n} \cdot \mathbf{P}_{0} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example of VRC \rightarrow WC

Given $V P N=\left(\begin{array}{lll}-6 & -8 & -7.5\end{array}\right)$

$$
\begin{gathered}
\text { VUP }=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
R_{z}=\frac{R_{z}}{\left\|R_{z}\right\|}=\frac{1}{12.5}(-6,-8,-7.5)=(0.48,0.64,0.60)
\end{gathered}
$$

$$
V U P \times R_{z}=\frac{1}{12.5} \operatorname{det}\left|\begin{array}{ccc}
i & j & k \\
0 & 0 & 1 \\
6.0 & 8.0 & 7.5
\end{array}\right|=\frac{1}{12.5}\left(\begin{array}{lll}
-8.0 & 6.0 & 0.0
\end{array}\right)
$$

$$
\begin{aligned}
& R_{x}=\frac{V U P \times R_{z}}{\left\|V U P \times R_{z}\right\|}=(-0.8,0.6,0.0) \\
& R_{y}=R_{z} \times R_{x}=(-0.35,-0.48,0.8)
\end{aligned}
$$

$$
\xrightarrow{\longrightarrow} \mathbf{R}=\left[\begin{array}{l}
\mathrm{R}_{\mathrm{x}} \\
\mathrm{R}_{\mathrm{y}} \\
\mathrm{R}_{\mathrm{z}}
\end{array}\right]
$$

Hierarchy of plane geometric projections

Parallel Projections

- Parallel direction of projection (DOP)
- Direction of projection (DOP) same for all points
- The parallel projection of the point (x, y, z) on the $x y$-plane gives $(x+a z, y+b z, 0)$
- When $a=b=0$, the projection is said to be orthographic or orthogonal. Otherwise, it is oblique.
- Preserves relative dimension
- Orthographic parallel projections
- The direction of projection is normal to the projection plane
- Architectural, engineering drawings

Axonometric Parallel Projection

- Orthographic parallel projection that displays more than one face of an object
- Projection plane intersects each principal axis
- Classify by how many identical angles of a corner of a projected cube.
- Three: isometric
- Two: dimetric
- None : trimetric

Oblique Parallel Projections

- Parallel projection of which DOP (Direction of projection) is not perpendicular to the projection plane
- Only faces of the object parallel to the projection plane are shown true size and shape

Oblique Parallel Projections

 DOP $\approx 45^{\circ}$

DOP $\approx 63.4^{\circ}$

Perspective vs. Parallel Projections

Perspective Projections

- Lines that are not parallel to the projection plane converge to a a single point in the projection (the vanishing point)
- Lines parallel to one of the major axis come to a vanishing point, these are called (principle) axis vanishing points. Only three axis vanishing points in 3D space.

Projection Types

Front elevation

Isometric

Elevation oblique

Plan oblique

Three-point perspective

Projections

- Window
- a rectangular region on the projection plane
- Projection Reference Point (PRP)
- PRP is specified in the VRC system
- In general, $(0,0,0)$
- Direction of projection (DOP): in a parallel projection, PRP \Rightarrow CW
- Center of projection (COP): in a perspective projection, $\mathrm{PRP}=\mathrm{COP}$

View Volume (View Frustum)

- 3D clipping region where we can see
- Defined by front and back clipping planes (which are parallel to view plane)

Create a View Volume

CW is not aligned \mathbf{n}-axis
(left, right, top, bottom, near, far)

CW is aligned \mathbf{n}-axis

(width, height, near, far)

CW is aligned \mathbf{n}-axis
(field of view, aspect, near, far)

$$
\text { aspect }=\text { width/height }
$$

3D Viewing

1) Establishing a View Reference Coordinate System

User supply the following parameters

- the view reference point (VRP) - in WC
- VPN - a vector in WC
- VUP - a vector in WC

3D Viewing

2) View Mapping (WC \rightarrow VRC \Rightarrow NPC)

- the projection type
- the Projection Reference Point (PRP)
- a view plane distance ($=z_{v p}$)
- In DirectX, view plane is identical to near plane
- a back plane and a front plane distance

3) device-dependent transformation

Planar Geometric Projections

- Mathematics of Planar Geometric Projections

Centre of projection at the origin
Projection plane at $\mathrm{z}=\mathrm{d}$

Planar Geometric Projections

$$
\begin{aligned}
& \frac{x_{p}}{d}=\frac{x}{z} ; \quad \frac{y_{p}}{d}=\frac{y}{z} \\
& \Rightarrow x_{p}=\frac{d \cdot x}{z}=\frac{x}{z / d} ; \quad y_{p}=\frac{d \cdot y}{z}=\frac{y}{z / d}
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]=M_{p e r} \cdot P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
Z \\
1
\end{array}\right]
$$

$$
\Rightarrow\left(\frac{X}{W}, \frac{Y}{W}, \frac{X}{W}\right)=\left(x_{p}, y_{p}, z_{p}\right)=\left(\frac{x}{z / d}, \frac{y}{z / d}, d\right)
$$

Normalizing Transformation

- Transform an arbitrary parallel- or perspectiveprojection view volume into the normalized or canonical view volume (in DirectX)

parallel-projection canonical view volume

perspective-projection canonical view volume

Normalizing Transformation

OpenGL

Normalizing transformation for parallel projections

1. Translate VRP to the origin of the WC
2. Rotate VRC such that n axis $=z$ axis, u axis $=x$ axis and vaxis =y axis.
(By 1 \& 2, transformation from WCS to VRC)
3. Shear so the direction of projection parallel to the z axis. (not necessary for orthographic projections)
4. Translate and scale into the parallel-projection canonical view volume

Normalizing transformation for parallel projections

[Step2]

$$
R_{z}(\theta) R_{y}(\phi) R_{x}(\alpha)
$$

Or use orthogonal matrix properties

Normalizing transformation for parallel projections

[Step 3] shearing

- after step2, VRC = WC
- DOP = CW - PRP

Normalizing transformation for parallel projections

- z-component of DOP is invariant.

$$
\begin{aligned}
& S H_{z}(a, b)=\left[\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& D O P_{w c}=C W-P R P=\left(\begin{array}{ll}
d o p_{x} & d o p_{y} \\
d o p_{z}
\end{array}\right) \\
& D O P^{\prime}=\left[\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot D O P_{w c}=\left[\begin{array}{c}
0 \\
0 \\
d o p_{z} \\
1
\end{array}\right] \\
& a=-\frac{d o p_{x}}{d o p_{z}}, \quad b=-\frac{d o p_{y}}{d o p_{z}}
\end{aligned}
$$

Normalizing transformation for parallel projections

- View volume after transformation steps 1 to 3

Normalizing transformation for parallel projections

[Step 4] translate and scale

1. Translate the front center of the view volume

$$
T_{p a r}=T\left(-\frac{u_{\max }+u_{\min }}{2},-\frac{v_{\max }+v_{\min }}{2},-F\right)
$$

2. Scale to the $2 \times 2 \times 1$ size

$$
S_{p a r}=S\left(\frac{2}{u_{\max }-u_{\min }}, \frac{2}{v_{\max }-v_{\min }}, \frac{1}{F-B}\right)
$$

Normalizing transformation for perspective projection

1. Translate VRP to the origin of the WC: $\mathrm{T}(-\mathrm{VRP})$
2. Rotate VRC such that n axis $=\mathrm{z}$ axis, u axis $=\mathrm{x}$ axis and v axis $=y$ axis
3. Translate such that $\mathrm{PRP}=\left(\operatorname{prp}_{\mu} \operatorname{prp}_{\nu} \operatorname{prp}_{n}\right)$ is at the origin: T(-PRP)
4. Shear so the center line of the view volume becomes the z -axis
5. (Scale such that the view volume becomes the canonical perspective view volume.)

Normalizing transformation for perspective projection

After step1,2,3

Normalizing transformation for perspective projection

[Step 4] shearing
shear so that CW - PRP is into -z axis

$$
\square S H_{p e r}=S h_{p a r}
$$

Another Way: $\mathrm{VRP}^{\prime}=S H_{p e r} \mathrm{~T}(-\mathrm{PRP})\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{\top}$ z component of VRP': $\operatorname{vrp}_{z}{ }^{\prime}=-$ prp $_{n}$

Normalizing transformation for perspective projection

[Step 5] scale

1. Scale x and y to give the sloped planes bounding the view-volume unit slope.
\Rightarrow Scale the window so its half-height and half-width are both $-v r p_{z}{ }^{\prime}$
x scale: $\frac{-2 \cdot v r p_{z}^{\prime}}{\left(u_{\max }-u_{\min }\right)}$
y scale $: \frac{-2 \cdot v r p_{z}{ }_{z}}{\left(v_{\max }-v_{\text {min }}\right)}$

(a) Before scaling

(b) After scaling

Normalizing transformation for perspective projection

2. Scale uniformly all three axes such that the back clipping plane $z=v r p_{z}^{\prime}+B$ becomes -1 .
\Rightarrow scale factor: $-1 /\left(v r p_{z}^{\prime}+B\right)$

Perspective scale transformation

$$
S_{p e r}=S\left(\frac{2 v r p_{z}^{\prime}}{\left(u_{\max }-u_{\min }\right)\left(v r p_{z}^{\prime}+B\right)}, \frac{2 v r p_{z}^{\prime}}{\left(v_{\max }-v_{\min }\right)\left(v r p_{z}^{\prime}+B\right)}, \frac{-1}{\left(v r p_{z}^{\prime}+B\right)}\right)
$$

DirectX: Viewing Transformation

- How to define VRC
- Eye-Point (= VRP)
- Look-At Position
- Look-At Position - Eye-Point $\rightarrow \mathbf{N}$
- Up-Vector (\rightarrow v)

Syntax

D3DXMATRIX *D3DXMatrixLookAtLH(
D3DXMATRIX * pOut, CONST D3DXVECTOR3 * pEye, CONST D3DXVECTOR3 * pAt, CONST D3DXVECTOR3 * pUp);

Parameters

pOut : Pointer to the D3DXMATRIX structure that is the result of the operation.
pEye : Pointer to the D3DXVECTOR3 structure that defines the eye point.
pAt : Pointer to the D3DXVECTOR3 structure that defines the camera look-at target.
$p U p$: Pointer to the D3DXVECTOR3 structure that defines the current world's up, usually [0, 1, 0].

DirectX:

Perspective Projection Transformation

When CW aligns n-axis

Syntax

D3DXMATRIX *D3DXMatrixPerspectiveFovLH(
D3DXMATRIX * pOut, FLOAT fovy, FLOAT Aspect, FLOAT zn, FLOAT zf);

Parameters

pOut: Pointer to the D3DXMATRIX structure that is the result of the operation.
fovy : Field of view in the y direction, in radians.
Aspect: Aspect ratio, defined as view space width divided by height.
$z n$: Z-value of the near view-plane.
$z f:$ Z-value of the far view-plane.

DirectX:

Perspective Projection Transformation

When CW does not align n-axis

Syntax

D3DXMATRIX *D3DXMatrixPerspectiveOffCenterLH
(D3DXMATRIX * p Out, FLOAT l, FLOAT r, FLOAT b, FLOAT t, FLOAT $z n$, FLOAT $z f$);

Parameters

pOut : Pointer to the D3DXMATRIX structure that is the result of the operation.
/ : Minimum x-value of the view volume.
r : Maximum x-value of the view volume.
b : Minimum y-value of the view volume.
t : Maximum y-value of the view volume.
$z n$: Minimum z-value of the view volume.
$\not f$: Maximum z-value of the view volume.

DirectX: Orthographic Parallel Projection Transformation

Syntax

D3DXMATRIX *WINAPI D3DXMatrixOrthoLH(
D3DXMATRIX * pOut, FLOAT w, FLOAT h, FLOAT $z n$, FLOAT $z f$);

Parameters

pOut: Pointer to the D3DXMATRIX structure that contains the resulting matrix.
w : Width of the view volume.
h : Height of the view volume.
$z n$: Minimum z-value of the view volume which is referred to as z-near.
$z f$: Maximum z-value of the view volume which is referred to as z-far.

DirectX: Oblique Parallel Projection Transformation

Syntax

D3DXMATRIX * D3DXMatrixOrthoOffCenterLH
(D3DXMATRIX *pOut, FLOAT l, FLOAT r, FLOAT b, FLOAT t,
FLOAT $z n, \quad$ FLOAT $z f$);
Parameters
pOut: Pointer to the D3DXMATRIX structure that is the result of the operation.
/ : Minimum x-value of view volume.
r : Maximum x-value of view volume.
b : Minimum y-value of view volume.
t : Maximum y-value of view volume.
$z n$: Minimum z-value of the view volume.
$z f$: Maximum z-value of the view volume.

3D Clipping

- For orthographic projection, view volume is a box
- For perspective projection, view volume is a frustum

Need to calculate intersection with 6 planes

3D Clipping

- Clipping is efficiently done on the normalized view volume.
- The canonical parallel projection view volume is defined by:

$$
-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 0
$$

- Clip primitives against this view volume

3D Region Coding for Clipping

- 3-D Extension of 2-D Cohen-Sutherland Algorithm

For parallel-projection canonical view volume :

Bit 1 - point is above view volume: $\mathrm{y}>1$
Bit 2 - point is below view volume: $\mathrm{y}<-1$
Bit 3 - point is right of view volume: $x>1$
Bit 4 - point is left view volume: $x<-1$
Bit 5 - point is behind view volume: $z<-1$
Bit 6 - point is in front of view volume: $z>0$

3D Region Coding for Clipping

3D Region Coding for Clipping

For perspective-projection canonical view volume

Bit 1 - Point is above view volume $y>-z$
Bit 2 - Point is below view volume $y<z$
Bit 3 - Point is right of view volume $x>-z$
Bit 4 - Point is left of view volume $x<z$
Bit 5 - Point is behind view volume $z<-1$
Bit 6 - Point is in front of view volume $z>z_{\text {min }}$

Clipping and Homogeneous Coordinates

- Efficient to transform frustum into perspective canonical view volume - unit slope planes
- Even better to transform to parallel canonical view volume
- Clipping must be done in homogeneous coordinates
- We do not need to $[X, Y, Z, W] \rightarrow[x, y, z, 1]$ for the clipped region
- Points in homogeneous coordinate can appear with -W and cannot be clipped properly in 3D

Clipping and Homogeneous Coordinates

- 3D parallel projection volume is defined by:

$$
-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 0
$$

- Replace by $\mathrm{X} / \mathrm{W}, \mathrm{Y} / \mathrm{W}, \mathrm{Z} / \mathrm{W}$:

$$
-1 \leq X / W \leq 1,-1 \leq Y / W \leq 1,-1 \leq Z / W \leq 0
$$

- Corresponding plane equations are :

$$
\mathrm{X}=-\mathrm{W}, \mathrm{X}=\mathrm{W}, \mathrm{Y}=-\mathrm{W}, \mathrm{Y}=\mathrm{W}, \mathrm{Z}=-\mathrm{W}, \mathrm{Z}=0
$$

- If $\mathrm{W}>0$, multiplication by W does not change sign.

$$
\mathrm{W}>0:-\mathrm{W} \leq \mathrm{X} \leq \mathrm{W},-\mathrm{W} \leq \mathrm{Y} \leq \mathrm{W},-\mathrm{W} \leq \mathrm{Z} \leq 0
$$

- However if $\mathrm{W}<0$, need to change sign :

$$
\mathrm{W}<0:-\mathrm{W} \geq \mathrm{X} \geq \mathrm{W},-\mathrm{W} \geq \mathrm{Y} \geq \mathrm{W},-\mathrm{W} \geq \mathrm{Z} \geq 0
$$

Clipping and Homogeneous Coordinates

- For the canonical parallel projection volume:

$$
-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 0
$$

- To clip to $x=-1$ (left):
- Homogeneous coordinate: Clip to $\mathbf{X} / \mathbf{W}=-1$
- Homogeneous plane: $\mathbf{W}+\mathbf{X}=\mathbf{0}$
- Point is visible if $\mathbf{W}+\mathbf{X}>0$

Clipping and Homogeneous Coordinates

- The intersection of the line segment with a clipping plane:

$$
\begin{aligned}
& \mathrm{P}=(1-\alpha) \mathrm{P}_{1}+\alpha \mathrm{P}_{2} \quad \text { and } \quad \mathrm{w}+\mathrm{x}=0 \\
\longrightarrow & {\left[(1-\alpha) w_{1}+\alpha w_{2}\right]+\left[(1-\alpha) x_{1}+\alpha x_{2}\right]=0 }
\end{aligned}
$$

$$
\Longleftrightarrow \alpha=\frac{\mathrm{x}_{1}+\mathrm{w}_{2}}{\left(\mathrm{w}_{1}+\mathrm{x}_{1}\right)-\left(\mathrm{w}_{2}+\mathrm{x}_{2}\right)}
$$

- Repeat for remaining boundaries : other Near and Far clipping planes

Clipping and Homogeneous Coordinates (example)

$$
\begin{aligned}
& P_{1}=\left[2, y_{1}{ }^{*}, z_{1}{ }^{*}, 2\right] \\
& P_{2}=\left[-1, y_{2}{ }^{*}, z_{2}{ }^{*}, 1 / 2\right]
\end{aligned}
$$

$$
\longleftrightarrow \alpha=\frac{\mathrm{x}_{1}+\mathrm{w}_{2}}{\left(\mathrm{w}_{1}+\mathrm{x}_{1}\right)-\left(\mathrm{w}_{2}+\mathrm{x}_{2}\right)}=\frac{2+2}{-(1 / 2-2)-(-1-2)}=8 / 9
$$

$\longrightarrow P^{*}=\left[-2 / 3, y_{1} *+8 / 9\left(y_{2} *-y_{1} *\right), z_{1} *+8 / 9\left(z_{2} *-z_{1}{ }^{*}\right), 2 / 3\right]$
\leadsto Projected x -coordinate of $\mathrm{P}^{*}=\mathrm{x} / \mathrm{W} *=-1$

Points in Homogeneous Coordinates

Need to consider both regions when
Performing clipping

Lines in Homogeneous Coordinates

- Could clip twice - once for region B, once for region A.
- Expensive
- Check for negative W values and negate points before clipping

Lines in Homogeneous Coordinates

3D Polygon Clipping Algorithms

- Bounding box or sphere test for early rejection
- Sutherland-Hodgman and Weiler-Atherton algorithms can be generalized

| What's $\mathcal{N e x t}$

