Three-Dimensional Viewing

> Chap 7, 2008 Spring Yeong Gil Shin

Viewing Pipeline

Device Coordinates

How to define a window? How to project onto the window?

Rendering

"Create a picture (in a synthetic camera)"

- Specification of projection type
- Specification of viewing parameters:
 - viewer's eye, viewing plane (viewing coordinates)
- Clipping in 3D: window, view volume
- Projection : the transformation of points from a coordinate system in *n* dimensions to a coordinate system in *m* dimensions where *m* < *n*
- Display: view port

- Modeling coordinates (MC)
- World coordinates (WC)
- Viewing coordinates (VC) VRC, camera position
- Projection coordinates (PC) window, projection type
- Normalized coordinates (NC)
- Device coordinates (DC) view port in a screen

Projection coordinate system:

- left-handed Core, DirectX
 - why? screen coordinate system is left-handed
- right-handed GKS, PHIGS, OpenGL, DirectX

 Projection plane (view plane): viewing surface where objects are projected.

Viewing-Coordinate Parameters

- View reference point (VRP)
 - The viewing origin in WC : $\mathbf{P}_0 = (x_0, y_0, z_0)$
 - Eye position, camera position
- View-plane (Projection plane)
 - Locates on z_{view} axis : z_{vp}
 - Perpendicular to z_{view}
- Viewing Coordinate : uvn
 - Defined by P₀, N, VUP

Viewing-Coordinate Parameters

How we specify a view plane normal vector N [Way I] The origin of WC to a selected point position [Way II] The direction from a reference point P_{ref} to the viewing origin: N = P₀ - P_{ref} P_{ref} : look-at point Viewing direction: -N

Viewing-Coordinate Parameters

- View-up vector: VUP
 - Specified in the world coordinates
 - Used to establish the positive direction for the y_{view} axis
 - VUP should be perpendicular to N, but it can be difficult to a direction for VUP that is precisely perpendicular to N

Viewing-Coordinate Reference Frame (VRC)

- The camera orientation is determined by viewing reference frame x_{view}, y_{view}, z_{view} (or uvn)
- The origin of the viewing reference frame : P₀ (= VRP)
- uvn is called View Reference Coordinate (VRC)

$$\mathbf{n} = \frac{\mathbf{N}}{\|\mathbf{N}\|} = (n_x, n_y, n_z)$$

$$\mathbf{u} = \frac{\mathbf{VUP} \times \mathbf{n}}{\|\mathbf{VUP}\|} = (u_x, u_y, u_z)$$

$$\mathbf{v} = \mathbf{n} \times \mathbf{u} = (v_x, v_y, v_z)$$

View plane w.r.t. VRC

World-to-Viewing Transformation

- Transformation from WC to VRC
 - Translate the viewing-coordinate origin to the worldcoordinate origin
 - Apply rotations to align the u, v, n axes with the world X_w, y_w, Z_w axes, respectively

World-to-Viewing Transformation

$$\mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hierarchy of plane geometric projections

Parallel Projections

- Parallel direction of projection (DOP)
- Direction of projection (DOP) same for all points
- The *parallel projection* of the point (x, y, z) on the *xy*-plane gives (x + az, y + bz, 0)
 - When a = b = 0, the projection is said to be orthographic or orthogonal. Otherwise, it is oblique.
- Preserves relative dimension
- Orthographic parallel projections
 - The direction of projection is normal to the projection plane
 - Architectural, engineering drawings

Axonometric Parallel Projection

- Orthographic parallel projection that displays more than one face of an object
- Projection plane intersects each principal axis
- Classify by how many identical angles of a corner of a projected cube.
 - Three: isometric
 - Two: dimetric
 - None : trimetric

Oblique Parallel Projections

- Parallel projection of which DOP (Direction of projection) is not perpendicular to the projection plane
- Only faces of the object parallel to the projection plane are shown true size and shape

Oblique Parallel Projections

Perspective vs. Parallel Projections

Perspective

Parallel

Perspective Projections

- Lines that are not parallel to the projection plane converge to a a single point in the projection (the <u>vanishing point</u>)
- Lines parallel to one of the major axis come to a vanishing point, these are called (principle) axis vanishing points. Only three axis vanishing points in 3D space.

Projections

- Window
 - a rectangular region on the projection plane
- Projection Reference Point (PRP)
 - PRP is specified in the VRC system
 - In general, (0,0,0)
- Direction of projection (DOP): in a parallel projection, PRP \Rightarrow CW
- Center of projection (COP): in a perspective projection, PRP = COP

View Volume (View Frustum)

- 3D clipping region where we can see
- Defined by front and back clipping planes (which are parallel to view plane)

3D Viewing

 Establishing a View Reference Coordinate System

User supply the following parameters

- the view reference point (VRP) in WC
- VPN a vector in WC
- VUP a vector in WC

3D Viewing

- 2) View Mapping (WC \rightarrow VRC \Rightarrow NPC)
 - the projection type
 - the Projection Reference Point (PRP)
 - a view plane distance (= z_{vp})
 - In DirectX, view plane is identical to near plane
 - a back plane and a front plane distance
- 3) device-dependent transformation

Planar Geometric Projections

Mathematics of Planar Geometric Projections

Centre of projection at the origin Projection plane at z=d

Planar Geometric Projections

Normalizing Transformation

 Transform an arbitrary parallel- or perspectiveprojection view volume into the normalized or canonical view volume (in DirectX)

Normalizing Transformation

OpenGL

- 1. Translate VRP to the origin of the WC
- 2. Rotate VRC such that n axis = z axis, u axis = x axis and v axis = y axis.
 (By 1 & 2, transformation from WCS to VRC)
- 3. Shear so the direction of projection parallel to the z axis. (not necessary for orthographic projections)
- 4. Translate and scale into the parallel-projection canonical view volume

[Step2] $R_z(\theta)R_y(\phi)R_x(\alpha)$

Or use orthogonal matrix properties

$$R_{z} = \frac{VPN}{\|VPN\|} \quad R_{x} = \frac{VUP \times R_{z}}{\|VUP \times R_{z}\|} \quad R_{y} = R_{z} \times R_{x}$$

$$VUP = VPN \quad U = \begin{bmatrix} r_{1x} & r_{2x} & r_{3x} & 0 \\ r_{1y} & r_{2y} & r_{3y} & 0 \\ r_{1z} & r_{2z} & r_{3z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

[Step 3] shearing
after step2, VRC = WC
DOP = CW - PRP

z-component of DOP is invariant.

$$SH_{z}(a,b) = \begin{bmatrix} 1 & 0 & a & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$DOP_{wc} = CW - PRP = (dop_{x} \quad dop_{y} \quad dop_{z})$$
$$DOP' = \begin{bmatrix} 1 & 0 & a & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot DOP_{wc} = \begin{bmatrix} 0 \\ 0 \\ dop_{z} \\ 1 \end{bmatrix}$$
$$a = -\frac{dop_{x}}{dop_{z}}, \qquad b = -\frac{dop_{y}}{dop_{z}}$$

• View volume after transformation steps 1 to 3

[Step 4] translate and scale

1. Translate the front center of the view volume

$$T_{par} = T \left(-\frac{u_{max} + u_{min}}{2}, -\frac{v_{max} + v_{min}}{2}, -F \right)$$

2. Scale to the 2 \times 2 \times 1 size

$$S_{par} = S\left(\frac{2}{u_{\max} - u_{\min}}, \frac{2}{v_{\max} - v_{\min}}, \frac{1}{F - B}\right)$$

Normalizing transformation for perspective projection

- 1. Translate VRP to the origin of the WC: T(–VRP)
- Rotate VRC such that n axis = z axis, u axis = x axis and v axis = y axis
- 3. Translate such that $PRP = (prp_{u'} prp_{v'} prp_n)$ is at the origin: T(-PRP)
- 4. Shear so the center line of the view volume becomes the z-axis
- 5. (Scale such that the view volume becomes the canonical perspective view volume.)

v n

u

↓n

V 🖊

PRP

u

Normalizing transformation for perspective projection

[Step 4] shearing

shear so that CW – PRP is into –z axis

 \implies $SH_{per} = Sh_{par}$

<u>Another Way</u>: $VRP' = SH_{per} T(-PRP) [0 \ 0 \ 0 \ 1]^T$ z component of VRP': $vrp_z' = -prp_n$

Normalizing transformation for perspective projection

[Step 5] scale

- 1. Scale x and y to give the sloped planes bounding the view-volume unit slope.
 - Scale the window so its half-height and half-width are both $-\nu r p_z'$

Normalizing transformation for perspective projection

2. Scale uniformly all three axes such that the back clipping plane *z=vrp'_z+B* becomes −1.
 ⇒ scale factor: −1/(*vrp'_z+B*)

Perspective scale transformation

$$S_{per} = S\left(\frac{2vrp'_{z}}{(u_{\max} - u_{\min})(vrp'_{z} + B)}, \frac{2vrp'_{z}}{(v_{\max} - v_{\min})(vrp'_{z} + B)}, \frac{-1}{(vrp'_{z} + B)}\right)$$

DirectX: Viewing Transformation

How to define VRC

- Eye-Point (= VRP)
- Look-At Position
 - Look-At Position Eye-Point N
- Up-Vector (→ v)

Syntax

D3DXMATRIX *D3DXMatrixLookAtLH(D3DXMATRIX **pOut*, CONST D3DXVECTOR3 **pEye*,

CONST D3DXVECTOR3 * pAt, CONST D3DXVECTOR3 * pUp);

Parameters

pOut : Pointer to the <u>D3DXMATRIX</u> structure that is the result of the operation.

- *pEye* : Pointer to the <u>D3DXVECTOR3</u> structure that defines the eye point.
- *pAt* : Pointer to the **D3DXVECTOR3** structure that defines the camera look-at target.
- *pUp* : Pointer to the **D3DXVECTOR3** structure that defines the current world's up, usually [0, 1, 0].

DirectX:

Perspective Projection Transformation

When CW aligns n-axis

Syntax

D3DXMATRIX *D3DXMatrixPerspectiveFovLH(D3DXMATRIX **pOut*, FLOAT *fovy*, FLOAT *Aspect*, FLOAT *zn*, FLOAT *zf*);

Parameters

pOut : Pointer to the <u>D3DXMATRIX</u> structure that is the result of the operation.

fovy : Field of view in the y direction, in radians.

Aspect : Aspect ratio, defined as view space width divided by height.

zn : Z-value of the near view-plane.

zf : Z-value of the far view-plane.

DirectX:

Perspective Projection Transformation

When CW does not align n-axis

Syntax

D3DXMATRIX *D3DXMatrixPerspectiveOffCenterLH (D3DXMATRIX **pOut*, FLOAT /, FLOAT *r*, FLOAT *b*, FLOAT *t*, FLOAT *zn*, FLOAT *zf*);

Parameters

pOut : Pointer to the **D3DXMATRIX** structure that is the result of the operation.

- / : Minimum x-value of the view volume.
- r : Maximum x-value of the view volume.
- b : Minimum y-value of the view volume.
- t : Maximum y-value of the view volume.
- zn : Minimum z-value of the view volume.
- zf : Maximum z-value of the view volume.

DirectX: Orthographic Parallel Projection Transformation

Syntax

D3DXMATRIX *WINAPI D3DXMatrixOrthoLH(D3DXMATRIX **pOut*, FLOAT *w*, FLOAT *h*, FLOAT *zn*, FLOAT *zf*);

Parameters

- *pOut* : Pointer to the <u>D3DXMATRIX</u> structure that contains the resulting matrix.
- W: Width of the view volume.
- *h* : Height of the view volume.
- zn : Minimum z-value of the view volume which is referred to as z-near.
- zf : Maximum z-value of the view volume which is referred to as z-far.

DirectX: Oblique Parallel Projection Transformation

Syntax

D3DXMATRIX *D3DXMatrixOrthoOffCenterLH (D3DXMATRIX **pOut*, FLOAT /, FLOAT *r*, FLOAT *b*, FLOAT *t*, FLOAT *zn*, FLOAT *zf*);

Parameters

- *pOut* : Pointer to the <u>D3DXMATRIX</u> structure that is the result of the operation.
- / : Minimum x-value of view volume.
- r : Maximum x-value of view volume.
- b : Minimum y-value of view volume.
- *t* : Maximum y-value of view volume.
- zn : Minimum z-value of the view volume.
- *zf* : Maximum z-value of the view volume.

- For orthographic projection, view volume is a box
- For perspective projection, view volume is a *frustum*

Need to calculate intersection with 6 planes

- Clipping is efficiently done on the normalized view volume.
- The canonical parallel projection view volume is defined by:

 $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 0$

Clip primitives against this view volume

3D Region Coding for Clipping

3-D Extension of 2-D Cohen-Sutherland Algorithm

For parallel-projection canonical view volume :

Bit 1 - point is above view volume: y > 1Bit 2 - point is below view volume: y < -1Bit 3 - point is right of view volume: x > 1Bit 4 - point is left view volume: x < -1Bit 5 - point is behind view volume: z < -1Bit 6 - point is in front of view volume: z > 0

3D Region Coding for Clipping

3D Region Coding for Clipping

For perspective-projection canonical view volume

Bit 1 - Point is above view volume y > -zBit 2 - Point is below view volume y < zBit 3 - Point is right of view volume x > -zBit 4 - Point is left of view volume x < zBit 5 - Point is behind view volume z < -1Bit 6 - Point is in front of view volume $z > z_{min}$

- Efficient to transform frustum into perspective canonical view volume – unit slope planes
- Even better to transform to parallel canonical view volume
 - Clipping must be done in homogeneous coordinates
 - We do not need to [X,Y,Z,W] → [x,y,z,1] for the clipped region
- Points in homogeneous coordinate can appear with –W and cannot be clipped properly in 3D

- 3D parallel projection volume is defined by: $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 0$
- Replace by X/W,Y/W,Z/W:

 $-1{\leq}X\!/W{\leq}1,\,-1{\leq}Y\!/W{\leq}1$, $-1{\leq}Z\!/W{\leq}0$

• Corresponding plane equations are :

X=-W, X=W, Y=-W, Y=W, Z=-W, Z=0

- If W>0, multiplication by W does not change sign.
 W>0: -W ≤X ≤W, -W ≤Y ≤W, -W ≤Z ≤0
- However if W<0, need to change sign : $W<0: -W\ge X\ge W, -W\ge Y\ge W, -W\ge Z\ge 0$

• For the canonical parallel projection volume:

$$-1 \le x \le 1$$
, $-1 \le y \le 1$, $-1 \le z \le 0$

- To clip to x = -1 (left):
 - Homogeneous coordinate: Clip to X/W = -1
 - Homogeneous plane: W+X = 0
 - Point is visible if W+X > 0

• The intersection of the line segment with a clipping plane:

$$P = (1 - \alpha)P_1 + \alpha P_2 \quad \text{and} \quad w + x = 0$$

$$\implies [(1 - \alpha)w_1 + \alpha w_2] + [(1 - \alpha)x_1 + \alpha x_2] = 0$$

$$\implies \alpha = \frac{x_1 + w_2}{(w_1 + x_1) - (w_2 + x_2)}$$

 Repeat for remaining boundaries : other Near and Far clipping planes

Points in Homogeneous Coordinates

Lines in Homogeneous Coordinates

- Could clip twice once for region B, once for region A.
 - Expensive
- Check for negative W values and negate points before clipping

Lines in Homogeneous Coordinates

3D Polygon Clipping Algorithms

- Bounding box or sphere test for early rejection
- Sutherland-Hodgman and Weiler-Atherton algorithms can be generalized

