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Representation of Curves andRepresentation of Curves and 
Surfaces
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Why we need surface models?
All shapes can be described in terms of points. 

y

But, it is impractical to enumerate the points 
that comprise a shape 

We define shape indirectly through 
expressions that relate certain properties of 
points that  comprise them. 



Intrinsic and extrinsic properties
Intrinsic properties

B has four sides
y

B has four sides
All four sides have equal 
length g
All four angles are 
90o, ...... 

Extrinsic properties
two horizontal sides x
two vertical sides vertices 
of B are at P0, P1, P2 and 
P3

x

P3



Intrinsic and extrinsic properties
Shape definitions that use extrinsic properties 
of the shape are dependent on the coordinateof the shape are dependent on the coordinate 
system used.  
a line: y = 3, 2 ≤ x ≤ 7y ,

Axis dependency
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x
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Axis Independence
A mathematical representation of a line/curve is axis 
i d d t if it h d d l thindependent if its shape depends on only the 
relative position of the points defining its 
characteristic vectors and is independent of thecharacteristic vectors and is independent of the  
coordinate system used. 



Axis-independent shape definition
Shape definitions that use intrinsic properties of the 
shape a e a is independentshape are axis-independent. 
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Curve & Surface Models
Explicit/implicit
P i / iParametric/non-parametric
Approximation 

l h ll ti f d tipolygon mesh : a collection of edges, vertices, 
and  polygons



Nonparametric explicitNonparametric explicit 
representation

x = x
y f(x)y = f(x)
successive values of y can be obtained 
b l l fby plugging in successive values of x.
easy to generate polygons or line 
segments 
single-valued functionsingle valued function
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Nonparametric implicitNonparametric implicit 
representation

0),,( =zyxf
Define curves as solution of equation system

E.g., a circle:g
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Nonparametric implicitNonparametric implicit 
representation
algebraic quadric surfaces

f i l i l f d 2: f is a polynomial of degree <= 2
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Nonparametric implicitNonparametric implicit 
representation

Coefficients determine geometric properties
Hard to render (have to solve non-linear 
equation system)
C l d l l dCan represent closed or multi-valued curves
Easy to classify point-membership
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Parametric Curve
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Parametric Curve (Example)
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Parametric Curve Characteristics
Simple to render

evaluate parameter functionp
Hard to check whether a point lies on 
curve

have to compute the inverse mapping from 
(x, y) to t

Can represent closed or multi-valuedCan represent closed or multi valued 
curves
Curve or surface can be easily 
t l t d t t dtranslated or rotated 
Composite curves and surfaces can be 
formed by piecewise descriptionsformed by piecewise descriptions 



Parametric Curve Characteristics

No infinite slope problem
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Parametric Curve Characteristics

Not unit form
(e.g.) a circle with radius 1 centered at the origin
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Tangent line to a curveg
The straight line that gives the curve's slope at a
pointpoint
Deduced from the derivative of the curve at the
point

X(t), y(t)

derivative vectorderivative vector
(x’(t),y’(t))



Piecewise Polynomial Curves
Cut curve into segments and represent each 
segment as a polynomial curvesegment as a polynomial curve
But how do we guarantee smoothness at the 
joints? ( continuity problem)joints? ( continuity problem)



Continuityy
Implies a notion of smoothness at the 
connection pointsconnection points
Parametric continuity 

W i th f f tiWe view the curve or surface as a function 
rather than a shape. 
Matching the parametric derivatives ofMatching the parametric derivatives of 
adjoining curve sections at their common 
boundary
You need a parameterization



Parametric Continuity
drawn  becan it  if continuous is curve a:C0
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Geometric Continuity
Geometric continuity is defined using only 
the shape of the curvethe shape of the curve
Geometric smoothness independent of 

t i tiparametrization
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The order of polynomialThe order of polynomial 
curves

k)degree(1korder ofpolynomial a ≡+
k

k
2
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In computer graphics, usually degree = 3
Sufficient flexibility w/o much cost

The cubic is the lowest degree polynomial that g p y

gives C1 and C2 continuity



Curve models

Curve fitting techniques (interpolation 
techniques)

pass through each and every data point

linear approximation, natural cubic spline

Curve fairing techniques 
(approximation techniques)

few if any points on the curve pass through 
h d d t i teach and every data points

Hermite curve, Bezier curve, B-spline curve 



Natural Spline Curves
Motivated by loftman’s spline

L t i f d l tiLong narrow strip of wood or plastic
Shaped by lead weights (called ducks)

a cubic spline curve q(u) composed of cubica cubic spline curve, q(u), composed of cubic 
polynomials that interpolate the points P0, P1, …, Pn

Cn-1 continuity can be achieved from splines ofC continuity can be achieved from splines of 
degree n



Natural Cubic Splines
divide the interval [a,b] into n intervals [ui,ui+1], for i=0 to n-1 . 
The numbers u are called knotsThe numbers ui are called knots. 

The vector [u0,u1, …., ui-1] is called a knot vector for the spline. 
If the knots are equidistantly distributed in the interval [a,b], weIf the knots are equidistantly distributed in the interval [a,b], we 
say the spline is uniform, otherwise we say it is non-uniform.
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Natural Cubic Splines
each cubic spline curve is determined by the position 
vectors, tangent vectors and parameter valuesvectors, tangent vectors and parameter values 
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Cubic Splines
the polynomial coefficients of a cubic spline are 
dependent on all n control pointsdependent on all n control points
→ a change in any one segment affects the entire 

curvecu e
It is inconvenient to represent the curve directly using 
the coefficients ci
← the relationship between the shape of the  curve 

and the coefficients is not clear or intuitive 
⇒ th l i l f i t t l i t⇒ rearrange the polynomial form into control points

and basis functions (GEOMETRIC FORM)



Specifying Curves
Control Points 

A set of points that 
influence the curve's 
shape p

Knots
Points that lie on the curve
Subinterval endpoints



Hermite Curves
Parametric curves
Defined by two end points with the derivative of the 
curve at these points
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Hermite Curves(cubic polynomial)
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Hermite Curves
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Represent Polynomials with basisRepresent Polynomials with basis 
functions
Polynomials including degree k forms a vector space Pk+1

fSpecify a curve P(u) as a position in the vector space 
Pk+1 via the coordinate ),p,(p k0 L

and the basis ),,,,1( 2 kttt L
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Properties sharedProperties shared 
by most useful bases

Convex hull property
k

if                 and basis functions are not negative  over 

the interval they are defined then any point on the

1)(
0
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=

k

i
i tb

the interval they are defined then any point on the 

curve is a weighted average of its control points.

⇒ no points on the curve lies 
outside the polygon formed 
by joining the control pointsby joining the control points 
together

⇒ inexpensive means for 
l l ti th b d fcalculating the bound of  a 

curve or surface in space



Properties sharedProperties shared 
by most useful bases

Affine invariance - any linear transformation or translation of 
the control points defines a new curve that is the just thethe control points defines a new curve that is the just the 
transformation or translation of the original curve. (Perspective 
transform is not affine.) )

Variation diminishing - no straight line intersects a curve 
more times than it intersects the curve's control polyline. It 

l h h l ( d ) f himplies that the complexity (i.e., turning and twisting) of the 
curve is no more complex than the control polyline. 



Bezier Curves
Developed by Pierre Bézier in the 1970's for  
CAD/CAM operations (PostScript drawing model)

n

CAD/CAM operations. (PostScript drawing model)
Represent a polynomial segment as p3p0
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basis or blending function of degree n
used to scale or blend the control points

)t(J i,n

used to scale or blend the control points 



Bezier blending functions
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Bezier Curves (example)
3210  (3,1), and (4,3)(2,3),(1,1),Given pppp
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Bezier Curves (Matrix Form) 
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Bezier Curves
The Bezier curve of order n+1 (degree n) has n+1 
control pointscontrol points.
We can think a Bezier curve as a weighted average of 
all of its control pointsall of its control points

10 tPt)P-(1P(t) +=Linear (n=1) :

]tPt)P-t[(1]tPt)P-t)[(1-(1P(t) 2110 +++=Quadratic (n=2) :
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Bezier Curves



Bezier Curves 
A curve that is made of several Bézier curves is called a 
composite Bézier curve or a Bézier spline curvecomposite Bézier curve or a Bézier spline curve.
Tangential continuity between Bezier segments : 

)()( 0123 RRkQQ −=−
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Bezier Spline Curves
C2 continuous two cubic Bezier segments V(t) and 
W(t) with the control points (V0 ,V1 ,V2 ,V3) and 

For cubic Bezier spline: 
V'(0) = 3(V1 - V0) , V'(1) = 3(V3 – V2) ,

(W0 ,W1 ,W2 ,W3).

V (0)  3(V1 V0) , V (1)  3(V3 V2) , 
V"(0) = 6(V0 – 2V1 + V2) , V"(1) = 6(V1 – 2V2 + V3) 

Continuity at the junction point W0 = V3.
C ti it f th fi t d i ti '(0) '(1)Continuity of the first derivative W'(0) = V'(1)

W1 - W0 = V3 - V2 => W1 = 2V3 - V2
i.e. W1 depends on V2 & V31 3

Continuity of the second derivative W"(0) = V"(1) 
W0 - 2W1 + W2 = V1 - 2V2 + V3
W2 = 2W1 - (2V2 - V1)W2  2W1 (2V2 V1) 

Only one control point W3 of the Bezier curve W(t) is really free.



Characteristics ofCharacteristics of 
Bezier Curves 
Convex hull 
Affine invarianceAffine invariance 
Variation diminishing 
The degree of the polynomial defining the curve 

i l h h b f d fi isegment is one less than the number of defining  
control points.
In CAGD applications, a curve may have a soIn CAGD applications, a curve may have a so 
complicated shape that it cannot be represented by a 
single Bézier cubic curve 
Global control (disadv ) : change a control point affectsGlobal control (disadv.) : change a control point affects 
the continuity of the curve.



The de Casteljau Algorithm
Evaluation of the Bezier curve function
Repeated linear interpolationRepeated linear interpolation

Example of a quadratic (degree 2) Bezier curve

b0 b0

b1 b2 b1 b2

3 l i i l 0 23 control points interpolate t = 0.2



The de Casteljau Algorithm
b0 b0

the point on the curve repeating the procedure
b1b1 b2 b2

the point on the curve p g p

Degree=3 and t=0.25
b3b0 b3b0

b1 b2



Parametric Surface
Extend 2D parametric representation 

i th b f t f tincrease the number of parameters from one to 
two, (s,t) in order to address each point in the 2D 
spaces.p
express the 3D structure of the curved 2D surface 
by introducing a parameter z coordinate,  z(s,t), 

hi.e., a patch
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Bicubic Bezier Surface 
Bezier patch:16 control points define one patch 
ease of interactivity & representationy p
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B-Splines Curvesp

∑=
n

dkk )u(BP)u(Q ∑
= 0k

d,kk )u(BP)u(Q

Pk : an input set of n+1 control pointsPk : an input set of n+1 control points
Bk,d : blending function of degree d-1

The polynomial curve has degree d-1 and Cd-2

continuity over the range of u
Fo +1 cont ol points the c e is desc ibed ith +1For n+1 control points, the curve is described with n+1
blending functions
The range of u is divided into n+d subintervals by theThe range of u is divided into n+d subintervals by the 
n+d+1 knot values



B-Splines Curvesp

A bi b li hi h i t fA cubic b-spline which consists of 
three curve segments

Q3
Q4 Q5 n=5, d=4

2P1P 4P3P0P 5P 5+1 control points

4,0B 4,1B 4,2B 4,3B 4,4B 4,5B 5+1 blending functions
with degree 4-1

0u 1u 9u 5+4+1 knots
2u



Cubic B-Splines
Each control point is associated with a unique 
bl di f tiblending function.

⇒ (Local control) Each control point affects the shape of a 
l f t l dcurve only over a range of a parameter values, d curve 

sections, where its associated basis function is nonzero.

Q Q

2P1P 4P3P0P 5P

Q3
Q4 Q5

4,0B 4,1B 4,2B 4,3B 4,4B 4,5B

0u 1u 9u



B-Splines Curvesp
Knot vector : a set of subinterval endpoints in non-
decreasing sequencedecreasing sequence

},...,,{ 10 dnuuuU +=
☞ uniform, open uniform, nonuniform B-splines.

4,0B 4,1B 4,2B 4,3B 4,4B 4,5B

0u 1u 9u2u



B-Splines Basis Functions
Cox-deBoor Algorithm

:generate the basis functions recursively

uuuif1)u(B ≤≤

otherwise         ,0               
uuu  if        ,1)u(B 1kk1,k +≤≤=

 )u(B
uu

uu)u(B 1d,k
k1dk

k
d,k −

++ −
−

=

 )u(B
uu

uu                    1d,1k
dk

k1dk

−+
+

++

−
+

uu 1kdk ++ −



Uniform cubic B-spline basisUniform cubic B-spline basis 
functions

Knots are spaced at equal intervals of parameter.  
e g {0 1 2 3 4 5 6 7 8 9}e.g., {0,1,2,3,4,5,6,7,8,9} 
Bell-shaped basis function 
Each blending function B is defined over fourEach blending function Bk,4 is defined over four 
subintervals starting at knot value uk

40B 41B 42B 43B 44B 45B4,0B 4,1B 4,2B 4,3B 4,4B 4,5B

0u 1u 9u
Parametric range 

of curve



Basis functions of UniformBasis functions of Uniform 
Cubic B-splines

10 ≤≤
we get basis functions by 
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Uniform Cubic B-splines
ith cubic segment

∑ +−+−=
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k : local control point index
u : local control parameter

= 0k

10 ≤≤u : local control parameter,

A cubic B-spline is a series of m-2 curve 
h i i f

10 ≤≤ u
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Uniform Cubic B-splines
321032103 by  scaled are which  defined is BBBBPPPPQ

543254325

432143214
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Uniform Quadratic B-splines
Let d=n=3, we need n+d+1=7 knot values: 

{0 1 2 3 4 5 6}{0,1,2,3,4,5,6}. 
Get blending functions using Cox-deBoor Algorithm
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Uniform B-splines(Example)
The curve is defined from ud-1=2 to un+1=4 
We can get starting and ending positions 
(boundary condition) of  the curve:

)(
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2
1

3210 ppQppQ endbegin +=+=    

by applying u=2 and u=4 to the Q(u) .
In general, weighted average of d−1 control points.

Derivatives at the starting and ending position

'' QQ 2301 ',' ppQppQ endbegin −=−=   



Uniform Cubic B-splinesp
Using a general cubic polynomial expression and the
f ll b d dfollowing boundary conditions:
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We can get a matrix formulation:
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Convex Hull Property of B-Splines Curves

B-spline curve of degree d-1 must lie within the 
union of all such convex hulls formed by taking dunion of all such convex hulls formed by taking d
successive defining polygon vertices.



Uniform Cubic B-splines
The effect of multiple control points

⇒ i t l t t l i t b t th l f ti it⇒ interpolate control points but the loss of continuity.
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Non-uniform B-splinesp
Non-uniform interval 
of knot valuesof knot values 
To permit the spline 
to interpolate controlto interpolate control 
points by inserting 
multiple knots p
Knot vector is any 
non-decreasing 
sequence of knot 
values. 



Non-uniform B-splines
knot vector: [0,0,0,0,1,2,3,3,3,3]

nine segment:

are reduced to a single point876210 and,,,,, QQQQQQ
810 ,,, QQQ L

are reduced to a single point

are defined over the range 30 ≤≤ u543   and  ,, QQQ
876210 and ,,,,, QQQQQQ

knot vector [0,0,0,0,1,1,1,1] ≡ Bezier curve

control points30 , PP L control points30 , PP



B-Spline Surfaces
Given the following information: 

p

a set of m+1 rows and n+1 column control
points pi,j , where 1<= i<= m, 1<=j<=n;,j
a knot vector of h + 1 knots in the u-direction,

),...,,,( 210 huuuuU =

a knot vector of k + 1 knots in the v-direction,
),...,,,( 210 kvvvvV =

the degree p in the u-direction; and the degree
q in the v-direction;

), ,,,( 210 k

q ;



B-Spline Surfacesp
The B-spline surface defined by these information is 
th f ll i

∑∑=
n

ijqjpi

m

pvBuBvuQ ,,    )( )(),(

the following: 

∑∑
== j

jqjp
i 00



B-Spline Surfacesp
The coefficient of control point pi,j is the product of two one-
dimensional B-spline basis functions, one in the u-direction, Bi,p(u), 

d h h i h di i B ( ) All f h dand the other in the v-direction, Bj,q(v). All of these products are 
two-dimensional B-spline functions. The following figures show the 
basis functions of control points p2,0, p2,1, p2,2, p2,3, p2,4 and p2,5 



NURBS
NURBS(non-uniform rational B-spline)

Adding some relative weight to the control point
for extra control facilityy

Can represent more various curves such as circles
and cylindersand cylinders

More useful for interpolation

I i t t j ti t f tiInvariant w.r.t a projective transformation



NURBS
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Drawing Curves
Forward-differencing method : to plot a curve or 
a surface, a polynomial must be evaluated at , p y
successive t values with fixed increments.
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Drawing Curves
Recursive subdivision

stops when the control points get sufficiently
close to the curve

need flatness test

Bezier curve - divide the control pointsBezier curve divide the control points



Drawing Bezier Curves

00 QR =

2112

101

00

4/)(2/

2/)(

QQRR
QQR

Q

++=

+=

123 2/)( SRR +=

2211

30

2/)(
2/4/)(

QQS
SQQS

RS

+

++=

=

33

322 2/)(

QS
QQS

=

+=



Comparison of Surfacep


