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i Why we need surface models?

= All shapes can be described in terms of points.
But, it is impractical to enumerate the points
that comprise a shape

= We define shape indirectly through

expressions that relate certain properties of
points that comprise them.



Intrinsic and extrinsic properties

= Intrinsic properties
= B has four sides

= All four sides have equal
length

= All four angles are
Qo ......
= Extrinsic properties
= two horizontal sides >

= two vertical sides vertices
of B are at Po, P1, P2 and
P3

> <




i Intrinsic and extrinsic properties

= Shape definitions that use extrinsic properties
of the shape are dependent on the coordinate
system used.

m aline:y=3, 2<x<7
€ Axis dependency




i Axis Independence

A mathematical representation of a line/curve is axis
independent if its shape depends on only the
relative position of the points defining its
characteristic vectors and is independent of the
coordinate system used.



i Axis-independent shape definition

= Shape definitions that use intrinsic properties of the
shape are axis-independent.

X= (1_t) Py + 1P,

y=@1-1)p,, +1p,, 3 f - - —--
0<t<1

P = (P Pry) =(2,3)

P2 = (P2xs Pay) = (7,3)




i Curve & Surface Models

= Explicit/implicit
= Parametric/non-parametric

= Approximation

= polygon mesh : a collection of edges, vertices,
and polygons



Non metric e I
i representatlon

m X=X
y = f(x)

= successive values of y can be obtained
by plugging in successive values of x.

= easy to generate polygons or line
segments i

r—l-

= Single-valued function /
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‘L representatlon

= f(X,V¥,2)=0
= Define curves as solution of equation system
= E.g., acircle:

2 2 2 I

X +y =¥ /\:'\ ’
N
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i representatlon

= algebraic quadric surfaces
: f is a polynomial of degree <= 2

.l_
Ul
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f(x,y,z)=ax’+by’+cz*+2dxy +2eyz + 2xz
+2gx +2hy +2jz+ k=0
sphere: x* +y°+2°-1=0
cylinder : x* +y* -1=0
corn: x°*+y°—z°=0
paraboloid : x* + y* +z =0
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i representatlon

= Coefficients determine geometric properties

= Hard to render (have to solve non-linear
equation system)

= Can represent closed or multi-valued curves
= Easy to classify point-membership
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sphere: x* +y* +z°-1=0
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‘L Parametric Curve
x(t) = ast’ +a t* +a,t+a,
y(t) = ant® +ayt’® +a,t + a,
Z(t) = ay,t° + apt’ + ay,t + ay,
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i Parametric Curve (Example)

line from P, =(x,y,) to P, =(Xx,.y,)
X=(01-1)x +1x,
y=(1-1)y, +ty, 0<t<1
P, P, : control points R
t,1-t:blending functions
unit circle

AR
Q(u) = (cos(u/27),sin(u/27)) |/




i Parametric Curve Characteristics

= Simple to render
v ) = evaluate parameter function

i &

~—f .= Hard to check whether a point lies on
curve
(xf8), -"“'”/ = have to compute the inverse mapping from
< v (x,y)to ¢
—T = Can represent closed or multi-valued
1‘ curves
. wr = Curve or surface can be easily

translated or rotated

= Composite curves and surfaces can be
formed by piecewise descriptions



i Parametric Curve Characteristics

= No infinite slope problem

parametric form:

Q'(u) = (-sin(u/2x)/ 27x,cos(u/2x) 1 27,0) /

A

implicit form:x*+y*-1=0, z=0 \
== at x=1y=0,

N
J

the parametric derivative is (0,1/27,0)
implicit form f'(x,y,z2)=—x/y=

>



‘L Parametric Curve Characteristics

= Not unit form
(e.g.) a circle with radius 1 centered at the origin

A

/\ X (xic?sé’]
J bymam
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i Tangent line to a curve

= The straight line that gives the curve's slope at a

o B(;I(IIICEd from the derivative of the curve at the
point
i t=1
OO ol o ) o o]
ﬁ?(m \A]:'}"":D:'
derivative vector Eﬂ]‘ T 0 1t 0 11

(X'(1),y’(t) slope = (0)A(0)



i Piecewise Polynomial Curves

= Cut curve into segments and represent each
segment as a polynomial curve

= But how do we guarantee smoothness at the
joints? ( continuity problem)

N



i Continuity

= Implies a notion of smoothness at the
connection points

n Parametric continuity

= We view the curve or surface as a function
rather than a shape.

= Matching the parametric derivatives of
adjoining curve sections at their common
boundary

= You need a parameterization




i Parametric Continuity

h f}/’\ C° :a curveis continuous if it can be drawn
without lifting the pencil from the paper.

\/ (X,VY,2)-values of the two curves agree.

CodC o continui

C' : the derivative curve is also continuous,
l.e., (dx/dt,dy/dt,dz/dt) agree at their
junction.

Cp & C) & C,confinuity

C? : the direction and magnitude of
= d?/dt?[Q(t)] are equal at the join point



i Geometric Continuity

= Geometric continuity is defined using only
the shape of the curve

= Geometric smoothness independent of
parametrization

CO-1 n
U 11

0
:]JO C

Nng two seaments at a common end point (= \
|H CVVU Hll |L UL U UVJVILHTHTHTTHTVIL ] |UI.I | \ }

G':a curve's tangent direction changes continuously
(direction equal, but necessarily the magnitude)




The order of polynomial

i curves

a polynomial of order k +1 (= degree k)

P(u)=c, +C,u+C,u’+---+c.u”

= In computer graphics, usually degree = 3
= Sufficient flexibility w/o much cost

= The cubic is the lowest degree polynomial that
gives Cland C2 continuity



i Curve models

= Curve fitting techniques (interpolation
techniques)
= pass through each and every data point
= linear approximation, natural cubic spline

= Curve fairing techniques
(approximation techniques)

« few if any points on the curve pass through
each and every data points

= Hermite curve, Bezier curve, B-spline curve




‘L Natural Spline Curves

= Motivated by loftman’s spline
= Long narrow strip of wood or plastic
= Shaped by lead weights (called ducks)

= a cubic spline curve, g(u), composed of cubic
polynomials that interpolate the points Py, Py, ..., P,

degree n




i Natural Cubic Splines

= divide the interval [a,b] into nintervals [u;,u;, ], for /=0 to n-1.
The numbers u; are called knots.

= The vector [ugyUy, ...., U.4] is called a knot vector for the spline.
If the knots are equidistantly distributed in the interval [a,b], we
say the spline is uniform, otherwise we say it is non-uniform.




i Natural Cubic Splines

= each cubic spline curve is determined by the position
vectors, tangent vectors and parameter values

Qi (U) = Cjg +Cipll +CiU” +CygU°
q/'(u/'—1):p/—1 and q/'(U/) = P; for/=1to n

qg'W)=q,,) for/i=1to n-1
qg'"Ww)=q",W) for/=1to n-1




i Cubic Splines

= the polynomial coefficients of a cubic spline are
dependent on all »7 control points
— a change in any one segment affects the entire
curve

= It is inconvenient to represent the curve directly using
the coefficients C.

< the relationship between the shape of the curve
and the coefficients is not clear or intuitive

= rearrange the polynomial form into contro/ points
and basis functions (GEOMETRIC FORM)



‘L Specifying Curves

= Control Points

= A set of points that
influence the curve's
shape
= Knots
= Points that lie on the curve
= Subinterval endpoints

;itppruximatiﬁg




i Hermite Curves

s Parametric curves

= Defined by two end points with the derivative of the
curve at these points

Pa) ,P'(1)

P(0
P*(0)



i Hermite Curves(cubic polynomial)

x(t)=a,t’+a,t° +a,t+a,,
y(t) = a-23t3 T ‘3‘22’[2 +a,t+ay,
z(t) =a,t’ +a,,t° +a,t+a,,

P(t)=[x(t) y(t) z(t)]=a,t’+at*+at+a,
where &; =(a;,8,,a)

P(0)=a, a, =P(0)
P =a,+a,+a, +a, a, =P(0)
P'(0) =4, a, =—3P(0)° +3P(1)-2P'(0)-P' (1)

P')=3a,+2a, +a, a, =2P(0)-2P(1) +P'(0)+PQ)



P'(1)

P()
Hermite Curves (L\f

P(t)=B,(t)P(0)+ B,(t)P(1)+ B,P'(0)+ B,P'(1)
B,(t)=2t°-3t°+1  B,(t)=-2t°+3t°
B,(t) =t —2t* +t B,(t) =t°-1t°

= Hermite Blending
Functions

B, (t) : blending functions

P(0),P(1),P'(0),P'(D)
: geometric coefficients




i Hermite Curves

P(ty=[t* t* t 1]

2

0
1

-2 1
3 3-2
0 1
0 O

=T-M,-G,(=B-G)

M, :Hermite basis matrix
G,, :Hermite geometry vector

1_
—1

0
O_




= Polynomials including degree k forms a vector space A+*Z

= Specify a curve P(u) as a position in the vector space
P+ via the coordinate (P .Py)

and the basis (1t,t?,---,t")

b (t) =t*, 0<i<k:basisfunctions
Por 5P, s control points

= Q(t) = Z p:b; (t)
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shared

by most useful bases

= Convex hull property

k
if > 'b(t)=1 and basis functions are not negative over
the interval they are defined then any point on the
curve is a weighted average of its control points.

AN = no points on the curve lies
Py outside the polygon formed
by joining the control points

together
P17l = inexpensive means for

calculating the bound of a
curve or surface in space
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shared

by most useful bases

Affine invariance - any linear transformation or translation of
the control points defines a new curve that is the just the
transformation or translation of the original curve. (Perspective
transform is not affine.)

Variation diminishing - no straight line intersects a curve
more times than it intersects the curve's control polyline. It

implies that the complexity (i.e., turning and twisting) of the
curve is no more complex than the control polyline.




i Bezier Curves

= Developed by Pierre Bezier in the 1970's for
CAD/CAM operations. (PostScript drawing model)
= Represent a polynomial segment as

) Po P3
P(t)=> pJ, (1), 0<t<1
i—0
‘]n,i (t):n Citi (1_t)n_i P
P,

J,i(t) are the Bernstein functions
= basis or blending function of degree n
= used to scale or blend the control points



‘L Bezier blending functions

(a) (h)

0l

Note that > J, ;(t) =1 — convex hull property
i=0



i Bezier Curves (example)

Given p,(1,1), p,(2.3), p,(4,3)and p,(3,1),
find the Bezier curve.

P(t) =Zn:Jn,i(t), 0<t<1
— Since ther;oare four vertices,n = 3.
Jyo(t)=(@-t)° J,, (1) =3t(1-t)°
J;,(t)=3t*(1-t) Ji, ()=t
Thus, P(t) = pydso+ Pidss + Pads, + Padss
=(1-t)°p, +3t(L—t)° p, +3At*A-t) p, +t°p,




i Bezier Curves (Matrix Form)

P()=T-M,-G =BG
where G =[p,p, - p,]

B — _‘]n,O ‘]n,l ‘]n,n]
-1 3 -3 1] p, |
3 -6 3 0flp
P(t) = [t*t2t 1] 1
-3 3 0 0]|p,
1 0 0 0|l p,s,




i Bezier Curves

= The Bezier curve of order n+1 (degree n) has n+1
control points.

= We can think a Bezier curve as a weighted average of
all of its control points

Linear (n=1):  P(t) =(1-t)P, +tP,

Quadratic (n=2) : P(t) =(1-t)[(1-t)P, + tP, ]+ t[(1- )P, +tP,]
—= P(t)=(1-1)°P, + 2(1-t)tP, + t°P,
Cubic (n=3) : P(t) =(@1-t)’p, +3t(L-t)° p, +3t°(1L-t)p, +t°p,



Bezier Curves




i Bezier Curves

= A curve that is made of several Bézier curves is called a
composite Bezier curve or a Bezier spline curve.

= Tangential continuity between Bezier segments :
(@5 - @) =k(R - Ry)

= Continuity conditions create restrictions on control points

~1 Lot

C” continuity
Q'(1) =R'(0)
— (Qs _Qz) — (Rl - Ro)
- R1:Q3+R0_Q2
:Q3+(Q3_Q2)




Bezier Spline Curves

= (Z continuous two cubic Bezier segments V(%) and
W(t) with the control points (V,,V;,V,,V;)and
(WO/M/] /WZ/W,?)'
For cubic Bezier spline:
VI(0) =3(V,-Vy), VI(1)=3(V;-V,),
V"(0) = 6(V,— 2V, +V,), V'(1) = 6(V,— 2V, + V,)
Continuity at the junction point = W, =V,.
Continuity of the first derivative W'(0) = V'(1)
> W, -W,=V;-V, => W,=2V,-V,
re. W, depends on V, & V;
Continuity of the second derivative W"(0) =V"(1)
> W,-2W,+W,=V, -2V, +V,
2> W,=2W,-(2V,-V,)

&==) Only one control point W, of the Bezier curve W(t)is really free.



Characteristics of

i Bezier Curves

Convex hull

Affine invariance

Variation diminishing

The degree of the polynomial defining the curve

segment is one less than the number of defining
control points.

In CAGD applications, a curve may have a so
complicated shape that it cannot be represented by a
single Bézier cubic curve

= Global control (disadv.) : change a control point affects
the continuity of the curve.




i The de Casteljau Algorithm

= Evaluation of the Bezier curve function

= Repeated linear interpolation

= Example of a quadratic (degree 2) Bezier curve

b0 .,

bl ©

© b2

3 control points

b0 ¢
P

b1®

P
—

© b2

interpolate t = 0.2



‘L The de Casteljau Algorithm

o b0 o
bl1&ce—= O b2 blo—& > b2
the point on the curve repeating the procedure
Degree=3 and t=0.25
bo b3

bl i b2



i Parametric Surface

= Extend 2D parametric representation

= increase the number of parameters from one to
two, (s,t) in order to address each point in the 2D
spaces.

= express the 3D structure of the curved 2D surface
by introducing a parameter z coordinate, z(s,t),

/.e., a patch

X:fX(SIt)I y:fy(slt)l ZZfZ(S,t).
0<s,t<1

P00




Bicubic Bezier Surface

= Bezier patch:16 control points define one patch
= ease of interactivity & representation

P(s. 1) = Zn:(?](l—s)“‘ Sii(?](l—t)njtjpi,j

V
_1 —
(-1 3 -3 1] _poop01pozp03—
where B — 3 -6 3 0 P — p10 p11p12 p13
-3 0 30 P2oPauPxnPyas
1 4 1 0] | P3oP3iPsPas |




i B-Splines Curves

Q(u) = Zn: P B q(U)

P, : an input set of n+1 control points
B, 4 : blending function of degree d-1

= The polynomial curve has degree ¢-1 and Cd92
continuity over the range of U

= For n+1 control points, the curve is described with n+1
blending functions

= The range of U is divided into n+d subintervals by the
n+d+1 knot values



i B-Splines Curves

A cubic b-spline which consists of
three curve segments

Qg.—QlL~ n=5, d=4
l

P, 1P, | <<= 5+1 control points

!
. B

.. <——= o>+1 blending functions
with degree 4-1

| I ]
n

U, 2—— 5+4+1 knots




i Cubic B-Splines

= Each control point is associated with a unique
blending function.

— (Local control) Each control point affects the shape of a

curve only over a range of a parameter values, d curve
sections, where its associated basis function is nonzero.




B-Splines Curves

= Knot vector : a set of subinterval endpoints in non-
decreasing sequence

U = {Ug, Uy Uy}
= yniform, open uniform, nonuniform B-splines.

By B,4 B 4 B,4 B4,4 Bs,4




i B-Splines Basis Functions

= Cox-deBoor Algorithm

:generate the basis functions recursively

B,.(u)=1, f u <u<u,,
0, otherwise
u-—u
By q(Uu)= “— B 41 (U)

uk+d+l o uk

4+ uk+d_u

B 141 (U)

uk+d o uk+1



| InifAarm |h
unitorm CUbIC

i functlons

Knots are spaced at equal intervals of parameter.
e.g., {0,1,2,3,4,5,6,7,8,9}

= Bell-shaped basis function

= Each blending function B, , is defined over four
subintervals starting at knot value u,

CT
Uf)

'CJ

Parametnc range
of curve



Basis functions of Uniform

‘_L Cu b B-splines
Inu; < U < U,;,,, we get basis functions by
substituting 0 < u < 1.

B (U) = =(1- u)°

B,(u) = %(3U3 ~6U’+ 4)

Bz(u):%(—u3+3u2+3u +1)

1
B,(u) = Eug’




i Uniform Cubic B-splines

= ith cubic segment

Q/(U) — Z p/—3+kB/—3+k(u)

K : local control point index
¢ : local control parameter, 0 < v <1

A cubic B-spline is a series of m-2 curve

segments, Q,,Q,,---, @, that approximate a series of
m+1 control points 2,7,...,P, m>3



i Uniform Cubic B-splines

@;isd
Q,iscC

Q. is d

efined
efinec

efined

RARP, W
RPPP, W
PPPF, W

NIC
NIC

NIC

n are scaled by B,8,8,5,
n are scaled by 5,8,8.8,

N are scaled by B,B.,8,B:

Degree =4
P:I ’-J__.f #,UEEL—EE T

,fDEE'TEE =2




i Uniform Quadratic B-splines

s Let d=n=3, we need n+d+1=/knot values:
{OI1I2I3I4I5I6}'
= Get blending functions using Cox-deBoor Algorithm

Bo,3(u):_ 02( ) —Blz( )

Read text book!!

Qi(u) Z p| 2+k - 2+k,3(u)

k=0

2 3
(c) (d)
FIGURE 8-42 Periodic B-spline blending functions for n = d = 3 and a uniform,
integer knot vector.



i Uniform B-splines(Example)

= The curve is defined from uy,=2 to u.,,=4

= We can get starting and ending positions
(boundary condition) of the curve:

1
Qbegin — E( pl) Qend (pz + p3)

by applying u=2 and u=4 to the Q(u) .
In general, weighted average of d-1 control points.

= Derivatives at the starting and ending position

leegin = Py — Po, Q end = P3 = Ps



i Uniform Cubic B-splines

= Using a general cubic polynomial expression and the
following boundary conditions:
Q(0) = £ (Po+ 4P +P:) QUL = (s +4p, +py)

0y = L _ 1y - Ln
Q(O)—z(pz Po) Q'(1) 2(|o3 P,)

m===)> \We can get a matrix formulation:

-1 3 -3 1]|p,
3-6 3 0f|p,
-3 0 3 0l|p,
1 4 1 0]|p,

Q. (u) =[u3 u?zu 1]%




i Convex Hull Property of B-Splines Curves

= B-spline curve of degree d-1 must lie within the
union of all such convex hulls formed by taking ¢
successive defining polygon vertices.



i Uniform Cubic B-splines

= The effect of multiple control points
= interpolate control points but the loss of continuity.

!_{1-1"1
fah ,-'i T
L]
Fa
L]
F ; .-
o
-I—--' M
P
als
I?f:.f i ]
(b5 I
S
_ Yoo LN
e
_I—'---'-F »
P
P
In particular, a control point cen be interpolated withoot the effect thar

multiplicity
1 G, continuous
2 G, continuous
3 G, continuous



i Non-uniform B-splines

= Non-uniform interval
of knot values

= To permit the spline
to interpolate control
points by inserting
multiple knots

= Knot vector is any
non-decreasing
sequence of knot
values.




i Non-uniform B-splines

= knot vector: [0,0,0,0,1,2,3,3,3,3]

nine segment: @,,Q,, -, 0,
Q,,0Q,,0,,0;,Q,, and ¢, are reduced to a single point

Q;,0Q,, and Q. are defined over therange 0 <y <3
= knot vector [0,0,0,0,1,1,1,1] = Bezier curve
A,,--- P, control points



i B-Spline Surfaces

= Given the following information:
= a set of m+1 rows and m+1 column control
points Pij s where 1<=i<=m, 1<=j<=n;
= a knot vector of #+ 1 knots in the «direction,
U = (uy, U, U,,...,u,)

= a knot vector of £+ 1 knots in the w-direction,
V =(V,,V, Ve,V )

= the degree p in the w-direction; and the degree
g in the wdirection;



i B-Spline Surfaces

The B-spline surface defined by these information is
the following:




B-Spline Surfaces

The coefficient of control point p, ;is the product of two one-
dimensional B-spline basis functions, one in the «direction, B, (u),
and the other in the ~direction, B; (V). All of these products are
two-dimensional B-spline functions. The following figures show the
basis functions of control points p, o, P>1, P22, P23, P24 @and p; s




i NURBS

= NURBS(non-uniform rational B-spline)

=« Adding some relative weight to the control point
for extra control facility

= Can represent more various curves such as circles
and cylinders

= More useful for interpolation

« Invariant w.r.t a projective transformation



i NURBS

w
P/ — (W/X/IW/y/IW/Z/IW/)

E pw.B. (u) B
. : (uw
P(u) =12 R (v) =— i (U)

> w,B, (u) D> B(uw,
/=0 j=0

= Z PR (U)
=0

w , = weight

/

ow, =1 for all i = R, (v)=58,,()

o extra shape parameter
oW, increase = curve is pulled toward control point P,



i Drawing Curves

= Forward-differencing method : to plot a curve or
a surface, a polynomial must be evaluated at
successive t values with fixed increments.

For P(t)=at’ + bt +ct+d,0<t <1
P=P@iln)y=a(|n)+b([ln)+cii/n)+d
P.—F=a{((/+1)/n)’ —(i/n)’}

+b{((/ +1)/ n)* = (7 [ n)*}+ c{((F +1) [ n) - (i | n)}

A, :i3(3/2+3/+1)+£2(2/+1)+£
" n n

. c 2b
A=A —A ,=6(/+1)—= +—
2,/ 1,/+1 1,/ ( )/73 /72

6a
A3,/ = A2,/+1 - A2,/ = F



i Drawing Curves

s Recursive subdivision

= stops when the control points get sufficiently
close to the curve

= heed flatness test

= Bezier curve - divide the control points



‘L Drawing Bezier Curves

Ry = @

Ry =(Q, +@,)/2
R,=R, [2+(Q,+Q,)/4
R;=(R,+5,)/2

50 =R;

5, =(0Q,+Q,)/4+5,]/2
52:(02"'03)/2
5;=0;




Comparison of Surface

Comparison of Four Different Forms of Parametric Cubic Curves

Liniform MMonuntlform

Hermmite Bérier B-Spline B-spline
Convex hull N A e Yes Yes
defined by
control points
Interpolates Yes Yes Mo Mo
soIme control
points
Interpolates all Yes Mo Mo Mo
control points
Ease of Good Best Average High
subdivision
Contunuities "[: ! {'._'i l:ff'i
inherent in o Y G- e
representation
Continuities i, {'_'.'i c=
achieved casily &' eh S GF
Mumber of | i | | A

paramelers

controlling acurve

sSegment

“Except for special case discussed in Section 9.2,



