Curves and Surfaces

Intro. to Computer Graphics
Spring 2008, Y. G. Shin

Representation of Curves and Surfaces

- Key words: surface modeling, parametric surface, continuity, control points, basis functions, Bezier curve, B -spline curve

Why we need surface models?

- All shapes can be described in terms of points. But, it is impractical to enumerate the points that comprise a shape
- We define shape indirectly through expressions that relate certain properties of points that comprise them.

Intrinsic and extrinsic properties

- Intrinsic properties
- B has four sides
- All four sides have equal length
- All four angles are 90́.......
- Extrinsic properties
- two horizontal sides

- two vertical sides vertices of B are at Po, P1, P2 and P3

Intrinsic and extrinsic properties

- Shape definitions that use extrinsic properties of the shape are dependent on the coordinate system used.
- a line: $y=3,2 \leq x \leq 7$
\leftarrow Axis dependency

Axis Independence

A mathematical representation of a line/curve is axis independent if its shape depends on only the relative position of the points defining its characteristic vectors and is independent of the coordinate system used.

Axis-independent shape definition

- Shape definitions that use intrinsic properties of the shape are axis-independent.

$$
\begin{aligned}
& x=(1-t) p_{1 x}+t p_{2 x} \\
& y=(1-t) p_{1 y}+t p_{2 y} \\
& 0 \leq t \leq 1 \\
& p_{1}=\left(p_{1 x}, p_{1 y}\right)=(2,3) \\
& p_{2}=\left(p_{2 x}, p_{2 y}\right)=(7,3)
\end{aligned}
$$

Curve \& Surface Models

- Explicit/implicit
- Parametric/non-parametric
- Approximation
- polygon mesh : a collection of edges, vertices, and polygons

Nonparametric explicit representation

- $x=x$
$y=f(x)$
- successive values of y can be obtained by plugging in successive values of x.
- easy to generate polygons or line segments
- single-valued function

Nonparametric implicit representation

- $f(x, y, z)=0$
- Define curves as solution of equation system
- E.g., a circle:

$$
\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}
$$

Nonparametric implicit representation

- algebraic quadric surfaces
: f is a polynomial of degree $<=2$

$$
\begin{gathered}
f(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z \\
\\
+2 g x+2 h y+2 j z+k=0 \\
\text { sphere: } x^{2}+y^{2}+z^{2}-1=0 \\
\text { cylinder: } x^{2}+y^{2}-1=0 \\
\text { corn: } x^{2}+y^{2}-z^{2}=0 \\
\text { paraboloid }: x^{2}+y^{2}+z=0
\end{gathered}
$$

Nonparametric implicit representation

- Coefficients determine geometric properties
- Hard to render (have to solve non-linear equation system)
- Can represent closed or multi-valued curves
- Easy to classify point-membership

$$
\text { sphere: } x^{2}+y^{2}+z^{2}-1=0
$$

Parametric Curve

$$
\begin{aligned}
& x(t)=a_{13} t^{3}+a_{12} t^{2}+a_{11} t+a_{10} \\
& y(t)=a_{23} t^{3}+a_{22} t^{2}+a_{21} t+a_{20} \\
& z(t)=a_{33} t^{3}+a_{32} t^{2}+a_{31} t+a_{30}
\end{aligned}
$$

Parametric Curve (Example)

line from $P_{1}=\left(x_{1}, y_{1}\right)$ to $P_{2}=\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
x= & (1-t) x_{1}+t x_{2} \\
y= & (1-t) y_{1}+t y_{2} \quad 0 \leq t \leq 1 \\
& P_{1}, P_{2}: \text { control points } \\
& t, 1-t: \text { blending functions }
\end{aligned}
$$

unit circle

$$
Q(u)=(\cos (u / 2 \pi), \sin (u / 2 \pi))
$$

Parametric Curve Characteristics

- Simple to render

- evaluate parameter function
- Hard to check whether a point lies on curve
- have to compute the inverse mapping from (x, y) to t
- Can represent closed or multi-valued curves
- Curve or surface can be easily translated or rotated
- Composite curves and surfaces can be formed by piecewise descriptions

Parametric Curve Characteristics

- No infinite slope problem
parametric form:

$$
Q^{\prime}(u)=(-\sin (u / 2 \pi) / 2 \pi, \cos (u / 2 \pi) / 2 \pi, 0)
$$

implicit form: $x^{2}+y^{2}-1=0, \quad z=0$
\Longrightarrow at $x=1, y=0$,
the parametric derivative is $(0,1 / 2 \pi, 0)$ implicit form $f^{\prime}(x, y, z)=-x / y \Rightarrow \infty$

Parametric Curve Characteristics

- Not unit form
(e.g.) a circle with radius 1 centered at the origin

Tangent line to a curve

- The straight line that gives the curve's slope at a point
- Deduced from the derivative of the curve at the point

Piecewise Polynomial Curves

- Cut curve into segments and represent each segment as a polynomial curve
- But how do we guarantee smoothness at the joints? (continuity problem)

Continuity

- Implies a notion of smoothness at the connection points
- Parametric continuity
- We view the curve or surface as a function rather than a shape.
- Matching the parametric derivatives of adjoining curve sections at their common boundary
- You need a parameterization

Parametric Continuity

$\mathrm{C}_{0} \& \mathrm{C}_{1}$ continuity
C^{2} : the direction and magnitude of $\mathrm{d}^{2} / \mathrm{dt}^{2}[\mathrm{Q}(\mathrm{t})]$ are equal at the join point

Geometric Continuity

- Geometric continuity is defined using only the shape of the curve
- Geometric smoothness independent of parametrization
G^{0} : joining two segments at a common end point ($=C^{0}$)
G^{1} : a curve's tangent direction changes continuously (direction equal, but necessarily the magnitude)

The order of polynomial curves

a polynomial of order $\mathrm{k}+1$ (三degree k)

$$
\mathrm{P}(\mathrm{u})=\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{u}+\mathrm{c}_{2} \mathrm{u}^{2}+\cdots+\mathrm{c}_{\mathrm{k}} \mathrm{u}^{\mathrm{k}}
$$

- In computer graphics, usually degree $=3$
- Sufficient flexibility w/o much cost
- The cubic is the lowest degree polynomial that gives \boldsymbol{C}^{1} and \boldsymbol{C}^{2} continuity

Curve models

- Curve fitting techniques (interpolation techniques)
- pass through each and every data point
- linear approximation, natural cubic spline

- Curve fairing techniques (approximation techniques)
- few if any points on the curve pass through each and every data points
- Hermite curve, Bezier curve, B-spline curve

Natural Spline Curves

- Motivated by loftman's spline
- Long narrow strip of wood or plastic
- Shaped by lead weights (called ducks)
- a cubic spline curve, $q(u)$, composed of cubic polynomials that interpolate the points $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$
- \boldsymbol{C}^{n-1} continuity can be achieved from splines of degree \boldsymbol{n}

Natural Cubic Splines

- divide the interval $[\mathrm{a}, \mathrm{b}]$ into n intervals $\left[\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right]$, for $i=0$ to $n-1$. The numbers u_{i} are called knots.
- The vector $\left[u_{0}, u_{1}, \ldots, u_{i-1}\right]$ is called a knot vector for the spline. If the knots are equidistantly distributed in the interval $[a, b]$, we say the spline is uniform, otherwise we say it is non-uniform.

Natural Cubic Splines

- each cubic spline curve is determined by the position vectors, tangent vectors and parameter values

$$
q_{i}(u)=c_{i 0}+c_{i 1} u+c_{i 2} u^{2}+c_{i 3} u^{3}
$$

$$
\begin{array}{ll}
q_{i}\left(u_{i-1}\right)=p_{i-1} \text { and } \quad q_{i}\left(u_{i}\right)=p_{i} & \text { for } i=1 \text { to } n \\
q_{i}^{\prime}\left(u_{j}\right)=q^{\prime}{ }^{\prime+1}\left(u_{i}\right) & \text { for } i=1 \text { to } n-1 \\
q_{i}^{\prime \prime}\left(u_{i}\right)=q^{\prime \prime}{ }_{i+1}\left(u_{i}\right) & \text { for } i=1 \text { to } n-1
\end{array}
$$

Cubic Splines

- the polynomial coefficients of a cubic spline are dependent on all n control points
\rightarrow a change in any one segment affects the entire curve
- It is inconvenient to represent the curve directly using the coefficients C_{i}
\leftarrow the relationship between the shape of the curve and the coefficients is not clear or intuitive
\Rightarrow rearrange the polynomial form into control points and basis functions (GEOMETRIC FORM)

Specifying Curves

- Control Points
- A set of points that influence the curve's shape
- Knots
- Points that lie on the curve
- Subinterval endpoints

Hermite Curves

- Parametric curves
- Defined by two end points with the derivative of the curve at these points

Hermite Curves(cubic polynomial)

$$
\begin{aligned}
& x(t)=a_{13} t^{3}+a_{12} t^{2}+a_{11} t+a_{10} \\
& y(t)=a_{23} t^{3}+a_{22} t^{2}+a_{21} t+a_{20} \\
& z(t)=a_{33} t^{3}+a_{32} t^{2}+a_{31} t+a_{30} \\
& \mathrm{P}(\mathrm{t})=\left[\begin{array}{lll}
\mathrm{x}(\mathrm{t}) & \mathrm{y}(\mathrm{t}) \quad \mathrm{z}(\mathrm{t})
\end{array}\right]=\mathbf{a}_{3} \mathrm{t}^{3}+\mathbf{a}_{2} \mathrm{t}^{2}+\mathbf{a}_{1} \mathrm{t}+\mathbf{a}_{0} \\
& \text { where } \mathbf{a}_{\mathrm{i}}=\left(\mathrm{a}_{1 \mathrm{i}}, \mathrm{a}_{2 \mathrm{i}}, \mathrm{a}_{3 \mathrm{i}}\right) \\
& \mathrm{P}(0)=\mathbf{a}_{0} \\
& \mathbf{a}_{0}=\mathrm{P}(0) \\
& \mathrm{P}(1)=\mathrm{a}_{3}+\mathrm{a}_{2}+\mathrm{a}_{1}+\mathrm{a}_{0} \quad \mathrm{a}_{1}=\mathrm{P}(0) \\
& \mathrm{P}^{\prime}(0)=\mathbf{a}_{1} \\
& \mathbf{a}_{2}=-3 \mathrm{P}(0)^{2}+3 \mathrm{P}(1)-2 \mathrm{P}^{\prime}(0)-\mathrm{P}^{\prime}(1) \\
& P^{\prime}(1)=3 \mathbf{a}_{3}+2 \mathbf{a}_{2}+\mathbf{a}_{1} \\
& \mathbf{a}_{3}=2 \mathrm{P}(0)-2 \mathrm{P}(1)+\mathrm{P}^{\prime}(0)+\mathrm{P}(1)
\end{aligned}
$$

Hermite Curves

$$
P(t)=B_{1}(t) P(0)+B_{2}(t) P(1)+B_{3} P^{\prime}(0)+B_{4} P^{\prime}(1)
$$

$$
\begin{array}{ll}
B_{1}(t)=2 t^{3}-3 t^{2}+1 & B_{2}(t)=-2 t^{3}+3 t^{2} \\
B_{3}(t)=t^{3}-2 t^{2}+t & B_{4}(t)=t^{3}-t^{2}
\end{array}
$$

$B_{i}(t)$: blending functions
$\mathrm{P}(0), \mathrm{P}(1), \mathrm{P}^{\prime}(0), \mathrm{P}^{\prime}(1)$
: geometric coefficients

Hermite Curves

$$
\begin{aligned}
\mathrm{P}(\mathrm{t}) & =\left[\begin{array}{llll}
\mathrm{t}^{3} & \mathrm{t}^{2} & \mathrm{t} & 1
\end{array}\right]\left[\begin{array}{llll}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{P}_{0} \\
\mathrm{P}_{1} \\
\mathrm{P}_{0}^{\prime} \\
\mathrm{P}_{1}^{\prime}
\end{array}\right] \\
& =\mathrm{T} \cdot \mathrm{M}_{\mathrm{H}} \cdot \mathrm{G}_{\mathrm{H}}\left(=\mathrm{B} \cdot \mathrm{G}_{\mathrm{H}}\right)
\end{aligned}
$$

M_{H} :Hermite basis matrix
G_{H} :Hermite geometry vector

Represent Polynomials with basis functions

- Polynomials including degree k forms a vector space P^{k+1}
- Specify a curve $P(u)$ as a position in the vector space p^{k+1} via the coordinate $\left(\mathrm{p}_{0}, \cdots, \mathrm{p}_{\mathrm{k}}\right)$ and the basis $\left(1, t, t^{2}, \cdots, t^{k}\right)$

$$
\begin{aligned}
& b_{i}(t)=t^{k}, \quad 0 \leq i \leq k: \text { basis functions } \\
& p_{0}, \cdots, p_{k}: \text { control points } \\
& \Rightarrow Q(t)=\sum_{i=0}^{k} p_{i} b_{i}(t)
\end{aligned}
$$

Properties shared

by most useful bases

- Convex hull property
if $\sum_{i=0}^{k} b_{i}(t)=1$ and basis functions are not negative over the interval they are defined then any point on the
curve is a weighted average of its control points.

\Rightarrow no points on the curve lies outside the polygon formed by joining the control points together
\Rightarrow inexpensive means for calculating the bound of a curve or surface in space

Properties shared by most useful bases

- Affine invariance - any linear transformation or translation of the control points defines a new curve that is the just the transformation or translation of the original curve. (Perspective transform is not affine.)
- Variation diminishing - no straight line intersects a curve more times than it intersects the curve's control polyline. It implies that the complexity (i.e., turning and twisting) of the curve is no more complex than the control polyline.

Bezier Curves

- Developed by Pierre Bézier in the 1970's for CAD/CAM operations. (PostScript drawing model)
- Represent a polynomial segment as

$$
\begin{aligned}
& P(t)=\sum_{i=0}^{n} p_{i} J_{n, i}(t), 0 \leq t \leq 1 \\
& J_{n, i}(t)={ }_{n} C_{i} t^{i}(1-t)^{n-i}
\end{aligned}
$$

$\mathrm{J}_{\mathrm{n}, \mathrm{i}}(\mathrm{t})$ are the Bernstein functions

- basis or blending function of degree n
- used to scale or blend the control points

Bezier blending functions

Bezier Curves (example)

Given $p_{0}(1,1), p_{1}(2,3), p_{2}(4,3)$ and $p_{3}(3,1)$, find the Bezier curve.

$$
P(t)=\sum_{i=0}^{n} J_{n, i}(t), \quad 0 \leq t \leq 1
$$

\rightarrow Since there are four vertices, $\mathrm{n}=3$.

$$
\begin{array}{ll}
J_{3,0}(t)=(1-t)^{3} & J_{3,1}(t)=3 t(1-t)^{2} \\
J_{3,2}(t)=3 t^{2}(1-t) & J_{3,3}(t)=t^{3}
\end{array}
$$

Thus, $P(t)=p_{0} J_{3,0}+p_{1} J_{3,1}+p_{2} J_{3,2}+p_{3} J_{3,3}$

$$
=(1-t)^{3} p_{0}+3 t(1-t)^{2} p_{1}+3 t^{2}(1-t) p_{2}+t^{3} p_{3}
$$

Bezier Curves (Matrix Form)

$$
\begin{aligned}
& P(t)=T \cdot M_{B} \cdot G=B \cdot G \\
& \text { where } \quad G=\left[\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{n}
\end{array}\right]^{T} \\
& B=\left[\begin{array}{llll}
J_{n, 0} & J_{n, 1} & \cdots & J_{n, n}
\end{array}\right] \\
& P(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
\end{aligned}
$$

Bezier Curves

- The Bezier curve of order $\boldsymbol{n}+1$ (degree \boldsymbol{n}) has $\boldsymbol{n}+1$ control points.
- We can think a Bezier curve as a weighted average of all of its control points

Linear $(\mathrm{n}=1): \quad \mathrm{P}(\mathrm{t})=(1-\mathrm{t}) \mathrm{P}_{0}+\mathrm{tP}_{1}$
Quadratic $(n=2): P(t)=(1-t)\left[(1-t) P_{0}+t P_{1}\right]+t\left[(1-t) P_{1}+t P_{2}\right]$

$$
\Longrightarrow \mathrm{P}(\mathrm{t})=(1-\mathrm{t})^{2} \mathrm{P}_{0}+2(1-t) t P_{1}+\mathrm{t}^{2} \mathrm{P}_{2}
$$

$\operatorname{Cubic}(\mathrm{n}=3): \mathrm{P}(\mathrm{t})=(1-t)^{3} p_{0}+3 t(1-t)^{2} p_{1}+3 t^{2}(1-t) p_{2}+t^{3} p_{3}$

Bezier Curves

Bezier Curves

- A curve that is made of several Bézier curves is called a composite Bézier curve or a Bézier spline curve.
- Tangential continuity between Bezier segments :

$$
\left(Q_{3}-Q_{2}\right)=k\left(R_{1}-R_{0}\right)
$$

- Continuity conditions create restrictions on control points

C^{1} continuity

$$
\begin{aligned}
& Q^{\prime}(1)=R^{\prime}(0) \\
& \begin{array}{c}
\Rightarrow\left(Q_{3}-Q_{2}\right)=\left(R_{1}-R_{0}\right) \\
\Rightarrow R_{1}=Q_{3}+R_{0}-Q_{2} \\
\quad=Q_{3}+\left(Q_{3}-Q_{2}\right)
\end{array}
\end{aligned}
$$

Bezier Spline Curves

C^{2} continuous two cubic Bezier segments $V(t)$ and $W(t)$ with the control points ($V_{0}, V_{1}, V_{2}, V_{3}$) and ($W_{0}, W_{1}, W_{2}, W_{3}$).

- For cubic Bezier spline:

$$
\begin{aligned}
& V^{\prime}(0)=3\left(V_{1}-V_{0}\right), \quad V^{\prime}(1)=3\left(V_{3}-V_{2}\right), \\
& V^{\prime \prime}(0)=6\left(V_{0}-2 V_{1}+V_{2}\right), V^{\prime \prime}(1)=6\left(V_{1}-2 V_{2}+V_{3}\right)
\end{aligned}
$$

- Continuity at the junction point $\rightarrow \mathrm{W}_{0}=\mathrm{V}_{3}$.
- Continuity of the first derivative $\mathrm{W}^{\prime}(0)=\mathrm{V}^{\prime}(1)$
$\rightarrow \mathrm{W}_{1}-\mathrm{W}_{0}=\mathrm{V}_{3}-\mathrm{V}_{2} \Rightarrow \mathrm{~W}_{1}=2 \mathrm{~V}_{3}-\mathrm{V}_{2}$
i.e. W_{1} depends on $V_{2} \& V_{3}$
- Continuity of the second derivative $\mathrm{W}^{\prime \prime}(0)=\mathrm{V}^{\prime}(1)$
$\rightarrow \mathrm{W}_{0}-2 \mathrm{~W}_{1}+\mathrm{W}_{2}=\mathrm{V}_{1}-2 \mathrm{~V}_{2}+\mathrm{V}_{3}$
$\rightarrow \mathrm{W}_{2}=2 \mathrm{~W}_{1}-\left(2 \mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
Only one control point W_{3} of the Bezier curve $W(t)$ is really free.

Characteristics of Bezier Curves

- Convex hull
- Affine invariance
- Variation diminishing
- The degree of the polynomial defining the curve segment is one less than the number of defining control points.
- In CAGD applications, a curve may have a so complicated shape that it cannot be represented by a single Bézier cubic curve
- Global control (disadv.) : change a control point affects the continuity of the curve.

The de Casteljau Algorithm

- Evaluation of the Bezier curve function
- Repeated linear interpolation
- Example of a quadratic (degree 2) Bezier curve

3 control points
interpolate $\mathrm{t}=0.2$

The de Casteljau Algorithm

the point on the curve

repeating the procedure

Degree $=3$ and $\mathrm{t}=0.25$

Parametric Surface

- Extend 2D parametric representation
- increase the number of parameters from one to two, $(\mathrm{s}, \mathrm{t}$) in order to address each point in the 2D spaces.
- express the 3D structure of the curved 2D surface by introducing a parameter z coordinate, $z(s, t)$, i.e., a patch

$$
\begin{gathered}
x=f_{x}(s, t), \quad y=f_{y}(s, t), \quad z=f_{z}(s, t) . \\
0 \leq s, t \leq 1
\end{gathered}
$$

Bicubic Bezier Surface

- Bezier patch:16 control points define one patch
- ease of interactivity \& representation

$$
\mathbf{P}(s, t)=\sum_{i=0}^{n}\binom{n}{i}(1-s)^{n-i} s^{i} \sum_{j=0}^{n}\binom{n}{j}(1-t)^{n-j} t^{j} \mathbf{P}_{i, j}
$$

$$
\text { where } \quad \mathrm{B}=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right] \quad \mathrm{P}=\left[\begin{array}{l}
\mathrm{p}_{00} \mathrm{p}_{01} \mathrm{p}_{02} \mathrm{p}_{03} \\
\mathrm{p}_{10} \mathrm{p}_{11} \mathrm{p}_{12} \mathrm{p}_{13} \\
\mathrm{p}_{20} \mathrm{p}_{21} \mathrm{p}_{22} \mathrm{p}_{23} \\
\mathrm{p}_{30} \mathrm{p}_{31} \mathrm{p}_{32} \mathrm{p}_{33}
\end{array}\right]
$$

B-Splines Curves

$$
Q(u)=\sum_{k=0}^{n} P_{k} B_{k, d}(u)
$$

P_{k} : an input set of $n+1$ control points
$B_{k, d}$: blending function of degree $d-1$

- The polynomial curve has degree $d-1$ and C^{d-2} continuity over the range of u
- For $n+1$ control points, the curve is described with $n+1$ blending functions
- The range of u is divided into $n+d$ subintervals by the $n+d+1$ knot values

B-Splines Curves

A cubic b-spline which consists of three curve segments

Cubic B-Splines

- Each control point is associated with a unique blending function.
\Rightarrow (Local contro) Each control point affects the shape of a curve only over a range of a parameter values, d curve sections, where its associated basis function is nonzero.

B-Splines Curves

- Knot vector : a set of subinterval endpoints in nondecreasing sequence

$$
U=\left\{u_{0}, u_{1}, \ldots, u_{n+d}\right\}
$$

uniform, open uniform, nonuniform B-splines.

B-Splines Basis Functions

- Cox-deBoor Algorithm
:generate the basis functions recursively

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{k}, 1}(\mathrm{u})=1, \quad \text { if } \quad \mathrm{u}_{\mathrm{k}} \leq \mathrm{u} \leq \mathrm{u}_{\mathrm{k}+1} \\
& 0, \quad \text { otherwise } \\
& \mathrm{B}_{\mathrm{k}, \mathrm{~d}}(\mathrm{u})=\frac{\mathrm{u}-\mathrm{u}_{\mathrm{k}}}{\mathrm{u}_{\mathrm{k}+\mathrm{d}+1}-\mathrm{u}_{\mathrm{k}}} \mathrm{~B}_{\mathrm{k}, \mathrm{~d}-1}(\mathrm{u}) \\
& +\frac{\mathrm{u}_{\mathrm{k}+\mathrm{d}}-\mathrm{u}}{\mathrm{u}_{\mathrm{k}+\mathrm{d}}-\mathrm{u}_{\mathrm{k}+1}} \mathrm{~B}_{\mathrm{k}+1, \mathrm{~d}-1}(\mathrm{u})
\end{aligned}
$$

Uniform cubic B-spline basis functions

- Knots are spaced at equal intervals of parameter. e.g., $\{0,1,2,3,4,5,6,7,8,9\}$
- Bell-shaped basis function
- Each blending function $\mathbf{B}_{\mathrm{k}, 4}$ is defined over four subintervals starting at knot value u_{k}

Basis functions of Uniform Cubic B-splines

In $u_{i} \leq u \leq u_{i+1}$, we get basis functions by substituting $0 \leq u \leq 1$.

$$
\begin{aligned}
& \mathrm{B}_{0}(\mathrm{u})=\frac{1}{6}(1-\mathrm{u})^{3} \\
& \mathrm{~B}_{1}(\mathrm{u})=\frac{1}{6}\left(3 \mathrm{u}^{3}-6 \mathrm{u}^{2}+4\right) \\
& \mathrm{B}_{2}(\mathrm{u})=\frac{1}{6}\left(-\mathrm{u}^{3}+3 \mathrm{u}^{2}+3 \mathrm{u}+1\right) \\
& \mathbf{B}_{3}(\mathrm{u})=\frac{1}{6} \mathbf{u}^{3}
\end{aligned}
$$

Uniform Cubic B-splines

- ith cubic segment

$$
Q_{i}(u)=\sum_{k=0}^{3} p_{i-3+k} B_{i-3+k}(u)
$$

k : local control point index
u : local control parameter, $0 \leq u \leq 1$
A cubic B-spline is a series of m-2 curve segments, $Q_{3}, Q_{4}, \cdots, Q_{m}$, that approximate a series of $m+1$ control points $P_{0}, P_{1}, \cdots, P_{m}, \quad m \geq 3$

Uniform Cubic B-splines

Q_{3} is defined $P_{0} P_{1} P_{2} P_{3}$ which are scaled by $B_{0} B_{1} B_{2} B_{3}$
Q_{4} is defined $P_{1} P_{2} P_{3} P_{4}$ which are scaled by $B_{1} B_{2} B_{3} B_{4}$
Q_{5} is defined $P_{2} P_{3} P_{4} P_{5}$ which are scaled by $B_{2} B_{3} B_{4} B_{5}$

Uniform Quadratic B-splines

- Let $d=n=3$, we need $n+d+1=7$ knot values:

$$
\{0,1,2,3,4,5,6\} .
$$

- Get blending functions using Cox-deBoor Algorithm

$B_{0,3}(u)=\frac{u}{2} B_{0,2}(u)+\frac{3-u}{2} B_{1,2}(u)$
Read text book!!

$Q_{i}(u)=\sum_{k=0}^{2} p_{i-2+k} B_{i-2+k, 3}(u)$

integer knot vector

Uniform B-splines(Example)

- The curve is defined from $u_{d-1}=2$ to $u_{n+1}=4$
- We can get starting and ending positions (boundary condition) of the curve:

$$
Q_{\text {begin }}=\frac{1}{2}\left(p_{0}+p_{1}\right), \quad Q_{e n d}=\frac{1}{2}\left(p_{2}+p_{3}\right)
$$

by applying $u=2$ and $u=4$ to the $Q(u)$.
In general, weighted average of $d-1$ control points.

- Derivatives at the starting and ending position

$$
Q_{\text {begin }}^{\prime}=p_{1}-p_{0}, \quad Q_{\text {end }}^{\prime}=p_{3}-p_{2}
$$

Uniform Cubic B-splines

- Using a general cubic polynomial expression and the following boundary conditions:

$$
\begin{array}{ll}
\mathrm{Q}(0)=\frac{1}{6}\left(\mathrm{p}_{0}+4 \mathrm{p}_{1}+\mathrm{p}_{2}\right) & \mathrm{Q}(1)=\frac{1}{6}\left(\mathrm{p}_{1}+4 \mathrm{p}_{2}+\mathrm{p}_{3}\right) \\
\mathrm{Q}^{\prime}(0)=\frac{1}{2}\left(\mathrm{p}_{2}-\mathrm{p}_{0}\right) & \mathrm{Q}^{\prime}(1)=\frac{1}{2}\left(\mathrm{p}_{3}-\mathrm{p}_{1}\right)
\end{array}
$$

\Longrightarrow We can get a matrix formulation:

$$
\mathrm{Q}_{\mathrm{i}}(\mathrm{u})=\left[\begin{array}{llll}
u^{3} & u^{2} & \mathrm{u} & 1
\end{array}\right] \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{p}_{0} \\
\mathrm{p}_{1} \\
\mathrm{p}_{2} \\
\mathrm{p}_{3}
\end{array}\right]
$$

Convex Hull Property of B-Splines Curves

- B-spline curve of degree d-1 must lie within the union of all such convex hulls formed by taking d successive defining polygon vertices.

Uniform Cubic B-splines

- The effect of multiple control points
\Rightarrow interpolate control points but the loss of continuity.

multiplicity
$1 \quad G_{2}$ continuous
2
G_{1} continuous
3
G_{0} continuous

Non-uniform B-splines

- Non-uniform interval of knot values
- To permit the spline to interpolate control points by inserting multiple knots
- Knot vector is any non-decreasing sequence of knot
 values.

Non-uniform B-splines

- knot vector: $[0,0,0,0,1,2,3,3,3,3]$
nine segment: $Q_{0}, Q_{1}, \cdots, Q_{8}$
$Q_{0}, Q_{1}, Q_{2}, Q_{6}, Q_{7}$, and Q_{8} are reduced to a single point Q_{3}, Q_{4}, and Q_{5} are defined over the range $0 \leq u \leq 3$
- knot vector $[0,0,0,0,1,1,1,1] \equiv$ Bezier curve $P_{0}, \ldots P_{3}$ control points

B-Spline Surfaces

- Given the following information:
- a set of $m+1$ rows and $n+1$ column control points $\mathrm{p}_{i, j}$, where $1<=\mathrm{i}<=\mathrm{m}, 1<=\mathrm{j}<=\mathrm{n}$;
- a knot vector of $h+1$ knots in the u-direction,

$$
U=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{h}\right)
$$

- a knot vector of $k+1$ knots in the v-direction,

$$
V=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right)
$$

- the degree p in the u-direction; and the degree q in the v-direction;

B-Spline Surfaces

The B-spline surface defined by these information is the following:

$$
Q(u, v)=\sum_{i=0}^{m} \sum_{j=0}^{n} B_{i, p}(u) B_{j, q}(v) p_{i j}
$$

B-Spline Surfaces

The coefficient of control point $\mathbf{p}_{i j}$ is the product of two onedimensional B -spline basis functions, one in the u-direction, $B_{i, p}(u)$, and the other in the v-direction, $B_{j, 9}(V)$. All of these products are two-dimensional B -spline functions. The following figures show the basis functions of control points $\mathbf{p}_{2.0}, \mathbf{p}_{2.1} \mathbf{p}_{2.2}, \mathbf{p}_{2,3}, \mathbf{p}_{2.4}$ and $\mathbf{p}_{2.5}$

NURBS

- NURBS(non-uniform rational B-spline)
- Adding some relative weight to the control point for extra control facility
- Can represent more various curves such as circles and cylinders
- More useful for interpolation
- Invariant w.r.t a projective transformation

NURBS

$$
\begin{aligned}
& P_{i}^{w}=\left(w_{i} x_{i}, w_{i} y_{i}, w_{i} z_{i}, w_{i}\right) \\
& P(u)=\frac{\sum_{i=0}^{n} p_{i} w_{i} B_{i, k}(u)}{\sum_{i=0}^{n} w_{i} B_{i, k}(u)} \\
& =\sum_{i=0}^{n} p_{i} R_{i, k}(u) \\
& w_{i}=\text { weight }
\end{aligned}
$$

- $W_{i}=1$ for all $i \Rightarrow R_{i, k}(u)=B_{i, k}(u)$
- extra shape parameter
$\circ W_{i}$ increase \Rightarrow curve is pulled toward control point P_{i}

Drawing Curves

- Forward-differencing method : to plot a curve or a surface, a polynomial must be evaluated at successive t values with fixed increments.

$$
\begin{aligned}
& \text { For } P(t)=a t^{3}+b t^{2}+c t+d, 0 \leq t \leq 1 \\
& P_{i}=P(i / n)=a(i / n)^{3}+b(i / n)^{2}+c(i / n)+d \\
& P_{i+1}-P_{i}=a\left\{((i+1) / n)^{3}-(i / n)^{3}\right\} \\
& +b\left\{((i+1) / n)^{2}-(i / n)^{2}\right\}+c\{((i+1) / n)-(i / n)\} \\
& \Delta_{1, i}=\frac{a}{n^{3}}\left(3 i^{2}+3 i+1\right)+\frac{b}{n^{2}}(2 i+1)+\frac{c}{n} \\
& \Delta_{2, i}=\Delta_{1, i+1}-\Delta_{1, i}=6(i+1) \frac{c}{n^{3}}+\frac{2 b}{n^{2}} \\
& \Delta_{3, i}=\Delta_{2, i+1}-\Delta_{2, i}=\frac{6 a}{n^{3}}
\end{aligned}
$$

Drawing Curves

- Recursive subdivision
- stops when the control points get sufficiently close to the curve
- need flatness test
- Bezier curve - divide the control points

Drawing Bezier Curves

$$
\begin{aligned}
& R_{0}=Q_{0} \\
& R_{1}=\left(Q_{0}+Q_{1}\right) / 2 \\
& R_{2}=R_{1} / 2+\left(Q_{1}+Q_{2}\right) / 4 \\
& R_{3}=\left(R_{2}+S_{1}\right) / 2 \\
& \\
& S_{0}=R_{3} \\
& S_{1}=\left(Q_{1}+Q_{2}\right) / 4+S_{2} / 2 \\
& S_{2}=\left(Q_{2}+Q_{3}\right) / 2 \\
& S_{3}=Q_{3}
\end{aligned}
$$

Comparison of Surface

Comparison of Four Different Forms of Parametric Cubic Curves

	Hermite	Bézier	Uniform B-Spline	Nonuniform B-spline
Convex hull defined by control points	N/A	Yes	Yes	Yes
Interpolates some control points	Yes	Yes	No	No
Interpolates all control points	Yes	No	No	No
Ease of	Good	Best	Average	High
subdivision	$C^{\text {Continuities }}$inherent in representation	G^{0}	C^{0}	C^{2}
Continuities	C^{1}	C^{1}	C^{2}	C^{2}
Conieved easily achi	G^{1}	4	$G^{2}:$	C^{2}
Number of parameters controlling acurve segment	4	4	G^{2}	

[^0]
[^0]: 'Except for special case discussed in Section 9.2.

