DirectX Programming #4

Kang, Seong-tae Computer Graphics, 2008 Spring

Contents

- Texture mapping
- Texture mapping on Direct3D

Texture Mapping

Kang, Seong-tae Computer Graphics, 2008 Spring

Texture

- In real world, only few surfaces have uniform color
- How to describe non-uniform surface?
 - Tesselation
 - Too complicated!

Texture

Texture

- Bitmap describes detailed surface information
- Wrapping wallpaper

Texture Coordinate

Independent of the position coordinate

- [0,1] ranging
- UV for 2D texture
- UVW for 3D texture

Texture Coordinate

 Texture coordinates indicate mappings between vertices and a texture

3D Texture

Texture Filtering

Nearest-point sampling

- Pick the nearest grid value
- Jaggy effect

Linear texture filtering

Bilinear filtering (2D)

 $F = dF_0 + cF_1$

 $= d(bF_{00} + aF_{01}) + c(bF_{10} + aF_{11})$ = $caF_{11} + cbF_{10} + daF_{01} + dbF_{00}$

Trilinear filtering (3D)

 Get a plane by linear interpolation, and bilinear interpolate in the plane

Addressing Convention

Behavior for out-of-range sampling

- Border Color
- Wrap
- Mirror
- Clamp

clamp

mirror

Mipmap texture

Mipmap

 pre-calculated, optimized collections of bitmap images that accompany a main texture

Mipmap filtering

- A high-resolution mipmap image is used for objects that are close to the user
- A Lower-resolution images are used as the object appears farther away
- Pros
 - Quality improvement
- Cons
 - More memory consumption

Anisotropic Texture Filtering

- Use adaptive mipmaps on per-pixel level
 - Pros
 - Degrades blurring artifacts of extreme-angle surfaces
 - Cons
 - Expensive operation
- All recent hardwares support this method

Bilinear filtering

Anisotropic filtering

Texture Mapping on Direct3D

Kang, Seong-tae Computer Graphics, 2008 Spring

D3D Texture Mapping Overview

Setting Texture Coordinates

Texture coordinate representation Float or D3DXVECTOR*n*

Setting Texture Coordinates

D3DFVF

- D3DFVF_TEXn: n texture coordinates for a vertex
- D3DFVF_TEXCOORDSIZEm(k)
 - : k-th texture coordinate is m-dimension

D3DFVF_XYZ | D3DFVF_TEX2 3D position and two 2D texture coordinates D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE3(0) 3D position with one 3D texture coordinate

Creating a Texture

2D Texture

HRESULT IDirect3DDevice9::CreateTexture(UINT Width, UINT Height, UINT Levels, DWORD Usage, D3DFORMAT Format, D3DPOOL Pool, IDirect3DTexture9** ppTexture, HANDLE* pSharedHandle);

- Width, Height : Size of the texture
- Levels : Number of levels in the texture. 0 for no mipmap
- Usage : Usage of the resource. See D3DUSAGE
- Format : Format of the texture
- Pool : description of the memory class that holds the buffer. See D3DPOOL
- ppTexture : pointer of the texture object
- pSharedHandle : Not used

Creating a Texture

> 3D Texture

HRESULT IDirect3DDevice9::CreateTexture (UINT Width, UINT Height, UINT Depth, UINT Levels, DWORD Usage, D3DFORMAT Format, D3DPOOL Pool, IDirect3DTexture9** ppTexture, HANDLE* pSharedHandle);

Locking & Unlocking

- Locking & Unlocking
 - Similar to vertex buffer locking/unlocking

2D locking

D3DLOCKED_RECT & LockRect

typedef struct D3DLOCKED_RECT {

INT Pitch; // # of bytes in one row of the surface void * pBits; // Pointer to the locked bits } D3DLOCKED_RECT, *LPD3DLOCKED_RECT;

HRESULT IDirect3DTexture9::LockRect(UINT Level, D3DLOCKED_RECT * pLockedRect, CONST RECT * pRect, DWORD Flags);

- Level : The level of surfaces of the texture to lock
- pLockedRect : Pointer to a D3DLOCKED_RECT structure
- pRect : Pointer to a RECT structure that specifies the region to lock. NULL means the whole area.
- Flags : Locking flags

Creating a Texture

> 3D locking
> D3DLOCKED_BOX & LockBox

HRESULT IDirect3DVolumeTexture9::LockBox(UINT Level, D3DLOCKED_BOX * pLockedBox, CONST D3DBOX * pBox, DWORD Flags);

- Level : The level of surfaces of the texture to lock
- pLockedBox : Pointer to a D3DLOCKED_BOX structure
- pBox : Pointer to a D3DBOX struct that specifies the region to lock. NULL means the whole area.
- Flags : Locking flags

Creating a Texture

Indirect creation

- Create a texture object suitable for the source
- Fill the texture object with source data
- Build mipmap sublevel textures
- Source
 - ► File
 - □ BMP, DDS, DIB, HDR, JPG, PFM, PNG, PPM, TGA
 - Memory
 - Resource

If(FAILED(D3DXCreateTextureFromFile(g_pd3dDevice, "Banana.bmp", &g_pTexture))) return E_FAIL;

Setting Textures

Attach the texture to the device

- TextureStage
 - View in which the device looks the texture resource
 - Up to 8 stages
- Setting texture stage options
 - SetTextureStageState
 - Blending operations
 - Index of the texture coordinate of a vertex to refer

g_pd3dDevice->SetTexture(0, g_pTexture); g_pd3dDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 1); g_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE); g_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE); g_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE); g_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_DISABLE);

Setting Textures

Setting sampler options (filtering methods)

- SetSamplerState
 - Boundary conditions
 - Filtering methods

g_pd3dDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR); g_pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_ANISOTROPIC); g_pd3dDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_POINT); g_pd3dDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP); g_pd3dDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);

Result of Tutorial 5

Banana.bmp