Windows & DirectX Programming
#1

Kang, Seong-tae
Computer Graphics, 2008 Spring

CGLab

Contents

» Basic Windows Programming
» Windows GDI
» Preparing for DirectX Programming

Prerequisites

» Windows 2000/XP or later

» Microsoft Visual Studio

Visual C++ 6 Is not recommended
Too old - grammatical flaws and bugs
Microsoft's technical support expired in Sep. 2005
Recent DirectX SDKs don't support VC++ 6 any more

» Microsoft DirectX SDK

9.0c or later

» A DirectX 9 compatible graphic card
ATI Radeon 9500+
Nvidia GeForce FX, 6/7/8 Series
Intel GMA900 integrated graphics or later
ATI Express-200 integrated graphics or later

CGLab

Basic Windows Programming

Computer Graphics, 2008 Spring

CGLab

How to Program a Win32 Application
» Win32 API

The most primitive method
C-based definitions

» MFC(Microsoft Foundation Class)
Object oriented framework
C++ based encapsulation of Win32 API
Intuitive UI coding
Complicated internal structures

» Other third-party frameworks
Qt, GTK, GLUT...

Win32 API is enough for this course. Using some framework is on your choice.

CGLab

Creating a Win32 Project

W Start Page - Micrasoft Visual Studio EESECE==)
File i Edit Wiew Tools Window Community Help
[e V[project. cuieshien || | @ setcap EEETY I
[Open ¥ |3 File. Ctrl+N > X
Close Project From Existing Code... &
| = Close Solution picrpsathy .
A Save cted Itemns Ctrl+S - Vlsual StUdIO 2005 (
Save Selected ltemns As i]
@ save Al CirlsShift+5 G

port Template.

XmiLite: A Small And Fast XML Parser For Native C++ =
Fri, 16 Mar 2007 20:45:17 GMT - XmiLite provides a high-performance, low-overhead
XML reader and writer for applications written in native C++. Learn more here.

Event Tracing: Improve Debugging And Performance Tuning With ETW

Fri, 16 Mar 2007 10:52:23 GMT - Event Tracing for Windows (ETW) provides
general-purpose, high-speed tracing of events raised by both user-moede applications and
kernel-mede device drivers. Learn how ETW can improve your development and
debugging work.

opEn: Project... Win Cool Home Music Gear with MSDN Flash

L leale: RDEciS) Fri, 26 Jan 2007 20:58:47 GMT - Customize your MSDN Flash newsletter teday and you'll
be automatically entered to win a chance for cocl home music gear like 3 new Microsoft

GRS Zune™ or a wireless home digital music system from Sonos!
C++ At Work: Rationales, Highlights, and a Farewell
What's MNew in Visual C++ Fri, 19 Jan 2007 23:49:15 GMT - What's the deal with const functions, and lots more on

@SDIution B Class View Security Best Practices for C++ the reasoning behind the design of the C++/CLL

Creating and Managing Visual C+. Metting C++: Mapping Mative C++ to the Common Type System

m

Ctrl+F

Recent Files

mn

Recent Projects
Exit

Properties - 1 X Building a C/C++ Program Fri, 19 Jan 2007 23:47:11 GMT - This menth Stanley Lippman begins translating the Text
Query Language Query class hierarchy from C++ to the MET Common Type System. 2
h How Dol.. 7 \ J
@A | Connect With the Community b
Output ~ 1 x
Show output from: R e | ==

[=] Output ‘% Find Results 1

D:#WorxwHobby#roobarwfoobar2000wmy_msnaltmy_msnaltsin

CGLab

Creating a Win32 Project

Project types: Templates:
=- Visual C++ Visual Studic installed templates
-~ ATL ZAWin32 Console Application =] Win32 Project
- CLR
My Templates
- General y Y P ; |
MEC 4 Search Online Templates..
- Smart Device
- Win32

[+ Other Languages
(- Other Project Types

| |
A project for creating a Win32 application, console application, DLL, or stafic library
I Mame: Test :
Location: Do Worsd - Browse... L|
b Solution Mame: Test | Create directory for solution
| |

oK | cancel |

CGLab

Creating a Win32 Project

Win32 Application Wizard - Tes
s M-

T — Application Settings
|
Crverview Application type: Add commaon header files for: .
Application Settings @ Windows application [an .
(") Console application Clmrc "
F:‘l DLL
(") Static library
" Additional options: :
| Empty project
[] Export symbols
[¥] Precompiled header "
|
|

<Previous || texi- | Finsh || cancel

» If you want an empty project and to write whole code, check 'Empty project’.

CGLab

Creating a Win32 Project

T

File Edit View Project Build Debug Tools Window Community Help
E-E- G @ %@ g w2 v | setap FE®ERE
= : (E R bk oA [EEE T EPLPEBEeER QAL

T =
SHE?| 23 0= HE2 =R B [<olution Explorer .. = @ x w — l
E' 24 I|j| ReadMe eS| (Global Scope) ~! -
= h] Resource [5A Solution Test' (1 projec = . - ; icati
: Test.cpp : Defines the entry point for the application.
B &3 Ssmall o ETest iﬁ PP Ty p PP a
ﬂ =sor @5td3fx 5 [Header Files L
0] stdafx [n] Resourceh
| F|Et » '?_j . [n] stdafxh #include "stdafx.h”
- U=A o [H] Testh #include "Testh”
B v |ﬂ Test = [Resource Files
| &, Forum (C) - | OTest) smallico #define MAX_LOADSTRING 100
Palatinus (D7) (] Test) Testico
== i 3 Test . [Testre
i Docz = 5. 5 Source Files // Global Variables:
)i Home Test L. & stdafx.epp HINSTANCE hinst; // current instance
i | pix H%ET%’: _ _ - & Testepp TCHAR szTitle[MAX_LOADSTRING]; // The title bar text
ll - H’T‘?‘r‘t'“prDJ'RDMA'C'CerD """ | ReadMe.txt TCHAR szWindowClass[MAX_LOADSTRING]; // the main window class name
l i
| Coursewors = // Forward declarations of functions included in this code module:
E ReadMe £=®3t 20k 2007-04-04 2= 12:37 ATOM MyRegisterClass(HINSTANCE hiInstance);
HAE 2N =7|: 2.08KB BOOL Initinstance(HINSTANCE, int);
SH= LT 2007-04-04 ©= 1237 : = > LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
| e solution... [Clss View INT_PTR CALLBACK About(HWND, UINT, WPARAM, LPARAM);
Properties N B
int APIENTRY _tWinMain(HINSTAMCE hlnstance,
HINSTANCE hPrevinstance, =
@ |2 4| m 3
Output + 1 x
Show output from: - R | & B | =

=] Cutput]I% Find Results 1

Ln11 Col 30 Ch 27 INS

____________________________ Ready
» If you are *really* not mterested In W|n32 API at all, this is all you should know.

CGLab

Win32 Application Structure : Brief Description
» WinMain

Entry point : the application starts from here
Contains a message loop

» WndProc

Callback function
The actual message processing routine

CGLab

Windows : Message-based System

» All of the Windows event is processed via message

DefWinowProc

WndProc

DispatchMessage
keyboard

WinMain

ports Message
other Queue GetMessage I\/Ifssage
oop

PostMessaqge

external events Windows application

CGLab

WinMain Entry Function

int WinMain(HINSTANCE hlnstance, HINSTANCE hPrevinstance, LPSTR IpCmdLine, int nCmdShow)

Parameters
HINSTANCE hInstance : instance handle of the window
HINSTANCE hPrevinstace : not used in Win2000/XP
LPTSTR |pCmdLine : command line arguments
int n"CmdShow : showing style of the window
(maximized, minimized, etc.)
wWinMain : unicode version

_tWinMain : TCHAR version

_t, TCHAR and LPTSTR are macros for encoding. See 'TCHAR.H mappings’ on MSDN.

CGLab

WinMain Entry Function

Registering a window class
Define characteristics of the window
Distinguished by “Class Name”

WNDCLASSEX wcex;

wcex.cbSize = sizeof(WNDCLASSEX);

wcex.style CS_HREDRAW | CS_VREDRAW;
wceX.lpfnWndProc WndProc;

wcex.cbClsExtra 0;

wcex.cbWndExtra 0;

wcex.hlnstance hlnstance;

wcex.hlcon
wcex.hCursor
wcex.hbrBackground
wcexX.lpszMenuName
wcexX.lpszClassName
wcex.hlconSm

Loadlcon(hlnstance, MAKEINTRESOURCE(IDI_TEST));
LoadCursor(NULL, IDC_ARROW);
(HBRUSH)(COLOR_WINDOW+1);
MAKEINTRESOURCE(IDC_TEST);

“MYAPPCLASS”;

Loadlcon(wcex.hlnstance, MAKEINTRESOURCE(IDI_SMALL));

return RegisterClassEx(&wcex);

CGLab

WinMain Entry Function

Creating a window
Create an instance of the registered window class
Show the created window
Redraw the window

HWND hWnd = CreateWindow(*“MYAPPCLASS”, “My Application”, WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, CW_USEDEFAULT, O, NULL, NULL, hinstance, NULL);

if ('"hWnd) return FALSE;
ShowWindow(hwWnd, nCmdShow);

UpdateWindow(hWnd);

CGLab

WinMain Entry Function

Message loop

Get messages
GetMessage : waiting
PeekMessage : polling
Translates incoming messages
Dispatches translated messages to the WndProc function

MSG msg = {0};

do // message loop

{
if(PeekMessage(&msg, NULL, O, O, PM_REMOVE)) // if there’s a delivered message
{

TranslateMessage(&msq);
DispatchMessage(&msg);
¥

} while(WM_QUIT = msg.message); // until ‘quit the application’ message is delivered

CGLab

WndProc Message Callback Function

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM |Param)

Parameters
Identical to MSG structure

hWnd : handle of the window which dispatched the message
message . message type

wParam, |Param : additional event information

€.J. mouse move event
message : WM_LBUTTONDOWN
wParam : state of function keys and mouse buttons

IParam : x and y coordinate

CGLab

WndProc Message Callback Function
DefWindowProc

Default message handler function

PostQuitMessage
Issue WM_QUIT message

switch (message)
{
case WM_PAINT:
hdc = BeginPaint(hwWnd, &ps);
EndPaint(hWnd, &ps);
break;
case WM_DESTROY:
PostQuitMessage(0);
break;
default:
return DefWindowProc(hWnd, message, wParam, IParam);

Windows GDI

Computer Graphics, 2008 Spring

GDI

» Primitive Windows modules
Kernel
Memory management and process scheduling
User
Ul and window management

GDI(Graphical Device Interface)
Output and graphical processing interface
Device-independent abstraction layer

CGLab

CGLab

GDI

» DC(Device Context)

Abstraction of ‘output’ devices
Screen
Printer
Memory (functioned as output buffer)

Contains all the information needed to output

» GDI Object

Abstraction of an information for output
Pen, Brush, Font, Bitmap...
Contains information of color, size, height...

CGLab

rawing on the Window
» Drawing once in WinMain or WM_CREATE handler

Problem
Does the Windows hold what is drawn in canvas?

File Edit View Project Build Debug Tools Window Community Help

SRR - RN IR _
n @ @ Hex | @ = i iy B A=

Testepp| | -
(Global Scope) File Help v =W (Global Scope) File Help -

8 // Test.cq 5// Test.cq
17 i
#include #include
#include Ererene E@@l #include

i oaFE FIE AN 2IV) E22H))
#define I I " #define N
// Global // Global —_
HINSTAN HINSTAN e — | HE g -y
TCHAR s TCHAR s oIEF) EHEE AMH0O) 270
TCHAR s me TCHAR s |
/{ Forwar // Forwan
ATOM A—ear| ATOM A —
BOOL Initlnsta BOOL InitInstance(HINSTANCE, int);
LRESULT CALLBACK Wnd LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LP,
INT_PTR CALLBACK Abou INT_PTR CALLBACK About(HWND, UINT, WPARAM, LPARS
int APIENTRY _tWinMain(int APIENTRY _tWinMain(HINSTANCE hinstance,
HINSTAM 1 HINSTAMCE hPrevinstance,
LPTSTR 4 ’ LPTSTR IpCmdLine,

B int nCrrsTToTT a int nCmdShow)

{ {

Drawing on the Window

» WM_PAINT message

Issued when the window is need to be redrawn
UpdateWindow
Just issues WM_PAINT message to the window
» VS template code
BeginPaint prepares the window for painting
gets DC and information of the Window
EndPaint marks the end of painting

CGLab

case WM_PAINT:
{
PAINTSTRUCT ps;
HDC hdc = BeginPaint(hWnd, &ps);
// TODO: Add any drawing code here...
EndPaint(hWnd, &ps);
break;

CGLab

Drawing on the Window

» SetPixel
Draw a pixel
GDI object is not necessary
Very slow
COLORREF SetPixel(
HDC hdc, // handle to DC
int X, // x-coordinate of pixel
inty, // y-coordinate of pixel
COLORREF crColor // pixel color
);
» COLORREF

X8B8GERE8 DWORD e.g. 0x0O00000FF
RGB(r, g, b) macro e.g. RGB(0,0,255)

CGLab

Using GDI objects

» Create GDI objects

Creation functions
CreatePen, CreateSolidBrush, ...
Memory consuming objects = need to be deleted later

GetStockObject function
pre-defined objects
Deletion is not necessary (actually, not allowed!)

» Attach the new object to DC

SelectObject function
Returns the previous object handle

» Draw with attached objects

) Dgc'l-r\r

+hoa nraviinatic ~Ahiact
\C oLV L

e 11T PICVIUUD UIJJCLL

» Delete created objects

A black solid pen and a null brush are default GDI objects attached to the window DC.

Using GDI objects

CGLab

HPEN myPen, myPen2, oldPen;

myPen=CreatePen(PS_DASH, 1, RGB(255,0,0)); // create a red, 3-px-width, dashed pen

myPen2=(HPEN)GetStockObject(BLACK_ PEN); // get the black solid pen
SelectObject(hdc, CreateSolidBrush(RGB(0, 255, 0))); // use a green solid brush
oldPen=(HPEN)SelectObject(hdc, myPen); // use myPen

Rectangle(hdc, 200, 200, 300, 300);
MoveToEx(hdc, 50, 50, NULL);
LineTo(hdc, 120, 80);

SelectObject(hdc, myPen2); // use myPen2 '
T test
LineTo(hdc, 180, 30); File _Help
SelectObject(hdc, oldPen); // use previous pen - /
.
e

DeleteObject(myPen); // delete created objects
DeleteObject(SelectObject(hdc, GetStockObject(NULL_BRUSH)));

CGLab

Buffered Drawing on GDI

» Problems when drawing on the window directly
GDI drawing function is slow at all
flickering, tearing and shearing
» Buffering
Draw or do something with memory buffer
Write the buffer to the screen

» In Win32, buffering can be implemented with DIB
and Memory DC

Using Bitmap and Memory DC

» Bitmap
One of the GDI object types
DDB(Device Dependent Bitmap)
DIB(Device Independent Bitmap)
BMP file
» Memory DC
Not attached to any actual device
Consumes memory
Delete using DeleteDC function after use

Can select BITMAP as a GDI object
Bitmap must be compatible with DC

The bound bitmap works as ‘surface’ of the DC

Impossible for actual device DCs
Can be copied to normal DC fast
BitBlt, StretchBlt, ...

CGLab

Using Bitmap and Memory DC

CGLab

HDC mdc=CreateCompatibleDC(hdc); // Create a memory DC that is compatible with screen

BITMAPINFO bmi; // bitmap header
// this is identical to BMP header. if you don’t know about it, just change biWidth and biHeight
bmi.bmiHeader.biSize=sizeof(BITMAPINFO);

bmi.bmiHeader.biwidth=200; // bitmap width
bmi.bmiHeader.biHeight=200; // bitmap height
bmi.bmiHeader.biBitCount=32; // bit count of a pixel

bmi.bmiHeader.biCompression=BI_RGB;

bmi.bmiHeader.biSizelmage=0;

bmi.bmiHeader.biClrUsed=0;

DWORD *buf;

// create a DIB with the above header information. Actual buffer pixel data will be allocated to buf
HBITMAP myBitmap=CreateDIBSection(hdc, &bmi, DIB_RGB_COLORS, (void**)(&buf), NULL, NULL);

SIS

BITMAP myBitmaplInfo; -
GetObject(myBitmap, sizeof(BITMAP), &myBitmapIinfo); _ | test
buf[200*100+50]=0x00FFFF0O; // Now you can access the buffer immediately. :
buf[200*50+150]=0x0000FF00; // The pixel format is XBR8G8BS. File Help
SelectObject(mdc, myBitmap);

BitBlt(hdc, 10, 10, 200, 200, mdc, 0, 0, SRCCOPY);// copy from mdc to hdc
DeleteObject(myBitmap); // delete bitmap. buf will be freed.

DeleteDC(mdc); // delete the memory DC

EndPaint(hWnd, &ps);

Manipulating GDI Bitmaps is so complicated for its device-independent design concepts.

If it's so difficult for you to understand, just use this sample code.

Other GDI features
» See MSDN

[@ Graphics Device Interface Windows AP - Microsoft Visual Studio 2005 Documentation - Microsoft Document Explarer EL X
Eile Edit View Tools Window Help
Q Back © [#] @ A’ | @ HowDol ~ Q Search 3 Index & Contents [] Help Favorites | [2f " €3 | %) Ask a Question € | _
Index -1 x Graphics Device ...ace [Windows API] - X
Filtered by URL: ms-help://MSNVSCCvB0/MS MSDN.VB0/MS WINZ2COM.v10.en/WINPROG/winprog/graphics_device_interface htm -
|Visual C+= ~ | Platform SpK: Windows APT i
Look for: Graphics Device Interface

windows GDI

Windows GDI [Win32]
Windows handles to cbjects
mapping
Windows HTTP Services (WinHTTF
glossary
overview
AutoProxy support
reference
start page
tasks
tools
Windows Image Acquisition (WIA)
Windows Image Acquisition (WIA)
Windows Image Acquisition Autor
Windaows Installer
administrative installation
conditicnal deployment
creating .msi files
custom actions
launch conditions
localized installers
Setup projects
Windows installers vs. merge me
Windows Installer [Windows Instal
authering a package
described
12
64-bit
about
administrative
autemation interface
custom actions
database
development tools
documentation
loge requirements
merge modules
chject medel

&3 Contents | [Index [Z]Help

The graphics device interface (GDI) provides functions and related structures that an application can use to generate graphical output for
displays, printers, and other devices. Using GDI functions, you can draw lines, curves, closed figures, paths, text, and bitmap images. The color
and style of the items you draw depends on the drawing objects — that is, pens, brushes, and fonts — that you create. You can use pens to draw
lines and curves, brushes to fill the interiors of closed figures, and fonts to write text.

Applications direct output to a specified device by creating a device context (DC) for the device. The device context is a GDI-managed structure
containing information about the device, such as its operating modes and current selections. An application creates a DC by using device context
functions. GDI returns a device context handle, which is used in subsequent calls to identify the device. For example, using the handle, an
application can retrieve information about the capabilities of the device, such as its technology type (display, printer, or other device) and the
dimensions and resolution of the display surface.

Applications can direct output to a physical device, such as a display or printer, or to a "logical” device, such as a memory device or metafile.
Logical devices give applications the means to store output in a form that is easy to send subsequently to a physical device. After an application
records output in a metafile, it can play that metafile any number of times, sending the output to any number of physical devices.

Applications use attribute functions to set the operating modes and current selections for the device. The operating modes include the text and
background colors, the mixing mode (also called the binary raster operation) that specifies how colors in a pen or brush combine with colors
already on the display surface, and the mapping mode that specifies how GDI maps the coordinates used by the application to the coordinate
system of the device. The current selections identify which drawing objects are used when drawing output.

For more information, see the following overviews.

Bitmaps

Brushes

Clipping

Colors

Coordinate Spaces and Transformaticns
Device Contexts

Filled Shapes

Fonts and Text

Input Method Editor

Lines and Curves

Metafile

Multiple Display Monitors
Naticnal Language Support
Painting and Drawing
Paths

Fens

Erinting and Print Spooler
Rectangles

Reqicns

Unicode and Character Sets
Uniscribe

Last updated: March 2005 | What did vou think of this topic? | Order a Platform SOK CD
® Microsoft Corporation. All rights reserved. Terms of use.

m

Ready

CGLab

CGLab

Summary

» Make full use of MSDN documents

» If you can't understand at all...

Just remind
How to create a window
How to draw a pixel

It will so slow, but you can complete the assignment #1
with only these features

» For reasonable execution time, using bitmap Is
recommended

Speed is not a grading factor, but debugging a “SetPixel program” will drain your endurance!

Preparing for DirectX Programming

Computer Graphics, 2008 Spring

CGLab

Preparing for DirectX Programming
» DirectX SDK

Development kit for DirectX application

Frequent updates

Recent update : Nov. 2007

O http://www.microsoft.com/downloads/details.aspx?FamilyID=4B78A
58A-E672-4B83-A28E-72B5E93BD60A&displaylang=en (427.8MB)

The latest version is recommended
» Supported language

Visual C/C++
NET languages : Managed DirectX

Recent versions of DirectX SDK contain DX10 API for Windows Vista. We use DXO9.

Preparing for DirectX Programming

» Visual Studio settings for DirectX

Register DirectX include and library directories
<Menu> Tools = Options

Move the DirectX directories to the top
1 Visual Studio contains old-version DX include and libraries

Options

A==

--Import and Export Settings
- International Settings

- Keyboard

- Startup

. Task List

. Web Browser

= Projects and Sclutions

- General

- Build and Run

. WC++ Directories

- WC++ Project Settings

&~ Source Control
- Text Editor

- Database Tools
- Crebugging
[
[
[

1 Device Tools
t- HTML Designer
7 Windows Forms Designer

m

Platform: Show directories for:

Win32 v] llnclude files -

g TS
$0VCInstallDininclude
$0VClInstallDinatimfowinclude
S0V ClInstallDinPlatformSDK#include
$ 0V CInstallDirPlatformSDK# common®include
$(FrameworkSDKDininclude

4 | 1 | 2

Include Directories
Path to use when searching for include files while building a VC++ project.
Corresponds to environment variable INCLUDE.

0K I [Cancel

CGLab

CGLab
References

» Windows Programming

Programming Windows Fifth Edition
Charles Petzold, Microsoft Press, 1998

MSDN Win32 Platform SDK Documents
Online available

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/sdkintro/sdkintro/devdoc platform software development kit
start page.asp

» DirectX Programming

MSDN Direct3D 9 Documents
Included in DirectX SDK

Online available

http://msdn2.microsoft.com/en-us/library/bb173023.aspx

This course will follow tutorials on this document

If you install the offline MSDN package, “Context-sensitive help” will help you to code more efficiently.

CGLab

Any Question?

