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Phase diagrams
4.1 The stabilities of phases

Phase of a substance : a form of matter that is uniform in 
Chemical composition and physical state 
Phase transition : the spontaneous conversion of one phase                       
into another phase
Transition temperature (Ttrs) : the temperature at which two
phases are at equilibrium and G is minimized at a given p

Metastable phase : thermodynamically unstable phase that persist 
because the transition to stable phase is kinetically hindered. 
ex) diamond (a metastable phase of C)

4.2 Phase boundaries
Phase diagram of a substance : regions of p and T at which its 
various phases are thermodynamically stable (see Fig. 4.1)
Phase boundary : the line separating the regions where two phases 
coexist in equilibrium
Vapour pressure : the pressure of a vapour in equilibrium with
a liquid (in solid : sublimation vapour pressure)
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(a) Critical points and boiling points
Boiling : free vaporization throughout the liquid
Boiling temperature : T at pvap =  pext
If pext = 1 atm : normal boiling point

= 1 bar : standard boiling point (1.00 bar = 0.987 atm)
When a liquid is heated in a closed vessel, boiling does not occur.
Instead, as T increases, a continuous pvap↑ (i.e., ρvap ↓) & a slight ρliq↓
Critical temperature, Tc : temperature at which the interface disappears,            
where ρvap = ρliq
Critical pressure, pc : vapour pressure at Tc
Supercritical fluid : a single uniform phase at and above Tc (no interface) 

(b) Melting points and triple points
Melting (or freezing) temperature : T at which solid and liquid coexist           
in equilibrium
Normal and standard freezing (or melting) point : freezing (or 
melting) temperature at 1 atm and 1bar, respectively
Triple point : a point at which the solid/liquid/gas phase boundaries
meet (All three phases simultaneously coexist  in equilibrium) 

4.2 Phase boundaries
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4.3 Three typical phase diagrams

(a) Carbon dioxide

Slope of the solid-liquid boundary is positive
- The melting temperature rises as the pressure is increased.

Triple point lies above  1atm
- The liquid cannot exist at normal atmospheric pressures 

whatever the temperature.
- The solid sublimes when left in the open. (“dry ice”)
- p > 5.11 atm: solid → liquid
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(b) Water

Liquid-vapour boundary shows
- how pvap of liquid(water) varies with T
- how the boiling T varies with p

Solid-liquid boundary shows
- how Tm varies with p
- steep negative slope (up to ~2 kbar) : p↑→ Tm↓

Ice →Water
: very open molecular structure of ice partially
collapses on melting (ρliq > ρsol)

At high p,
- some solid phases
(Ice Ⅱ,Ⅲ,Ⅴ,Ⅵ, and Ⅶ: polymorphs)
melt at high T 

4.3 Three typical phase diagrams
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(c) Helium

- Solid He can be obtained by holding the atoms   
together by applying p

- At low T, two isotopes (by mass and spin)

→ 3He : nucleus of zero spin 
Sliq < Ssol

melting is exothermic

→ 4He : nucleus of nonzero spin
λ-line (liq-liq phase transition)
He-I (normal liquid)
He-II (superfluid) :
it flows without viscosity

4.3 Three typical phase diagrams
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4.4 The thermodynamics criterion of equilibrium

Chemical potential, μ

- Molar Gibbs energy in a one-component system (μ = Gm)
- At equilibrium, μ of a substance is the same throughout a sample   

regardless of how many phases are present.
(from the 2nd law of thermodynamics)

If dn of the substance is transferred (location 1→ location 2),
- Change of G→ -μ1dn in location 1 and μ2dn in location 2
- Overall change : dG = (μ2 - μ1)dn
- If μ1 > μ2: spontaneous change, if μ1 = μ2

: no change (equilibrium)

Phase stability and phase transitions
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4.5 The dependence of stability on the conditions
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The variation of the chemical potential with T for a pure substance

:
As T↑, μ↓ (a negative slope of μ vs T) 
and then Sm > 0 

As T↑, the stable phase (solid→ liquid → gas)

Normally, Sm(g) > Sm(l) > Sm(s), (see Fig 4.9)

(a) The temperature dependence of phase stability
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(b) The response of melting to applied pressure

The variation of the chemical potential with p :
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As p↑, Δμ (l) > Δμ (s) (∵ Vm(l) > Vm(s)) & Tf↑

[but, in case of water: Δμ (s) > Δμ (l) &Tf↓]

4.5 The dependence of stability on the conditions
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(c) The effect of applied pressure on vapour pressure

When p is applied to a condensed phase, pvap↑

If the condensed phase is liquid, 
- the pressurizing gas might dissolve and change the properties  
of liquid

- gas solvation (the attachment of molecules from liquid to gas)

RTPVmepp /* Δ=When Δp is applied, (p* : normal vapor pressure)
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4.5 The dependence of stability on the conditions
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Justification 4.1  The vapour pressure of a pressurized liquid

p
RTdpgd =)(μ

Since  dμ(g) = Vm(g)dp and  Vm(g) = RT/p for a perfect gas,        
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p(l): p→ p* + Δp,

because μ(g) = μ(l) at equilibrium, and dμ(l) = Vm(l) dp

4.5 The dependence of stability on the conditions
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Illustration 4.1

For water, which has density 0.997g/cm3 at 25℃ and therefore molar volume 
18.1cm3/mol, when the pressure is increased by 10 bar (that is, ΔP = 1.0X105 Pa)
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where we have used 1J = 1Pa•m3. It follows that  p =  1.0073p*, an increase of 
0.73 percent.

4.5 The dependence of stability on the conditions



Seoul National UniversitySeoul National University Prof. SangProf. Sang--imim, , YooYoo

( ) ( )TpTp ,, βα μμ =Where the phases α and β are in equilibrium,

(a) The slopes of the phase boundaries
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From dG = Vdp - SdT,
dμ = Vmdp – SmdT, (dμα=dμβ)
- Sα,mdT + Vα,mdp = - Sβ,mdT + Vβ,mdp
(Vβ,m –Vα,m )dp=(Sβ,m –Sα,m)dT

Let p and T be changed infinitesimally, 
but the two phases of α and β remain in equilibrium.

:  Clapeyron equation

- Exact expression for the slope of the phase boundary
and applies to any phase equilibrium of any pure substance 

- Using thermodynamic data, the appearance of phase
diagrams are predictable.

4.6 The location of phase boundaries
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(b) The solid-liquid boundary
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If Tm is T* at p* and T at p,

By using

Therefore, (See Fig. 4. 13)
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Since the molar entropy of melting at T is ΔtrsH /T,

Since ΔtrsH > 0 (except 3He) and ΔtrsV > 0 
(but small), 
dp / dT > 0 with a steep slope

4.6 The location of phase boundaries
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(c) The liquid-vapour boundary
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Since Svap at T is equal to ΔvapH/T,
Since ΔvapH > 0 (except 3He)  and ΔvapV > 0
(a large change in volume) 
dp / dT > 0, much smaller slope than s/l boundary

Because ΔvapV = Vm(g) - Vm(l) ≈ Vm(g) and 
Vm(g) = RT/p for a perfect gas, 
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If ΔvapH is independent of T,

χ−= epp *
→ plotted curve in Fig. 4.14 ,

4.6 The location of phase boundaries
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Illustration 4.2

(d) The solid-vapour boundary

Replace ΔvapH by ΔsubH
ΔsubH > ΔvapH : steeper slope than l/v

Because the normal boiling point of benzene is 80℃
(353K) and ΔvapH0 = 30.8KJmol-1 , to calculate the vapour
pressure at 20℃ (293K), we write
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and substitute this value into p=p*e-χ with p*=101kPa. 
The result is 12kPa. 
The experimental value is 10kPa.

4.6 The location of phase boundaries
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4.7 The Ehrenfest classification of phase transitions
Ehrenfest classification : the classification scheme of phase transitions proposed by Paul 
Ehrenfest α → β transition :
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Since ΔtrsV, ΔtrsH≠0 for melting and vaporization, the first derivatives of μ with p and T are 
discontinuous at the transition.
First-order phase transition
- 1st derivative of μ with T is discontinuous (See Fig. 4.16a)
- Cp (= dH/dT at const p) →∞ at Ttrs - ex) boiling of water
Second-order phase transition
- 1st derivative of μ with T is continuous, but 2nd derivative is discontinuous (see Fig. 4.16b)

(Vm and Sm do not change at transition)
- Cp is discontinuous but does not become infinite at Ttrs

ex) conducting-superconducting transition in metals at low T
λ-transition
- not first-order but Cp becomes infinite at Ttrs
- plot looks like λ (the Greek letter)   (See Fig. 4.17)
ex) order/disorder transition in alloy, onset of ferromagnetism, and fluid/superfluid (LHe)
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4.7 The Ehrenfest classification of phase transitions
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Molecular interpretation 4.1
second-order transition
ex) a change in symmetry of the crystal structure of a solid

tetragonal (a=b≠c) → cubic at the transition (See Fig. 4.18)
Above Ttrs, all three directions will expand equally 

λ-transition
ex) β-brass (CuZn)

low T→ orderly array of alternating Cu and Zn atoms (See Fig. 4.19)
high T(≥ 742 K)→ random array of atoms (islands growth)

4.7 The Ehrenfest classification of phase transitions


