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Spontaneous chemical reactions
7.1 The Gibbs energy minimum
The direction of spontaneous change at constant p & T is towards lower G (AG < 0).

(a) The reaction Gibbs energy
Consider the equilibrium A (reactant) <> B (product)

Suppose an infinitesimal amount of A (d$)turns into B ‘i
Thendn,=-d¢ and dng=+dZ — ¢£is called the extent of reaction 2

oG (unit: moles) &
The reaction Gibbs energy is, A,G = (gj (AG: the slope of G vs &) (gg

p, T
dG = pndn, + pgdng = —p\d8 + 1508 = (g — 14 )dS
(ﬁj = Mg —Hp — ArG = Mg — M, (at the composition of Extent of reaction, xi
S )+ the reaction mixture)

Fig. 7.1 As the reaction advances

(b) Exergonic and endergonic reactions (see Fig. 7.1) irepreseinted bymotion From el toight

_ > : < : _ : —>B - along the horizontal axis) the slope of the
Up > g - AG <0, exergonic (work-producing, A—B : spontaneous) Gibbs energy changes,Equilibrium

" Hp< U ArG >0, endergonic (Work-consuming, B—A: SpontaneOUS) corresponds to zero slope, at the foot of the
- Un = g AG =0, equilibrium valley.
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7.2 The description of equilibrium

ey - equilibrium
(a) Perfect gas equilibria composition
When A and B are perfect gases, Without

o 0 p mixing
AG=py—p,=(ug +RTInpg)—(uy +RTInp,) =AG°+RTIn=£

Pa
AG=AG°+RTInQ Q= % (Q : reaction quotient)

A Including

The standard reaction Gibbs energy : miXIng
A,G° =G%mn—G°m :/uBO _/UAO .
A.G°=A.G°(B)—A;G°(A) (See Section 3.6)

At equilibrium, A,G=0

Fig. 7.3 If the mixing of reactants and

_ 0
0= AFG +RT InK K = P (K . equi“brium ConStant) products is ignored, then the Gibbs energy

o p changes linearly from its initial value (pure
RTInK = _ArG A Jequilibrium reactants) to its final value (pure products)

and the slope of the line is A G°. However,

Gibbs energy, G

Extent of reaction, &

Mixing

- If no mixing — a linear slope (see Fig. 7.3) : A— B as products are produced, there is a further
_ Svi ; - contribution to the Gibbs energy arising
It mixing — the Change In G due to mixing from their mixing (lowest curve). The sum
- AL,G=nRT (XA In Xp + Xg In XB) of the two contributions has a minimun.

— U-shaped curve of G — minimum in G : equilibrium composition Tha minimum corresponds o the

equilibrium composition of the system.
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7.2 The description of equilibrium

K — Ps -AG>0— K<1(pg<p,):reactant A is favoured in the equilibrium
Bl PA N AG<0—K>1(pg>p,) :product B is favoured in the equilibrium
equiliorim

(b) The general case of a reaction

In case of the reaction 2A + B — 3C + D,

—0=3C+D-2A-B = 0= ZVJJ (J : substances, v, : stoichiometric numbers)
2 v, Is (+) for products and (-) fof reactants — Va=-2,Vg=-1,v.=+43,vp=+1

AG=AG°+RTInNQ (seeJustification 7.1)
AG’ = ZVAfGO_ ZVA G® or, more formally A,G° = ZVA G°(J)

Products Reactants

activities of products

reaction quotient ., _ Vi
a Q= activities of reactants Q= H a,

ex)2A+3B > C+2D - v, =-2,vg=-3, V. =+l,vp=+2 —— Q=——+
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7.2 The description of equilibrium

Justification 7.1
By dn,=v,dd dG= Z:qun.] = (ZVJ/JJ]dé:
J

oG :
— AG= (] = ZVJIUJ
p,T

0 J
o
Using the chemical potential of a species J, £, =4, +RT Ina,
A GY Y,
AG=Y v, +RTY viIna,=A G +RTY Ina,’ =A G° +RT In]_[ a," =A G°+RTInQ

I I I ]

At equilibrium A,G =0,
K : thermodynamic equilibrium constant

K= (H d, " j (the same form as Q)
J

equilibrium

By replacing Q by Kat AG =0,

RT INnK =—A,G° — enable to predict K and the composition of mixture at the equilibrium
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7.2 The description of equilibrium

(c) The relation between equilibrium constants

By a,=y% or a&=y0b/b,

a+Boc+p K= 7o By
a3 7a¥s babg
Molecular interpretation 7.2

Consider Boltzmann distribution of molecules over

the available states of a system (A and B)

1) the dominant species by the lower set of energy
levels— A is dominant at equilibrium (see Fig. 7.4)

2) more closely spaced energy level — higher entropy
— B is dominant at equilibrium (see Fig. 7.5)
(entropy effects dominate adverse energy effects)

Using AG’=AH°-TAS®,
RTINK=—AG® —» K =g /RTghs"IR

- positive reaction enthalpy : K | — reactant is favoured
- positive reaction entropy : K T — product is favoured
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Fig. 7.1 Ijhe Boltm}ann dlstnll'.outl]on ;}f Fig. 75 Even though the reaction A — Bis
Pupfl atfl\ons f;;u : IIL t‘llL‘[]gY ;?w; 5 ° _tw[f) endothermic, the density of energy levels in
species A and B with similar densities of . " o areater than that in A that the
energy levels; the reaction A = Bis : : &9 o

population associated with Bis greater than

endothermic in this example. The bulk of ; : L
e : . that associated with A, so B is dominant at
the population is associated with the o
equilibrium.

species A, so that species is dominant at
equilibrium.
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7.2 The description of equilibrium
(d) Equilibria in biological systems

For biological systems (pH = 7),
A+vH"(aq) > P

By eqn 5.56, ,UH+® = ,UH+0 —7RT In10
A.G®=A_G°+7vRT In10

: no difference between the two standard values
If hydrogen ions are not involved in the reaction (v = 0)
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The response of equilibria to the conditions

7.3 How equilibria respond to pressure

Where A G is the standard Gibbs function defined for species
at a specific pressure and therefore K is independent of pressure.

oK : This does not imply that the composition of

(8p] =0 the species at equilibrium do not change.
.

Two ways in which pressure may be applied
- injecting an inert gas in a reaction vessel
— if it’s a perfect gas, all the partial p of the reacting gases are
unchanged
- compression (confining the gases to a smaller volume)
— the partial p of the reacting gases are changed

For the perfect gas equilibrium A < 2B,

2
K = _Ps_:ifthe equilibrium composition shifts (A1),

PAP° Pal (comparedtopg) (see Fig. 7.6)

“)_) J
S JJ| -
ol 'J v Y O
, 0 P
* oy D e
) 9
2 O J'J')J
0019 ¢«
Jg‘“) J‘{)J
29 (oM"Y
(a) (b)

Fig. 7.6 When a reaction at equilibrium is
compressed (from a to b), the reaction
responds by reducing the number of
molecules in the gas phase (in this case by
producing the dimers represented by the
linked spheres).
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7.3 How equilibria respond to pressure

10
A molecules T — B molecules | by compression
— Le Chatelier’s principle 3 08
c
0
: A system at equilibrium, when subjected to a disturbance, responds 3 g
20
in a way that tends to minimize the effect of the disturbance §
2
- If a system at equilibrium is compressed, then the reaction will adjus ‘E 04
S0 as to minimize the increase in pressure (A < 2B) é 0
X0,
w12
1 o L
a= | (a : the extent of dissociation)
1+4p/Kp plp’
— the amounts of A and B depend on pressure & pT—al Fig. 7.7 The pressure dependence of the

degree of dissociation, ¢, at equilibrium for
an A(g) = 2 B(g) reaction for different
values of the equilibrium constant K. The
value 0=0 corresponds to pure A; ¢= 1
corresponds to pure B.
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7.4 The response of equilibria to temperature

Le Chatelier’s principle

-if T 1 : endothermic direction (until energy is absorbed as heat)
endothermic reactions : As T T, the products are favoured.

-if T | : exothermic direction (until energy is released as heat)
exothermic reactions : As T T, the reactants are favoured.

(a) The van’t Hoff equation

dinK _AH° (b) dinK ~ A/H® :The van’t Hoff equation
dT RT 2 dl/T) R the slope of a plot of the equilibrium
constant (specially InK) vs temperature

(a)

Justification 7.2 (The van’t Hoff equation)

InK :—AfG Differentiation of InK with respectto T : dinK :_i d(A,G /T)
RT dT R dT

Using the Gibbs-Helmholtz equation
d(AG°/T)  AH°

dT T? :
av/T) __ 1, gr=—TqH@T) - dink __AN
aT | T2 d(l/T) R
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7.4 The response of equilibria to temperature

Fig. 7.8 The effect of temperature ona

dInK Ar H o -dInK/dT <0 — exothermic reaction at ArH0 <0 chemical equilibrium can be interpreted in

(a) T RT2 - negative Slope, AS T T, K \L tetrm.sof.thech.angeintheBoltzmann
- reactants are favoured in the exothermic reaction S;fsetgbo“ftg:tfﬁ:ﬂ:ﬂgiﬁ;ﬁpﬁix y
ArG = Ar H —TArS e ArG IT = _Ar H/T+ ArS the species. (a) In an endothermic reaction,
- Exothermic, AH <0 — A,G <0 : products 1 Ay (e
! perature is raised. (b) [nan
AsT T’ - ArH /Ti & Ars IS not important exothermic reaction, the opposite happens.
. equilibrium lies less to the right (products) B &
- Endothermic, A Sis important
As T 1, products are favoured | \
Molecular interpretation 7.3 Al \.\x B
1) endothermic reaction - As T 1, B molecules & \\\ 2
to higher energy state become populated L“cu’ _h :cj \\
(see Fig. 7.8a) \\Y Low temperature \\V Low temperature
. ] High temperature High temperature
2) exothermic reaction - As T T, A molecules \\AV\ \\AV\
to higher energy state become populated \
(see Fig. 7.8b) (3  Population (b)  Population
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7.4 The response of equilibria to temperature

(b) The value of K at different temperatures

dinK  AH’

d(1/T) R

the valuesof Kat T, and T, :

1 cum, o
InK,-InK, = _EL/E A H°d@/T)

If A,H° varies only slightly,

K, —InK, =2 (1-ij
R (T, T,

. useful in the design of laboratory and industrial processes
ex) - improving the yield of a reaction by changing T of the reaction mixture
- reduction of a metal oxide with carbon or carbon monoxide — extraction of metal

‘£4 ] Seoul National University
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7.4 The response of equilibria to temperature

7.1 The extraction of metals from their oxides
Ellingham diagram : a plot of A ,G° vs temperature — A ,G° decreases upwards !!
() M(s)+~0,(g) > MO(s) ~ (ii) ~C(s) +~ 0, (9) > ~CO,(0)
(iii) C(s)+-0,(g) > CO(@)  (iv) CO(g) +~0,(g) - CO,(g)

2 2

- reaction (iii) : gas(net)T - AS T —>AGe | asT 1
- reaction (iv) : gas(net)| > AS | > AG° T asT 1
- reaction (ii) : gas is constant — A G° changes slightly as T 1

At room temperature — A H° dominates A G°
- the entropy of reaction is approximately the same for all metals
— A G as T should be similar slopes of the lines in the diagram
MO(s) +C(s) - M(s)+CO(g) A.G°=A G (iii)-A,G°(i)
MO(s) +-C(s) — M(s) +-CO,(g)  A.G®=AG°(ii)-A.G°(i)
2 2

MO(s) + CO(g) > M(s)+CO,(g) A.G°=A,G°(iv)-A,G°(i)
— A G° <0 : the equilibrium lies to the right, which is the case

when the line for A G°(i) lies below the line for one of the carbon gy 7.40 An Ellingham diagram for the

reactions (| |)~(|V) discussion of the reduction of metal ores.

Temperature, 6/°C
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