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Molecular motion in gases

The simplest types of molecular motion

- the random motion of molecules of a perfect gas

- the largely uniform motion of ions in solution in an electric field

Transport properties of a substance

- Diffusion: the migration of matter down a concentration gradient

- Thermal conduction: the migration of energy down a temperature gradient

- Electric conduction: the migration of electric charge along an electrical potential gradient
- Viscosity: the migration of linear momentum down a velocity gradient

- Effusion: the emergence of a gas from a container through a small hole

21.1 The kinetic model of gases

Three assumptions of the kinetic model
1. The gas consists of molecules of mass m in endless random motion
2. The size of molecules is negligible
— diameters of molecules << average distance traveled between collisions
3. The molecules interact only through brief, infrequent, and elastic collisions

(a) Pressure and molecular speeds

1

PV = oM | M : molar mass (M = mN,)
3

1/2
2
- ¢ : root mean square speed C = <v >
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21.1 The kinetic model of gases

Justification 21.1 The pressure of a gas according to the kinetic model

When a particle of mass m and velocity v, collides with the wall, (see Fig. 21.1)
- Linear momentum : mv, (before collision), — mv, (after collision)
- X-component of momentum change : 2mv, & collision interval : At
- Traveling distance : v,A¢, volume : AX v, At
— all the molecules within A><v, At will strike the wall (see Fig. 21.2)

- The number density : nNA/V, the number of molecules in AXv, At : (nNA/V)>XAv, At
- The average number of collisions : (1/2)nNAv, At 'V

Momentum change N Av, Al X 2my : Timvx |vAt]
= . Bef HX
2V cc?llti:;riin
B nmANAvszt B nMAvszt A
T = —
n 1%
Rate of change of momentum=——— Won't
Rate of change of momentum o o \
= force (by Newton s second law of motion) % o x \ Area A
Pressure = nva p= ’W# (b) X > Volume = |y, At|A
(p . average pressure, <vx> . average VQIOCity) Fig. 21.1 The pressure of a gas arises from b 81 Asiioleetewill fadh thewall v
the impact of its molecules on the walls. In thgl N bt withi nterval At ifitis withi
i an elastic collision of a molecule with a wall ¢ nght within an mnterval AFIT 1T 1S within
By random motion of m0|eCU/|26‘ S /) perpendicular to the x-axis, the x- adistance v, At of the wall and travelling to
c - (<vf b+ ()= () - 6(n)) oo e Sl
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21.1 The kinetic model of gases

For a perfect gas at constant 7, pJ” = constant (19?/ Boyle’s law) = nRT

1/2
pV:%nMczanT —> Czt%j COC(T)]./Z, COC(%)
-TT —>c

Low temperature or

- heavy molecules travel more slowly than light molecules high molecular mass

Intermediate
temperature
or molecular
mass

In an actual gas,
- ¢ span a wide range — collisions redistribute ¢ continually
- the fraction of molecules at the speed range from v to v + dv

Relative numbers of molecules, f(v)

f(v)dv — f(v) :distribution of speeds High
temperature or
low molecular

3/2 i i i mass
() =4 M > 2 I2RT Ma>fwell distribution of speeds A=
V) =4an 5 (driven by J.C. Maxwell) - _
RT Speed, v
_ the range Of Speeds broads aS T T (See Fig. 21.3) Fig. 21.3 ThC‘ dlStI‘lbllTlOﬂ Oflnolccular
speeds with temperature and molar mass.
- lighter molecules have a broader distribution of speeds than heavier Note that the most probable speed
| | (corresponding to the peak of the
molecules y distribution) increases with temperature
- - 2 . .
Fraction in the range A to Vv, = I f(V)dV a.nd with decreasing lv1mllar mass, and
v simultaneously the distribution becomes
. area under the graph of f as a function of v (see Fig. 21.4) broader.

)
gt 3
pi= TR
&
k-
b N
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21.1 The kinetic model of gases

Justification 21.2 The Maxwell distribution od speeds

1 , 1 1

Using the Boltzmann distributionand £ =5, +Emvy2 +Emvz2

—(Emvx2 +1mvy2 +;mv22 ) kT

f:Ke—E/kT:Ke 2 2

. Ke—mvxz/2kTe—mVy2/2kTe—mv22/2kT

Since f = f (v)f (n)f (v,),

Relative number of molecules

f(Vx) _ K1/3e_mvx2/2kT — In the range -c°<y,<oo, I_Oof(vx)dvx =1 E
| !

1/2 Speed
U3 [*  —mv?I2kT s 27kT
1=K j e dy, = KT —— .
—o0 * m Fig. 214 To calculate the probability that a
molecule will have a speed in the range v,
M 1/2 , to v,, we integrate the distribution between
f (V ) — e_MVx I2RT those two limits; the integral is equal to the
X 2 7Z'R T -(.11'0-(1 nft.hc curve between the limits, as
3/2 shown shaded here.
M 2
—Mv_“[2RT
_> — X
f(vx)f(vy)f(vz)dvxdvydvz - (Zﬂ'RT € dedVdeZ
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21.1 The kinetic model of gases

f (v)dv in the range of v to v+dv 3/2
: forming a spherical shell of . () =4r M VZe—MvXZ/ZRT
radius v and thickness dv (see Fig. 21.5) o B 21RT
(see Example 21.1)
M 3/2 1/e
— '] o0 2
C Z_[ vf (v)dv =4rx ( j _[ vie M2 gy Suface |  Thickness,
0 27RT 0 area, dnv’ dv
1/2 o - c* = (2RTIM)"*
o= 8RT ¢ : the mean speed & 5 = (BRT/M)”
M of the molecules in a gas S
;5 c = (3RTIM)"
Atf’(v) = 0, (see Fig 21.6) 2 v\
VY
a
. 2RT
¢ =|——| c*:the most probable speed : p
M 1 VI(2RT/M)'
@™ (32)" Fig.21.5 To evaluate the probability that a

o molecule has a speed in the range v to

Crel = 21/20 Crel the relative mean Speed v+ dv, we evaluate the total probability

Fig. 21.6 A summary of the conclusions that

can be deduced from the Maxwell that the molecule will have a speed that is
distribution for molecules of molar mass M a“YWhETE on the surface of a sphere of
; at a temperature T: ¢* is the most probabl radius v = (v2+v2+v2)"" by summing the
(See F|g 217) ata temperature T: ¢* is the most probable ¢ (vg+ v+ ;)" by g

speed, ¢ is the mean speed, and cis theroot  probabilities that it is in a volume element
mean square speed. dv,dv,dv, at a distance v from the origin.

=
.

-
p
<

iy
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21.1 The kinetic model of gases

The concept of the relative mean speed
In case of two dissimilar molecules of masses m, and myg,

1/2
- 8kT N
Crel =| — lLl e
e my +mg

- k : Boltzmann’s constant (k=R/N,)
- (/: reduced mass

Seoul National University

Fig. 21.7 A simplified version of the
argument to show that the mean relative
speed of molecules in a gas is related to the
mean speed. When the molecules are
moving in the same direction, the mean
relative speed is zero; it is 2v when the
molecules are approaching each other. A
typical mean direction of approach is from
the side, and the mean speed of approach is
then 2'2v. The last direction of approach is
the most characteristic, so the mean speed
of approach can be expected to be about
2'2p, This value is confirmed by more
detailed calculation.
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21.1 The kinetic model of gases

(b) The collision frequency

The collision frequency (z): The number of collisions made by one molecule during the time interval
when N molecules exist in a volume V

z=occraN , Where o is the collision cross-section
. OCrel D

kT
Justification 21.3 Using the kinetic model to calculate the collision frequency

In terms of the pressure, z

One mobile molecule travels through the gas with a mean relative speed ¢, for A ¢ (see Fig. 21.9)
- the volume of collision tube (area X length) : o CreaAt

- the number of stationary molecules : the number density (N=N/V) X the volume = NocwAt

— the number of collisions divided by the time interval :  _ _ q\c | - |
. . . | Miss ) |
- in terms of pressure (using perfect gas equation) _ - 1
Synoptic table 21.1* Collision cross- Q@
sections
\Area. o it
2
— o/nm Fig. 21.9 In an interval Ar, a molecule of
diameter d sweeps out a tube of radius d
N nNA pNA p O-C I’elp CﬁHn 0.88 and length ¢, At. As it does so it encounters
— = = = —> Z =— . other molecules with centres that lie within
V V RT kT kT CO, 0.52 the tube, and each such encounter counts
He 0.21 as one collision. In reality, the tube is not
sl straight, but changes direction at each
N, 0.43 collision. Nevertheless, the volume swept
= out is the same, and this straightened
version of the tube can be used as a basis of
* More values are given in the Data section. the calculation.

Prof. Sang-im, Yoo



21.1 The kinetic model of gases
(c) The mean free path

The mean free path (A) : the average distance a molecule travels between collisions
A= © A= lefZT - If a molecule collides with frequency (z), it spends a time 1/z in free flight

z op between collisions, and therefore travels a distance 4

- In a sample of constant volume, 7/p = constant as T 1

— the mean free path is independent of 7 in a constant V'
— the distance between collisions is determined by the number of molecules (not the speed)

21.2 Collisions with walls and surfaces

The collision flux (Z,y) : the number of collisions with the area in a given time interval divided by the
JZ area and the duration of the interval

W (2mkT)Y? | (When p=100 kPa and T=300K, Z,,~3 X 1023cm-1s)

Justification 21.4 The collision flux

When a molecule strikes the wall within A¢, area = 4, distance = v, A ¢

e w 7 o . dy (" collision flux
Number of collisions MAtJ'O v.f(v)dx Zw Wfo v, f(v,)dx = number of collisions/A- A 7)

m 1/2 kT 1/2 kT 1/2 1
® dv = 2 0 —mvx2/2de :(_j _ kT :#z_—
[ vs)av, (2 ﬂij [, vee =\ S =M omn) G s
(" N=nNAV = plkT)
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21.3 The rate of effusion

Graham’s law of effusion
. the rate of effusion is inversely proportional to the square root of the molar mass

- The mean speed of molecules o< 1/M*2 — the rate of striking the area of hole o< 1/M1/2

- When a gas at p and T'is separated from a vacuum by a small hole,

P4, _ PAN
(2mmkT)"*  (27ZMRT)"?

Rate of effusion =Z,, 4, =

("."A, = area of a hole, R = Nk, M = mN,)

— The basis of the Knudsen method for the determination of the (very low) vapour pressures of
liquids and solids
(Knudsen method : The rate of escaping molecules through a small hole can be used to calculate
vapour pressure of a liquid or solid)

— |If the vapour pressure of the sample is p, and it is enclosed in a cavity with a small hole, then the
rate of loss of mass from the container is proportional to p.

Seoul National University Prof. Sang-im, Yoo



21.4 Transport properties of a perfect gas

(a) The phenomenological equations

Flux (J) : the quantity of migration passing through a given area in a given
time interval divided by the area and the duration of the interval

- matter flux (molecules/m?2s) and energy flux (joules/m?2s)
- the flux of matter diffusing parallel to the z-axis of a container is found to
be proportional to the first derivative of the concentration

dN
Z
- if the concentration varies steeply with position, then diffusion will be fast
- no net flux if the concentration is uniform (dN/dz=0)
— Fick’s first law of diffusion

J(matter) oc (/ [atoms/m2s])  J(energy) oc (l—T (J [Joules/m?:s])
z

dN dr
J(matter) =-D J(energy) = —-x—
Z dZ Fig. 2110 The flux of particles down a
. . ] concentration gradient. Fick’s first law
- Because matter flows down a concentration gradient, from high satasthar the fucof aisttes (dhe munberof
concentration to low concentration, J is positive if dN/dz is negative. particles passing through an imaginary

window in a given interval divided by the
area of the window and the duration of the
interval) is proportional to the density

- D : the diffusion coefficient [m2.s-1], g At At ot
- K : the coefficient of thermal conductivity [JK1-m=1.s1]

(see Fig. 21.10) — writing (=)D
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21.4 Transport properties of a perfect gas

Bring high
X-momentum

The connection between the flux of momentum and the viscosity e emon

A X-momentum

- Newtonian flow (can be imagined as occurring by a series of layers

moving past one another - see Fig. 21.11) :ﬁ:
— the layer next to the wall of the vessel is stationary, and the velocity - 5% 8
of successive layers varies linearly with distance z, from the wall —>

— I’etardlng effeCt Fig. 21.11 The viscosity of a fluid arises from
- a layer is retarded by molecules from slowly moving layer with a low | transpor of inear momentum, In this

illustration the fluid is undergoing laminar

momentum In the X_dlrectlon flow, and particles bring their initial
. . . . . momentum when they enter a new layer.
: the viscosity o the flux of x-component in the z-direction If they arrive with high x-component of

momentum they accelerate the layer; if

dV with low x-component of momentum
hey retard the layer.
J (x —component of momentum) = -7 —= feyreraiier
dZ Synoptic table 21.2* Transport
properties of gases at 1 atm
- 11 : the coefficient of viscosity [kg/m-s] DO T} RS
273 K 273 K 293 K
. . Ar 0.0163 210 223
: reported in poise(P), 1P=10"1kgm-1s- (see Table 21.2) co. 00145 136 147
He 0.1442 187 196
N, 0.0240 166 176

* More values are given in the Data section.
F1lpP=10"kgm™" s,

-
Fels%,
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21.4 Transport properties of a perfect gas
(b) The transport parameters
The value of the transport coefficient of a perfect gas

D=2c
3

(see Further information21.1 and Table 21.3)

1. Asp 1, the mean free path 4 |
:D | — p 1 (the gas molecules diffuse more slowly)

2. AsTT,the meanspeed, +
:D 11— T1 (the molecules in a hot sample diffuse more quickly than those in a cool sample)

3. As the collision cross-section (o) |, A 1
. D (small sample) > D (large sample)

Table 21.3 Transport properties of perfect gases

Property Transported quantity Simple kinetic theory Units
Diffusion Matter D=1A¢ m? 57!
Thermal conductivity Energy k=1AEC, .[A] JE 'm—ts?
. "f(-'l im
320N,
Viscosity Linear momentum n= _IT“;L EmN kg m™! g1
_ mc
320
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21.4 Transport properties of a perfect gas

1 -
K= 5/10 CV,M [A] where C,,, Is the molar heat capacity at constant volume.

1

1. A o< pressure,and 4 oc _
The molar concentration of the gas

”Thermal conductivity is independent of the pressure”
However, at very low pressure, K OC [hbecause  excgeds the dimensions of the

apparatus.

2. The thermal conductivity is greater for gases with a high heat capacity.

n= %MAE[A]

[A] : The molar concentration of the gas molecules

M : Molar mass

1.4 o i, |Alc p, nocc, 5 isindependent of the pressure
P

2. ¢ o« T2 poc TV | the viscosity of a gas increases with temperature
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21.4 Transport properties of a perfect gas

Two techniques for measuring viscosities of gases.

1. Depends on the rate of damping of the torsional oscillations of a disc.

(The half life of the decay of the oscillation depends on the viscosity and design of the apparatus.)

2. Poiseuille’s formula. (for the rate of flow of a fluid through a tube of radius, r.)

2 2 4 Where, V : the volume flowing
dv _(p —p, )m

Py, P, : the pressure at each end of the tube
dt 16[77]9 0 | : the length of tube.

Py - the pressure at which the volume is measured.

Seoul National University
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Molecular motion in liquids

21.5 Experimental results

The method measuring the motion of molecules in liquids
- NMR or ESR
- Inelastic neutron scattering

Viscosity measurement (see Table 21.4)

- For a molecule in a liquid to escape from neighbours, at least a min.
energy is required

- The probability that a molecule has an energy £, probability oc

E,IRT
e

-The coefficient of viscosity (77) is inversely proportional to the mobility
of the particles :

E,IRT
- The viscosity shoultl Fe&ease sharply with increasing temperature
- a variation of 77 in small temperature ranges (see Fig. 21.13)

Seoul National University

Synoptic table 21.4* Viscosities of
liquids at 298 K

/(10 3 kg m g1y

Benzene 0.601
Mercury 1.55

Propane 0.224
Water' 0.891

* More values are given in the Data section.
T The viscosity of water corresponds to 0.891 cP.

2.0

10°n/kgm's")

0
0O 20 40 60 80 100
a/°C

Fig. 21.13 The experimental temperature
dependence of the viscosity of water. As the
temperature is increased, more molecules
are able to escape from the potential wells
provided by their neighbours, and so the
liquid becomes more fluid. A plot of In
against 1/T is a straight line (over a small
range) with positive slope.
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21.6 The conductivities of electrolyte solutions

(a) Conductance and conductivity

The fundamental measurement of the motion of ions
- Resistance (R) : ohms[{]
- Conductance (G = 1/R) : mho [221] or siemens [1S = 1Q1=1CV-1s1]

xA .
= - K : the conductivity [S/m]

1
4 =% - A, the molar conductivity [S-m?/mol]

M .~  -c:themolar concentration of the added electrolyte

The variation of A, with the concentration
— the number of ions in the solution might not be proportional
to the concentration of the electrolyte
— strong interaction of ions

The concentration dependence of molar conductivities (two classes)
- strong electrolyte : A, depends only slightly on the molar concentration
- weak electrolyte : A, falls sharply to low values as the concentration
increases (see Fig. 21.14)

Seoul National University

160f¢—1498
120

80

A NS em? mol™)

g 0 20 40 60 80 100
c/immol dm™)

Fig. 21.14 The concentration dependence of

the molar conductivities of (a) a typical

strong electrolyte (aqueous potassium

chloride) and (b) a typical weak electrolyte

(aqueous acetic acid).
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21.6 The conductivities of electrolyte solutions

(b) Strong electrolytes

: the substances that are virtually fully ionized in solution (ionic solids and strong acids)

At low concentrations,
A =4"° ~Kc"'? : Kohlrausch’s law

- A0 - the limiting molar conductivity (in the zero concentration)
: the sum of contributions from its individual ions

Amo =v.A +v. A4 Kohlrausch’s law of the independent migrations of ions

- A\, : the limiting molar conductivity of the cations (See Table 21.5)

- A_ : the limiting molar conductivity of the anions

- v, and v_ : the numbers of cations and anions per formula unit of
electrolyte (ex/ v,=v =1 for HCl and v,=1,v =2 for MgCl,)

Synoptic table 21.5* Limiting ionic conductivities in water at 298 K

A/(mS m* mol™) A/(mS m® mol™")
H 3496 OH™ 19.91
Na* 5.01 CI- 7.63
K Foa5 Br 7.81

Znt 10.56 SO 16.00

* More values are given in the Data section.
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21.6 The conductivities of electrolyte solutions

(c) Weak electrolytes

. The substances that are not fully ionized in solution

HAG@G)+H,0() & H,0"(@g) + A (ag) g — o fa
’ Ay
- The conductivity depends on the numbers of ions in the solution
For the acid HA at a molar concentration at equilibrium,
[H;O']=ac [Al=ac [HA]=(1-a)c - @ the degree of ionization g
If activity coefficients are ignored, "
2 1/2
o c
K, = N o P Vg0
l-a 2¢ K, "
i 0 1 ac
USlng Am :aAm and ;:14‘?& CAm
1 1 A.c o
A A * K.(A.°)? Ostwald’s dilution law Fig. 21.15 The graph used to determine the
m m a m

limiting value of the molar conductivity of

a solution by extrapolation to zero
- If 1/4,, is plotted against cA,,,, then the intercept at ¢ = 0 will be 1/4,,°  concentration.
(see Fig.21.15)

Seoul National University
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21.7 The mobilities of 1ons

(a) The drift speed

When the potential difference between two electrodes a distance | apart is A¢, the uniform electric field
A
: E= Ag
[
In such a field, an ion of charge ze experiences a force of magnitude

F =zeE = zeAg

- anions and cations accelerated by the electric field experience a frictional retarding force (F;.)
- application of the Stokes formula (in eqn 19.12)

F

- the force by electric field and the frictional force are in opposite directions
— the ions quickly reach a terminal speed

fic™s 2 F. = f5 [ =6zna (s:speed, f: the frictional coefficient, a : radius of sphere)

E Synoptic table 21.6* Tonic mobilities in water at 298 K
ze -
ZeE - ﬁ — 5= the drlft SpeEd u/(10¥m*s' V) w/(10¥m?s7 1V
. . H! 36.23 OH- 2064
- s o< the strength of the applied field > s =u‘E o 519 o 701
2o F e o _ . ] K’ 7.62 Br 8.09
g = —uF > y==¢_ - (u : the mobility of ion) ;. i 502 Ao
wna
f 77 (See Table 216) * More values are given in the Data section.

Prof. Sang-im, Yoo




21.7 The mobilities of 1ons

(b) Mobility and conductivity

The relation between an ion’s mobility and
molar conductivity :

A =zuF - F:the Faraday constant (F = Nye)

Justification 21.5 The relation between ionic mobility and molar conductivity

Consider a solution of a fully dissociated strong electrolyte at a molar concentration ¢ (see Fig. 21.17)
- the molar concentration = ve & the number of density = veN, T
— the number density of ions = sAtdveN, e, a3

Cations KL -
sAtAveN _ _ T
= 4 SVCNA — each ion carries a Charge ze ) //
o ) /Glg/
. . . s At
. s At

J(charge) = zsvceN , = zsvcF

J(ions)

Fig. 21.17 In the calculation of the current,

Because S:uE’ J(Charge) = ZuvceFE —> The Current (I) all the cations within a distance s, Ar (that

is, those in the volume s, AAr) will pass
through the area A. The anions in the

] — M — Fﬂq corresponding volume the other side of the
—_ = zZuvce window will also contribute to the current

similarly.
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21.7 The mobilities of 1ons

_ zuvcFAA¢

ByE:Aqﬁ/I,I_f — by Ohm’s law and G=k4A1 , IZ%ZGA¢:KA_A¢

_zuvcFAAg  kAA¢
[ [

1 — k=zuvcF — bothsides+ve: .. A=zulF -eq2l.44

For the solution itself in the limit of zero concentration, Am° = (z+u+v+ +zuv)F

For a symmetrical z:z electrolyte, A° =z, +u )F

(c) Transport numbers

The fraction of total current carried by the ions of a specified type

: 1 _ - 1, : the current by the cation (Z,) or anion(/)
C =2 t, : the transport number * * : _
L= (4 P )| - /- the total current through the solution — £, +2 =1
For the limit of zero concentration of the electrolyte solution, (using 7 — zuvclFAAP )
Z V.U, 0 u ..
t° = — t. = == . =
i ZVu +zvu_ § u, +u_ (2w, =20)
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21.7 The mobilities of 1ons

Because the ionic conductivities are related to the mobilities by A = zuF"

0 vA VA

- vA+Vv A A°

m

For each type of ion,
v A =t.°A4°

The method for measuring transport numbers
: the moving boundary method

In Fig. 21.18
a sharp boundary between the two solutions
- MX : the leading solution

- NX (denser solution) : the indicator solution
— the mobility : M ions > N ions

- if M ions diffuse into the lower solution, they will be pulled upwards
— the boundary moves from AB to CD

- The relation between the distance (I) moved by the boundary in the time

At for which a current /is passed for Az ¢, :%
t

C D Time t

A B Time 0

Fig. 21.18 In the moving boundary method
for the measurement of transport numbers
the distance moved by the boundary is
observed as a current is passed. All the M
ions in the volume between AB and CD
must have passed through CD if the
boundary moves from AB to CD. One
procedure is to add bromothymol blue
indicator to a slightly alkaline solution of
the ion of interest and to use a cadmium
electrode at the lower end of the vertical
tube. The electrode produces Cd** ions,
which are slow moving and slightly acidic
(the hydrated ion is a Brensted acid), and
the boundary is revealed by the colour
change of the indicator.

Seoul National University
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21.8 Conductivities and 1on-ion interactions

The 12 dependence of Kohlrausch’s law by the ionic atmosphere
- relaxation effect (see Fig. 21.19)
. In a electric field, two charges are in opposite directions

—> retardation of the moving ion

- electrophoretic effect 0
: By the ionic atmosphere, a viscous drag of the
moving ion T (the mobility |) )
) L ) T —40
To obtain quantitative expressions, g ) 9
- Debye-Huckel-Onsager theory e =
. ]
(see Fig. 21.20 and Table 21.7) 0 % | W @
. 3:5 /| e | JHR A 3 -
K - A + BAm | ’)
2 2 1/2 1/2 < e "
zeF 2 gz’eF (2 5% e J
A= B= F Ry o—
: i Y (b) j
Synoptic table 21.7* Debye-Hiickel-Onsager coefficients for (1,1)-electrolytes at 298 K 0 01 02 03 04
Solvent A/(mS m? mol'/(mol dm)"/2) B/(mol dm™?)"1/2 " Fig.21.19 (a) In the absence of an applied
field, the ionic atmosphere is spherically
Viecanol e 0843 Fig. 2120 The dependence of molar symmetric, but (b) when a field is present it
BIopanonc 328 163 conductivities on the square root of the is distorted and the centres of negative and
Weter 5:02 = if’“ic ’“"F“Sth: and comparison (lstraight positive charge no longer coincide. The
. I - lines) with the dependence predicted by the  atraction between the opposite charges
More values are given in the Data section. Debve—Hiickel-Onsager the ! ) -
SR AR LR retards the motion of the central ion.

s
4
2,

Seoul National University Prof. Sang-im, Yoo
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Diffusion

21.9 The thermodynamic view

At constant p and 7, the maximum non-expansion work that can be done per mole
when a substance moves from a location 4 to a location « + du,

dw=du= (a—’u) dx
p.T

ox
General work against an opposing force : dw = —Tdx

By comparing these two expressions, the slope of x can be interpreted as an effective force per mole of
molecules

F — _(8_/1) : Thermodynamic force
ox ), ¢

It may represent the spontaneous tendency of the molecules to disperse
as a consequence of the 2" Law and the hunt for maximum entropy.

(a) The thermodynamic force of a concentration gradient

In a solution, ﬂ:ﬂ°+RT|na

. : . . ol
If the solution is not uniform, the activity depends on the position: % = —RT( an aj
X J),r

: : RT (0
For an ideal solution(@=¢): F= ——(—cj
c \0x/,;
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21.9 The thermodynamic view
(b) Fick’s first law of diffusion J oc de/dx

Suppose the flux of diffusing particles is driven by a thermodynamic force due to a concentration
gradient. The particles reaches a steady drift speed (s) when the thermodynamic force F is

matched by the viscous drag. Then, s« F
However, the particle flux () is proportional to the drift speed (J o s), and the thermodynamic

force is proportional to the concentration gradient (/' oc dc/dx)
SoJocs, socF and F oc de/dx — J oc del/dx

(c) The Einstein relation

Fick’s first law ©  J = —D% Because the flux is related to the drift speed, J = sC
X
dc
Therefore, sc=—-D— — ysing q:z_ﬂ @ S:_Q%ZE
dx C ox o C dx RT

When an ion in solution has a drift speed s = ul , a force ezE' from electric field of strength E

I =NjezE =zFE

zFED zFD Do uRT | : Einstein relation
T RT " RT 7 g | (relation between D and u (ionic mobility))
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21.9 The thermodynamic view
(d) The Nernst-Einstein equation

The Einstein relation provides a link between the molar conductivity (1) of an electrolyte

and the diffusion coefficients (D) of its ions.
z’DF?
RT

For eachion, A=zuF =

From A,°=v,A, +v.A_, the limiting molar conductivity,

FZ
A =(,z°D, +v_z_2D_)ﬁ Nernst-Einstein equation
(e) The Stokes-Einstein equation
By combining u =25 with p="2L by using eR/F =k,
f zF
kT . :
D= 7 Stokes-Einstein equation

kT
By Stokes’s law for the frictional force, f =06zna , Then D=——

Synoptic table 21.8* Diffusion

coefficients at 298 K
D/(10° m*s™!)
H* in water 9.31
I, in hexane 4.05
Na® in water i
Sucrose in water 0.522

* More values are given in the Data section.

) i : i zna . i .. :
Since Stokes-Einstein equation makes no reference to the charge of the diffusing species, it applies
to neutral molecules — estimation of D for electrically neutral molecules by measuring viscosity

(see Table 21.8)

Seoul National University
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21.9 The thermodynamic view

Walden’s rule : product nA,, is very approximately constant for the same ions in different solvents
Ay ocDand D o« 1/7, 50, A, oc Un

However, the role of solvation (i.e., different solvents solvate the same ions to different extents) limits its
applicability since hydrodynamic radius a & viscosity 7 change with the solvent.

21.10 The diffusion equation

Time-dependent diffusion process
ex) a metal bar heated at the end
the concentration distribution in a solvent to which solute is added

The rate of concentration changes at a point to the spatial variation of the concentration at that point

e _p o

8_ =D— Fick’s second law
t X

Justification 21.6 The diffusion equation

When the particles enter the slab, (see Fig. 21.24 in the next page.)
the amount in the infinitesimal interval dr : JAdt
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21.10 The diffusion equation

from @, % — ']Adt — i from @’ oc _ J'Adf _ _i' Are\éo,g-]me Al Jx+ NA
ot Aldr 1 Ot Aldt [
dc _J-J'

The net rate of change of concentration :

Using Fick’s first law, o /

1 2
J-y=-p%,p% __p%,po c+£@jz =Dza—§
ox ox Ox Ox ox Ox

J(x)A

Fig. 21.24 The net flux in a region is the
difference between the flux entering from

aC J - J' Dl(@zc / aXZ) aZC the region of high concentration (on the
) — = = D E—— left) and the flux leaving to the region of
2 8 8
81‘ l l ax low concentration (on the right).

(a) Diffusion with convection

Convection: the transport of particles arising from the motion of a streaming fluid
When the flux of particles flow through an area 4 in an interval At
(the velocity of the flowing fluid : v)

— cAvAt = cV (J : the convective flux)
ANt
In a slab of thickness | and area 4, Oc _J=J _ c— C+@ VY _V@
ot [ ox | | [ ox

Seoul National University
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21.10 The diffusion equation

When both diffusion and convection occur,

oc D o°c oc

= —v This expression is important in chemistry because of the possibility
ot o’ ox that the concentrations of particles may change as a result of reaction
25 [ _
(b) Solutions of the diffusion equation o
2
@ - D 0°C - asecond-order differential eqn with respect to space
ot - 8x2 - a first-order differential egn with respect to time

c/(n,/A)

Consider a solvent in which the solute is initially coated on one surface of
the container

- Initial condition at 7, = 0, all N, particles are concentrated on yz-plane
atx=0 ]

- The requirements for the two boundary conditions
1) the concentration must everywhere be finite

—

Fig. 21.26 The concentration profiles above
i i — i a plane from which a solute is diffusing,
2) the total amount of particles is n, (n, = Ny/N,) at all times The ctrves are plots of eqn 21,72 and e
— the flux = 0 at the top and bottom surfaces

labelled with different values of Dt. The
units of Dt and x are arbitrary, but are

n 2 : related so that Dt/x? is dimensionless. For
C(.x, t) - 0 —x* /4Dt the Concentratlon Spreads and tends example, if x is in metres, Df would be in
A( th)“ 2 to uniformity (see Fig. 21.26) metres’; o, for D=10" m? 5™\, Dr=0.1 m?

corresponds to t=10%s.
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21.10 The diffusion equation

For a localized concentration of solute in a three-dimensional solvent, the concentration of diffused
solute is spherically symmetrical and at a radius r is

no 214Dt

8(zDt)2"

c(r,t)=

(c) The measurement of diffusion coefficients

(1) Capillary technique
- a capillary tube, open at one end and containing a solution, is immersed
in a well stirred lager quantity of solvent — monitoring the change of ¢

(2) Diaphragm technique
- the diffusion occurs through the capillary pores of a sintered glass diaphragm separating
the well-stirred solution — monitoring the change of ¢

(3) The dynamic light scattering technique (in Section 19.3)
(4) NMR (Nuclear Magnetic Resonance)
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21.11 Diffusion probabilities

The net distance traveled on average by particles in a time ¢

- The number of particles in a slab of thickness dx and area 4 at x : cANAOx

- The probability that any of the N, = n,N, particles : cAN dx/N,

- The mean distance : (x) = '[ XeAN & gy = —m_[w xe ™ 4P gy =
o N, (zDt )™ < 90

- The root mean square distance traveled in the same time :

1 4Dt _Z(Dtjm
(zDt)"? 2

) 0(—1 m
© x“CcA 1
<x2>:I ﬂdxz—mj x2e™ 4P gy
o N, (nD1t)
t
L Jz(2x4D1)¥? = 2Dy =
(7th) =
1/2 .
Dt 1/2
: <x>=2(7J <x2> = (2Df)"*  (see Fig. 21.28) /1 nm |
B us 1ms1is d
Al L
-10 -6 -2 0 2 6
log (t/s)

- Fig. 21.28 shows how long it takes for diffusion to increase the net
distance traveled on average to about 1cm in an unstirred solution Fig.21.28 The root mean square distance

covered by particles with D=5 x
1071 m? 57!, Note the great slowness of
diffusion.
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21.12 The statistical view

Assuming the particles to travel only along a straight line (the x-axis), and for each step to be
the same distance (1) : the one-dimensional random walk

1/2
P = (Z_Tj e‘xz”m‘z the probability of a particle being at a
7Tt distance x from the origin after a time ¢

through

Justification 21.7 The one-dimensional random network

The number of ways of a one-dimensional random walk :
N! N!

TR RN
{2( +n)}{2( —n)}

The probability of the net distance walked being nA is,

P number of paths with N, stepsto theright W _ N

total number of steps 2" {1 (N+n)}!{l (N_n)}!zN
By Stirling’s approximation, 2 2

Inx!~ In(27)"? +(x+%) Inx—x
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21.12 The statistical view

2 V% 1 n) 1 n
InP=Inl—| —-—=(N+n+DIn|l+— |—-=(N-n+1In|1-—
N 2 N) 2 N
1/2 2 1/2
Using In(1+ x) zix—ixz InP ~ |ﬂ(ij T . P= & e_xzf/ztiz
2 7N 2N Tt
. 2 0\
By two expressions  ¢(X,7) = 0 e™'*" and _| 2L R
y p (x,1) AGD P=|—] e

The diffusion can be interpreted as the outcome of a large number of steps in random directions.
The relation of D to the step length A and the rate at which the jumps occur :

2

2 2 2
e—x 4Dt — e—x r/214 — D:_}L Einstein-Smoluchowski equation
2T

The central connection between the microscopic details of particle motion and the macroscopic
parameters relating to diffusion

If we interpret A/ 7 as the mean speed (c¢) and A as a mean free path,

D= 1_2 _ E E the diffusion of a perfect gas is a random walk with an average step size equal
27 2 to the mean free path
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