
Seoul National UniversitySeoul National University Prof. SangProf. Sang--imim, , YooYoo

Lecture Contents
21. Molecules in motion 
Molecular motion in gases
21.1 The kinetic model of gases
21.2 Collisions with walls and surfaces
21.3 The rate of effusion
21.4 Transport properties of a perfect gas

Molecular motion in liquids
21.5 Experimental results
21.6 The conductivities of electrolyte solutions
21.7 The mobilities of ions
21.8 Conductivities and ion-ion interactions 

Diffusion
21.9 The thermodynamic view
21.10 The diffusion equation
21.11 Diffusion probabilities
21.12 The statistical view 



Seoul National UniversitySeoul National University Prof. SangProf. Sang--imim, , YooYoo

The simplest types of molecular motion
- the random motion of molecules of a perfect gas
- the largely uniform motion of ions in solution in an electric field

Transport properties of a substance
- Diffusion: the migration of matter down a concentration gradient
- Thermal conduction: the migration of energy down a temperature gradient
- Electric conduction: the migration of electric charge along an electrical potential gradient
- Viscosity: the migration of linear momentum down a velocity gradient
- Effusion: the emergence of a gas from a container through a small hole

Molecular motion in gases

21.1 The kinetic model of gases
Three assumptions of the kinetic model
1. The gas consists of molecules of mass m in endless random motion
2. The size of molecules is negligible 
→ diameters of molecules << average distance traveled between collisions

3. The molecules interact only through brief, infrequent, and elastic collisions

(a) Pressure and molecular speeds 

2

3
1 nMcpV =

- M : molar mass (M = mNA)
- c : root mean square speed

2/12vc =
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Justification 21.1   The pressure of a gas according to the kinetic model
When a particle of mass m and velocity vx collides with the wall, (see Fig. 21.1)
- Linear momentum : mvx (before collision),  – mvx (after collision) 
- x-component of momentum change : 2mvx & collision interval : Δt
- Traveling distance : vxΔt , volume : A× vxΔt
→ all the molecules within A×vxΔt will strike the wall (see Fig. 21.2)

- The number density : nNA/V, the number of molecules in A×vxΔt : (nNA/V)×AvxΔt
- The average number of collisions : (1/2)nNAAvxΔt /V
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(p : average pressure, <vx> : average velocity)

By random motion of molecules,

21.1 The kinetic model of gases
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For a perfect gas at constant T, pV = constant (by Boyle’s law) = nRT
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- T ↑→ c ↑
- heavy molecules travel more slowly than light molecules

In an actual gas, 
- c span a wide range → collisions redistribute c continually
- the fraction of molecules at the speed range from v to v + dv

f (v)dv → f (v)    : distribution of speeds
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Maxwell distribution of speeds

(driven by J.C. Maxwell)

- the range of speeds broads as T ↑ (see Fig. 21.3)

- lighter molecules have a broader distribution of speeds than heavier 
molecules

,
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: area under the graph of f  as a function of v (see Fig. 21.4)

21.1 The kinetic model of gases
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Justification 21.2 The Maxwell distribution od speeds
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Using the Boltzmann distribution and                                           ,

Since f = f (vx)f (vy)f (vz),

→ in the range  -∞< vx<∞,
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21.1 The kinetic model of gases
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f (v)dv in the range of v to v+dv
: forming a spherical shell of 

radius v and thickness dv (see Fig. 21.5)

2/18  ⎟
⎠
⎞

⎜
⎝
⎛=∴

M
RTc
π

(see Example 21.1)
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At f ’(v) = 0, (see Fig 21.6)

c : the mean speed 
of the molecules in a gas
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c* : the most probable speed

crel : the relative mean speed

(see Fig 21.7)

21.1 The kinetic model of gases
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In case of two dissimilar molecules of masses mA and mB,

- k : Boltzmann’s constant (k=R/NA)
- μ : reduced mass

The concept of the relative mean speed

21.1 The kinetic model of gases
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(b) The collision frequency 

Nrelcz σ=

The collision frequency (z): The number of collisions made by one molecule during the time interval 
when N molecules exist in a volume V

, where σ is the collision cross-section

Justification 21.3  Using the kinetic model to calculate the collision frequency
kT

pcz relσ
=In terms of the pressure,

One mobile molecule travels through the gas with a mean relative speed crel for Δt (see Fig. 21.9)
- the volume of collision tube (area×length) : 
- the number of stationary molecules : the number density (N=N/V) × the volume =
→ the number of collisions divided by the time interval :

- in terms of pressure (using perfect gas equation)   

tc Δrelσ
tc ΔrelσN

relcz σN=

kT
p

RT
pN

V
nN

V
N AA ===

kT
pcz relσ
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21.1 The kinetic model of gases
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(c) The mean free path 

z
c

=λ
p
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The mean free path (λ) : the average distance a molecule travels between collisions
- If a molecule collides with frequency (z), it spends a time 1/z in free flight   
between collisions, and therefore travels a distanceλ

- In a sample of constant volume, T/p = constant as T↑
→ the mean free path is independent of T in a constant V
→ the distance between collisions is determined by the number of molecules (not the speed)

21.2 Collisions with walls and surfaces

2/1W )2( mkT
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π
=

The collision flux (ZW) :  the number of collisions with the area in a given time interval divided by the  
area and the duration of the interval
(When p=100 kPa and T=300K, ZW≈3×1023cm-1s-1)

Justification 21.4 The collision flux

When a molecule strikes the wall within Δt, area = A, distance = vxΔt
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21.1 The kinetic model of gases



Seoul National UniversitySeoul National University Prof. SangProf. Sang--imim, , YooYoo

21.3 The rate of effusion

Graham’s law of effusion 
: the rate of effusion is inversely proportional to the square root of the molar mass

- The mean speed of molecules ∝ 1/M1/2 → the rate of striking the area of hole ∝ 1/M1/2

- When a gas at p and T is separated from a vacuum by a small hole,

2/1
0

2/1
0

0W )2()2(
effusion of Rate

MRT
NpA

mkT
pAAZ A

ππ
===

(∵A0 = area of a hole, R = NAk, M = mNA)

→ The basis of the Knudsen method for the determination of the (very low) vapour pressures of 
liquids and solids
(Knudsen method : The rate of escaping molecules through a small hole can be used to calculate 
vapour pressure of a liquid or solid)

→ If the vapour pressure of the sample is p, and it is enclosed in a cavity with a small hole, then the    
rate of loss of mass from the container is proportional to p.
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21.4 Transport properties of a perfect gas
(a) The phenomenological equations 
Flux (J) : the quantity of migration passing through a given area in a given

time interval divided by the area and the duration of the interval

- matter flux (molecules/m2s) and energy flux (joules/m2s)
- the flux of matter diffusing parallel to the z-axis of a container is found to

be proportional to the first derivative of the concentration

: 
z

J
d

d)matter( N
∝

z
TJ

d
d)energy( ∝(J [atoms/m2·s]) (J [Joules/m2·s])

- if the concentration varies steeply with position, then diffusion will be fast
- no net flux if the concentration is uniform (dN/dz=0)
→ Fick’s first law of diffusion

z
DJ

d
d)matter( N

−= z
TJ

d
d)energy( κ−=

- Because matter flows down a concentration gradient, from high 
concentration to low concentration, J is positive if dN/dz is negative. 
(see Fig. 21.10) → writing (–)D

- D : the diffusion coefficient [m2·s-1],
-к : the coefficient of thermal conductivity [JK-1·m-1·s-1]
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The connection between the flux of momentum and the viscosity

- Newtonian flow (can be imagined as occurring by a series of layers  
moving past one another - see Fig. 21.11)

→ the layer next to the wall of the vessel is stationary, and the velocity         
of successive layers varies linearly with distance z, from the wall 

→ retarding effect 
- a layer is retarded by molecules from slowly moving layer with a low 

momentum in the x-direction
: the viscosity ∝ the flux of x-component in the z-direction

z
vxJ x

d
d)momentum ofcomponent ( η−=−

- η : the coefficient of viscosity [kg/m·s]

: reported in poise(P), 1P=10-1kgm-1s-1 (see Table 21.2) 

21.4 Transport properties of a perfect gas
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(b) The transport parameters 

cD λ
3
1

=

The value of the transport coefficient of a perfect gas

(see  Further information21.1 and Table 21.3)

1.  As p ↑, the mean free path λ↓
: D ↓→ p ↑ (the gas molecules diffuse more slowly)

2. As T ↑, the mean speed,    ↑
: D ↑→ T ↑ (the molecules in a hot sample diffuse more quickly than those in a cool sample)

3. As the collision cross-section (σ) ↓, λ ↑
: D (small sample) > D (large sample)

c

21.4 Transport properties of a perfect gas
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[ ]ACc MV ,

_

3
1 λκ = ,where CV,M is the molar heat capacity at constant volume. 

1. ∝ pressure, and  

”Thermal conductivity is independent of the pressure”

2.  The thermal conductivity is greater for gases with a high heat capacity. 

λ
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1
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However, at very low pressure,                  ,  because      exceeds the dimensions of the
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[A] : The molar concentration of the gas molecules 

M  : Molar mass
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ηηλ ∝∝∝ p
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21.4 Transport properties of a perfect gas
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Two techniques for measuring viscosities of gases.

1.  Depends on the rate of damping of the torsional oscillations of a disc.

(The half life of the decay of the oscillation depends on the viscosity and design of the apparatus.)

2.  Poiseuille’s formula. (for the rate of flow of a fluid through a tube of radius, r.)

0

42
2

2
1

16
)(

pl
rpp

dt
dV

η
π−

=
Where,     V : the volume flowing   

p1, p2 : the pressure at each end of the tube  

l   : the length of tube. 

p0 : the pressure at which the volume is measured. 

21.4 Transport properties of a perfect gas
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21.5 Experimental results

The method measuring the motion of molecules in liquids
- NMR or ESR
- Inelastic neutron scattering

Viscosity measurement (see Table 21.4)
- For a molecule in a liquid to escape from neighbours, at least a min. 

energy is required 
- The probability that a molecule has an energy Ea, probability ∝

-The coefficient of viscosity (η) is inversely proportional to the mobility 
of  the particles : 

RTEae /

RTEae /∝η- The viscosity should decrease sharply with increasing temperature
- a variation of η in small temperature ranges (see Fig. 21.13)

Molecular motion in liquids
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21.6 The conductivities of electrolyte solutions

(a) Conductance and conductivity
The fundamental measurement of the motion of ions
- Resistance (R) : ohms[Ω]
- Conductance (G = 1/R) : mho [Ω-1] or siemens [1S = 1Ω-1 = 1CV-1s-1]

l
AG κ

=

c
Λ κ

=m

- к : the conductivity [S/m]

- Λm : the molar conductivity [S·m2/mol]
- c : the molar concentration of the added electrolyte

The variation of Λm with the concentration 
→ the number of ions in the solution might not be proportional 

to the concentration of the electrolyte
→ strong interaction of ions 

The concentration dependence of molar conductivities (two classes)
- strong electrolyte : Λm depends only slightly on the molar concentration
- weak electrolyte : Λm falls sharply to low values as the concentration

increases (see Fig. 21.14)
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(b) Strong electrolytes
: the substances that are virtually fully ionized in solution (ionic solids and strong acids)

At low concentrations, 

2/1o
mm cΛΛ K−= : Kohlrausch’s law

- Λm
o : the limiting molar conductivity (in the zero concentration)

: the sum of contributions from its individual ions

−−++ += λλ vvΛ o
m : Kohlrausch’s law of the independent migrations of ions

- λ+ : the limiting molar conductivity of the cations (See Table 21.5)
- λ- : the limiting molar conductivity of the anions
- v+ and v- : the numbers of cations and anions per formula unit of 

electrolyte (ex/ v+=v-=1 for HCl and v+=1,v-=2 for MgCl2)

21.6 The conductivities of electrolyte solutions
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(c) Weak electrolytes

HA

AOH
a

3

a

aa
K

−+

=(aq)A(aq)OH)O(HHA(aq) 32
−+ +⇔+ l

: The substances that are not fully ionized in solution

- The conductivity depends on the numbers of ions in the solution
For the acid HA at a molar concentration at equilibrium,
[H3O+]=αc     [A-]=αc [HA]=(1-α)c        - α : the degree of ionization

If activity coefficients are ignored,
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Using                    and                    ,
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11
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- If 1/Λm is plotted against cΛm, then the intercept at c = 0 will be 1/Λm
o

(see Fig.21.15)

,

21.6 The conductivities of electrolyte solutions
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21.7 The mobilities of ions

(a) The drift speed

l
φΔ

=E
When the potential difference between two electrodes a distance l apart is Δφ , the uniform electric field

:

l
zeze φΔ

== EF
In such a field, an ion of charge ze experiences a force of magnitude

- anions and cations accelerated by the electric field experience a frictional retarding force (Ffric)
- application of the Stokes formula (in eqn 19.12) 

Ffric∝s→ fs=fricF af πη6= (s : speed, f : the frictional coefficient, a : radius of sphere)

- the force by electric field and the frictional force are in opposite directions
→ the ions quickly reach a terminal speed

f
zesfsze EE =→=     the drift speed

Eus =

a
ze

f
zeuu

f
zes

πη6
    ==∴→== EE

- s∝ the strength of the applied field →

(u : the mobility of ion) 

(see Table 21.6)
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(b) Mobility and conductivity

zuF=λ

The relation between an ion’s mobility and 
molar conductivity : 

- F : the Faraday constant (F = NAe)

Justification 21.5 The relation between ionic mobility and molar conductivity

Consider a solution of a fully dissociated strong electrolyte at a molar concentration c (see Fig. 21.17)
- the molar concentration = vc & the number of density = vcNA
→ the number density of ions = sΔtAvcNA

A
A svcN

tA
tAvcNsJ =
Δ

Δ
=)ions(

zsvcFzsvceNJ A ==)charge(

→ each ion carries a charge ze

:

EzuvceFJ =)charge(

AzuvcFJAI E==

Because s=uE, → The current (I) 

:

21.7 The mobilities of ions
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l
zuvcFAI φΔ

=
l

AG
R

I φκφφ Δ
=Δ=

Δ
=By E =Δφ/l , → by Ohm’s law and G=кA/l ,

zuvcFk
l

A
l

zuvcFAI =→
Δ

=
Δ

=     φκφ
→ both sides ÷ vc :                              -eq 21.44 zuF=∴λ

For the solution itself in the limit of zero concentration,

For a symmetrical z:z electrolyte, 

FvuzvuzΛ )(o
m −−−+++ +=

FuuzΛ )(o
m −+ +=

(c) Transport numbers

The fraction of total current carried by the ions of a specified type

:
I
It ±

± = ( t± : the transport number ) - Ι± : the current by the cation (Ι+) or anion(Ι-) 
- Ι : the total current through the solution → 1=+ −+ tt

For the limit of zero concentration of the electrolyte solution, (using                             )
l

zuvcFAI φΔ
=

−−−+++

±±±
± +
=

uvzuvz
uvzt o

−+

±
± +
=

uu
ut o (∵ z+v+ = z-v- )

21.7 The mobilities of ions
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o
m

o

Λ
v

vv
vt ±±

−−++

±±
± =

+
=

λ
λλ

λ

o
m

oΛtv ±±± =λ

Because the ionic conductivities are related to the mobilities by                   ,

For each type of ion,

zuF=λ

The method for measuring transport numbers 
: the moving boundary method

In Fig. 21.18 
a sharp boundary between the two solutions
- MX : the leading solution 
- NX (denser solution) : the indicator solution
→ the mobility : M ions > N ions 

- if M ions diffuse into the lower solution, they will be pulled upwards
→ the boundary moves from AB to CD

- The relation between the distance (l) moved by the boundary in the time
Δt for which a current Ι is passed for Δt :

tI
clAFzt
Δ

= +
+

21.7 The mobilities of ions
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21.8 Conductivities and ion-ion interactions
The c1/2 dependence of Kohlrausch’s law by the ionic atmosphere
- relaxation effect (see Fig. 21.19)
: In a electric field, two charges are in opposite directions
→ retardation of the moving ion

- electrophoretic effect
: By the ionic atmosphere, a viscous drag of the 

moving ion ↑ (the mobility ↓)

To obtain quantitative expressions,
- Debye-Huckel-Onsager theory 

(see Fig. 21.20 and Table 21.7)
o

mBΛA+=K
2/122 2

3
⎟
⎠
⎞

⎜
⎝
⎛=

RT
eFzA

επη

2/13 2
24

⎟
⎠
⎞

⎜
⎝
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RTRT
eFqzB

επε
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Diffusion

21.9 The thermodynamic view

x
x

w
Tp

ddd
,

⎟
⎠
⎞
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⎝
⎛
∂
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==
μμ

dxdw F−=

Tpx ,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
μF

At constant p and T, the maximum non-expansion work that can be done per mole 
when a substance moves from a location μ to a location μ + dμ ,

General work against an opposing force : 

By comparing these two expressions, the slope of μ can be interpreted as an effective force per mole of 
molecules

: Thermodynamic force

It may represent the spontaneous tendency of the molecules to disperse 
as a consequence of the 2nd Law and the hunt for maximum entropy.

(a) The thermodynamic force of a concentration gradient 

aRT lno += μμ

Tpx
aRT

,

ln
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=F

Tpx
c

c
RT

,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=F

In a solution,

If the solution is not uniform, the activity depends on the position : 

For an ideal solution (a = c) :
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(b) Fick’s first law of diffusion 
Suppose the flux of diffusing particles is driven by a thermodynamic force due to a concentration 
gradient. The particles reaches a steady drift speed (s) when the thermodynamic force F is 
matched by the viscous drag. Then,  s ∝ F
However, the particle flux (J) is proportional to the drift speed (J ∝ s), and the thermodynamic 
force is proportional to the concentration gradient (F ∝ dc/dx)
∴ J ∝ s, s ∝ F, and F ∝ dc/dx→ J ∝ dc/dx

(c) The Einstein relation  

x
cDJ

d
d

−= scJ =

x
cDsc

d
d

−=
RT
D

x
c

c
Ds F

=−=
d
d

Fick’s first law : Because the flux is related to the drift speed,

Therefore,
Tpx

c
c

RT

,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=F→ Using                           ,

RT
DzFu EE =

RT
zFDu =

zF
uRTD =∴  

When an ion in solution has a drift speed s = uE , a force ezE from electric field  of strength E

F = NAezE = zFE

: Einstein relation
(relation between D and u (ionic mobility))

J ∝ dc/dx

21.9 The thermodynamic view
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(d) The Nernst-Einstein equation  
The Einstein relation provides a link between the molar conductivity (λ) of an electrolyte 
and the diffusion coefficients (D) of its ions.  

For each ion, RT
DFzzuF

22

==λ

Nernst-Einstein equation
RT
FDzvDzvΛ

2
22

m )( −−−+++ +=

From Λm
o=v+λ+ + v-λ- , the  limiting molar conductivity,

(e) The Stokes-Einstein equation  

f
kTD =

By combining              with                     by using eR/F = k ,  

Stokes-Einstein equation

zF
uRTD =

f
zeu =

By Stokes’s law  for the frictional force,                        , Then
a

kTD
πη6

=af πη6=
Since Stokes-Einstein equation makes no reference to the charge of the diffusing species, it applies 
to neutral molecules → estimation of D for electrically neutral molecules by measuring viscosity 
(see Table 21.8)

21.9 The thermodynamic view
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Walden’s rule : product ηΛm is very approximately constant for the same ions in different solvents

Λm ∝ D and D ∝ 1/η, so, Λm ∝ 1/η

However, the role of solvation (i.e., different solvents solvate the same ions to different extents) limits its 
applicability since hydrodynamic radius a & viscosity η change with the solvent.

21.10 The diffusion equation
Time-dependent diffusion process
ex) a metal bar heated at the end

the concentration distribution in a solvent to which solute is added

The rate of concentration changes at a point to the spatial variation of the concentration at that point

2

2

x
cD

t
c

∂
∂

=
∂
∂ Fick’s second law

Justification 21.6 The diffusion equation

When the particles enter the slab, (see Fig. 21.24 in the next page.)
the amount in the infinitesimal interval dt : JAdt

21.9 The thermodynamic view
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The net rate of change of concentration : 

Using Fick’s first law,

2

222 )/('  
x
cD

l
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l
JJ
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∂
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=
∂∂

=
−

=
∂
∂

∴

(a) Diffusion with convection  
Convection: the transport of particles arising from the motion of a streaming fluid
When the flux of particles flow through an area A in an interval Δt
(the velocity of the flowing fluid : v) 

cv
tA
tcAvJ =

Δ
Δ

= (J : the convective flux)

x
cv

l
vl

x
ccc

l
JJ

t
c

∂
∂

−=
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤
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⎡

∂
∂

+−=
−

=
∂
∂ 'In a slab of thickness l and area A, 

21.10 The diffusion equation
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When both diffusion and convection occur,

x
cv

x
cD

t
c

∂
∂

−
∂
∂

=
∂
∂

2

2
This expression is important in chemistry because of the possibility 
that the concentrations of particles may change as a result of reaction

(b) Solutions of the diffusion equation  

2

2

x
cD

t
c

∂
∂

=
∂
∂ - a second-order differential eqn with respect to space

- a first-order differential eqn with respect to time

Consider a solvent in which the solute is initially coated on one surface of 
the container
- Initial condition at t0 = 0, all N0 particles are concentrated on yz-plane 

at x = 0 
- The requirements for the two boundary conditions

1) the concentration must everywhere be finite
2) the total amount of particles is n0 (n0 = N0/NA) at all times
→ the flux = 0 at the top and bottom surfaces

Dtxe
DtA
ntxc 4/

2/1
0 2

)(
),( −=

π
the concentration spreads and tends 
to uniformity (see Fig. 21.26)

21.10 The diffusion equation
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Dtre
Dt
ntrc 4/

3/2
0 2

)(8
),( −=

π

For a localized concentration of solute in a three-dimensional solvent, the concentration of diffused 
solute is spherically symmetrical and at a radius r is

(c) The measurement of diffusion coefficients

(1) Capillary technique
- a capillary tube, open at one end and containing a solution, is immersed 

in a well stirred lager quantity of solvent → monitoring the change of c

(2) Diaphragm technique
- the diffusion occurs through the capillary pores of a sintered glass diaphragm separating 

the well-stirred solution → monitoring the change of c

(3) The dynamic light scattering technique (in Section 19.3)

(4) NMR (Nuclear Magnetic Resonance)

21.10 The diffusion equation
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21.11 Diffusion probabilities
The net distance traveled on average by particles in a time t

- The number of particles in a slab of thickness dx and area A at x : cANAdx
- The probability that any of the N0 = n0NA particles : cANAdx/N0

- The mean distance :
2/1

0 2/1
4/

2/10
0

A 2
2

4
)(

1
)(

1 2

⎟
⎠
⎞

⎜
⎝
⎛==== ∫∫

∞ −∞

πππ
DtDt

Dt
dxxe

Dt
dx

N
xcANx Dtx

- The root mean square distance traveled in the same time :

DtDt
Dt

2)42(
)(

1 2/3
2/1 =××= π

π

dxex
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dx
N
cANxx Dtx 4/

0

2
2/10
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2

2 2

)(
1 −∞∞

∫∫ ==
π

2/12/12 )2(  Dtx =∴
2/1

2  ⎟
⎠
⎞

⎜
⎝
⎛=∴
π
Dtx (see Fig. 21.28)

- Fig. 21.28 shows how long it takes for diffusion to increase the net 
distance traveled on average to about 1cm in an unstirred solution 
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21.12 The statistical view

Assuming the particles to travel only along a straight line (the x-axis), and for each step to be   through 
the  same distance (λ)  : the one-dimensional random walk

22 2/
2/12 λτ

π
τ txe
t

P −⎟
⎠
⎞

⎜
⎝
⎛= the probability of a particle being at a 

distance x from the origin after a time t

Justification 21.7 The one-dimensional random network
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The number of ways of a one-dimensional random walk : 

steps ofnumber  total
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The probability of the net distance walked being nλ is,

By Stirling’s approximation,
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2
1()2ln(!ln 2/1π
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By two expressions                                         and                                    ,
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The diffusion can be interpreted as the outcome of a large number of steps in random directions.  
The relation of D to the step length λ and the rate at which the jumps occur :

Einstein-Smoluchowski equation
222 2/4 λτ txDtx ee −− =

The central connection between the microscopic details of particle motion and the macroscopic 
parameters relating to diffusion 
If we interpret λ/τ as the mean speed (c) and λ as a mean free path,

λ
τ
λ cD

2
1

2

2

== the diffusion of a perfect gas is a random walk with an average step size equal 
to the mean free path

21.12 The statistical view


