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Basic scaling laws are derived for bulk, two-dimensional (guantum well) and one-dimensional
{quantum wire) semiconductor lasers. Starting from quantum derivation of the optical
properties of confined carriers, the dimensional dependencies of the scaling laws are made
explicit. Threshold currents of ~ 100 and 2-3 g A are predicted for single quantum well and
guantum wire lasers, respectively. The basic considerations of this analysis were used recently
to obtain ultralow threshold quantum well lasers [P. L. Derry, A. Yariv, K. Lau, N. Bar-
Chaim, K. Lee, and . Rosenberg, Appl. Phys. Lett. 56, 1773 (1987) 1.

In semiconductor lasers the separate and precise control
of electronic {gain) and optical confinement made possible
by epitaxial crystal growth and fine lithography make for a
rich interplay between “physics” and “geometry”—an in-
terplay which determines the iaser threshold. In this letter
we show, starting with the fundamental confinerent phys-
ics, how the threshold currents of conventional bulk (three-
dimensional), two-dimensional (quantum well), and one-
dimensional (cuantum wire} lasers depend on the respective
geometrical and physical parameters, and then derive the
relevant basic scaling laws for the threshold currents of each
class.

The basic generic laser configuration is illustrated in
Fig. 1. The active region is a rectanguiar prisim with dimen-
sions L, XL, xL which is embedded within the optical
mode volume d X W X L. In the case of quantum wells and
guantum wires we take the potential well depth as infinite
{this puts a limit, in practice, on the smallest well dimen-
sicns) and assume that only the first guantized states
{n = 1) are involved.

The first major consideration is that of the transparency
density. It is defined as the injected carrier density which
renders the active region transparent. Clearly, the mainte-
nance of these densities establishes 2 lower limit on the
threshold currents. As an example, we will calculate the
transparency density of a quantum wire with equal electron
and hole effective masses (m, == m,, ) whose energy diagram
is shown in Fig. 2. The transparency condition for an invert-
ed population of Fermions obtains when the condition

fiw = Fpe — By

at the frequency o of maximum gain, where Ey. . and £, are
the quasi-Fermi levels for the conduction band and valence
band, respectively, since maximum gain is exercised by
fiw = E, + (€, )¢ + (&;,1) . The transparency condition
in the case #1,. = m, is obtained when the quasi-Fermi level
in the conduction band Eg,. coincides with the first quan-
tized level €, , and K, with the first quantized leve! in the
valence band. The total number of electrons (or holes) per
vnit lfength at transparency is then obtained by integrating
the product of the density of states function and the Fermi
distribution function from €, ; to infinity. We neglect contri-
butions from higher subbands which are effectively cut off
by the Fermi function:
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The key observation as far as scaling is concerned is that
N isthe fineal (electrons per unit length) density and that
it is independent of the cross-sectional dimensions Z, and L,
of the quantum wire. Similar considerations in the case of a
guantum well lead to a transparency (area) density

. (electrons) _me [T dE, mokT

D pey e(EL.—re,)/kT«F]; e n2,
(3)

which is independent of the quantum well thickness L.

Numerical calculation of the transparency densities us-
ing the actual values of m and m, in, say, GaAs, gives
values three to four times larger than the values of Egs. (2)
and (3). The transparency requirements’ can be summar-
ized in

N ~1.5x10% em ™7,

b ~1.5%10% em 2, (4)

Nip~15x 10 em™ "

The key point to reemphasize is the independence of the
above values of N of the confinement geometry and the
different physical dimension of the transparency density in
each generic case.

The bulk gains, i.e., gains experienced by a hypothetical
optical wave which is completely confined to the active re-
gion, can be expressed near the transparency condition by

(3D}g:n

2
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FIG. 1. Basic electron confinement and optical mode geometries.
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FIG. 2. Energy level diagram of the quantum-confined carriers.

The corresponding expressions for the 2I¥ and 1D cases re-
quire some thought. Consider the 2D case. Transparency
occurs when N,, = N, (electrons/cm?). The bulk gain,
on the other hand, depends on the volumetric density of car-
riers.! We can satisfy both requirements by writing the bulk
gain as
NZD 3 ter)
2 SR S iy R

(2D)gp g2D< L } L ;

where g5, is a constant. In a similar fashion,

Nip o o> )

L,L, L4,
The g’s arc constant specific to the material and the dimen-
sion of the confinement. They are calied the differential gain
constant, the differential gain constants, and the explicit di-
mensional dependencies {(i.e., on L, and L} of the three
cases follow from basic quantum-induced transition rate
considerations. This dependence, as well as those expressed
by Eq. (4), is central to what follows.

We will next derive expressions for the threshold cur-
rent densities for lasers whose modes propagate along the
axis x of the active region. First consider the three-dimen-
sional case. The threshold condition is

T (N —N%) =Fa, + (/LI R+ a0,

(6)
where T['~F_/d is the optical confinement factor,
a;. = bl p, is the bulk free-carrier absorption coefficient of
the active region material, and a,,, is the scattering loss of
the mode. Solving for N and taking the threshold current as
(N,neV,/r), where ¥, = WL_L is the volume of the active
region and 7 the carrier lifetime, leads to
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where p=1-— b /g%
A similar caleulation for a guantum well, but taking o,
= bN,,, /L, and, as before ' = L_/d, gives
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In the quantum wire case we take I' = L_L /dW, leading to
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Equations (7)~(9) are the basic scaling relations for the
three generic laser classes. The quantum confinement phys-
ics is now represented explicitly by the appropriate geome-
try-independent transparency densities.

The scaling laws explain some basic observations and
act as design guides. For example, in a conventional (three-
dimensional) laser the first term on the right side of Eq. (7)
dominates, which explains the length (L) and active region
thickness (Z,) dependence of Z,;, in such lasers. In the guan-
rum well (two-dimensional) laser for conventional lengths,
say L « 500 gem, it is the second term on the right side of Eq.
{8) which dominates. This explains why the {total) thresh-
olé current of high quality material uncoated quantum well
iasers is independent of the length L.? Since this dominant
term can be reduced to near zerc with R — 1, we would ex-
pect a major reduction of 7, as the facet reflectivity is in-
creased. Indeed, the receni demonstration of submitliam-
pere threshold currents exploited exactly this point and
values of R ~0.8 resulted in nearly an order of magnitude
lowering of I,;, (0.55 mA) from those of uncoated lasers
{R ~0.31). The relative insignificance of the second term on
the right side in the three-dimensional case Eq. (7} explains
why the same strategy does not work in conventional (three-
dimensional} lasers. We also note that when, in the process
of evaluating intrinsic quantum well material, we compare
the threshold current densities (£, /WL) of quantum well
lasers made from the material, the dominant second term
varies as £ ', The only meaningful comparison is thus of
very long lasers and/or lasers with R — 1 where the reflectiv-
ity term is negligible. The minimum threshold current den-
sity of a quantum well laser in thelimit R >l and v, = O1is

tr
/N PN _ 2D€~60 Acm?
{WL) T
forg=1,7=4X10""s,and N5 = 1.5 10" cm~>. This
shows that recently achieved vahues of 88 A/cm” in our labo-
ratory are approaching the thecretical limit. In a practical
laser with, say, B = 1.5 m, £ = 120 um, the value of the I,
comes out 10 ~0.1 mA. We note that the lowest reported
result is J, ~0.55 mA.
In a quantum wire laser the situation is similar to that of
a guantum well laser. The second term on the right side of
Eg. {(9) will dominate unless reduced by allowing R—1. If
we neglect &, then the threshold current of a laser with
R 1 and, say, L = 100 pm wili be

nR ! (%
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where we use N\, ~1.3x 10%cm ™', =1, and r~4 X 1077
s. Such a laser can only muster a maximum modal gain’
r.r,
L.L, nle

=y

(?/max)ll) = (10)
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where L, and L, are the quantum wire cross-sectional di-
mension, it the iransition matrix element, T', and T', the
optical confinement factors, m, the reduced mass, and 7, the
carrier dephasing time. Equation (10) leads to a praximum
g2in ... ~7 em” ', which might not be sufficient to over-
come losses in pratical lasers. In this case, an array of parallel
quantum wires can be used to obtain the needed total gain.

In summary, the basic scaling laws for the threshold
current of quantum confined lasers are derived and are used
10 explain basic observations as well as serve as a guide in
designing ultralow threshold lasers. Using the above consid-
erations, we find that threshoid currents of 100 #A from
present generation guantum well lasers and of 2-3 pA in
quantum wire lasers are possible. Further improvements,
possibly by a factor of ~4--35, can be anticipated if we suc-
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ceed in reducing the hole mass in GaAs wells and wires to
near that of the electron.
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