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Figure 4-1 k space description of modes. Every positive triplet of integers r,s,t defines a
unique mode. We can thus associate a primitive volume 7 */abc in k space with each mode.

To find the total number of modes with k values between 0 and k, we divide
the corresponding volume in k space by the volume per mode:

(1) 4 .
— __k
8/ 3 v

Nk) = ——— = —
.

(The factor 1/8 is due to the restriction of r,s,r > 0.)
We next use (4.0-10) to obtain the number of modes with resonant frequencies

between 0 and v:
4m’n’V

M) = 3¢’

. The mode density, that is, the number of modes per unit v near » in a resonator
with volume V(2 A%), is thus

dN(v) 8w n’V
dv e

p(v) = (4.0-17)
where we multiplied the final result by 2 to account for the two independent or-
thogonally polarized modes that are associated with each r,s,t triplet.

The number of modes that fall within the interval dv centered on v is thus

_ 8wV
N = ——E— d\l (4.0“[2)
where V' is the volume of the resonator. For the case of V.= [ em®, v = 3 x 10"
Hz and dv = 3 > 10'% as an example. (4.0-12) vields N ~ 2 X 10? modes. If the
resonator were closed. all these modes would have similar values of Q. This situation

is to be avoided in the case of lasers, since it will cause the atoms to emit power
(thus causing oscillation) into a large number of modes, which may differ in their
frequencies as well as in their spatial characteristics.

This objection is overcome to a large extent by the use of open resonators, which
consist essentially of a pair of opposing flat or curved reflectors. In such resonators
the energy of the vast majority of the modes does not travel at right angles to the
mirrors and will thus be lost in essentially a single traversal. These modes will
consequently possess a very low Q. If the mirrors are curved, the few surviving
modes will, as shown below, have their energy localized near the axis; thus the
diffraction losses caused by the open sides can be made small compared with other
loss mechanisms such as mirror transmission. (This point is considered in detail in
Section 4.9. The subject of losses is also considered in Section 4.7.)

FABRY-PEROT ETALON

The Fabry—Perot etalon, or interferometer, named after its inventors [3], can be
considered as the archetype of the optical resonator. It consists of a plane-parallel
plate of thickness [ and index n that is immersed in a medium of index n'." Let a
plane wave be incident on the etalon at an angle ' to the normal, as shown in Figure
4-2(a). We can treat the problem of the transmission (and reflection) of the plane
wave through the etalon by considering the infinite number of partial waves produced
by reflections at the two end surfaces. The phase delay between two partial waves—
which is attributable to one additional round trip—is given, according to Figure
4-2(a), by

o 4qrnl cos 0

N (4.1-1)

where A is the vacuum wavelength of the incident wave and 0 is the internal angle
of incidence. If the complex amplitude of the incident wave is taken as A;, then the
partial reflections, By, B3, and so forth, are given by

B, =rA, B,=1'r Ae® By=u"r" Ae™®

where r is the reflection coefficient (ratio of reflected to incident amplitude), ¢ is the
transmission coefficient for waves incident from n' toward n, and r' and ' are the
corresponding quantities for waves traveling from n toward n’. The complex am-
plitude of the (total) reflected wave isA, =B, + B, + B+ - or

A, = {r+a're®l + P 4+ e 4 ) A (4.1-2)

For the transmitted wave,

A, =1 A, Ay =a're® A Ay =ariet A

In practice. one often uses etalons made by spacing two partially reflecting mirrors a distance [ apart so
that 7 = n' = 1. Another common form of ctalon is produced by grinding two plane-parallel (or curved)
faces on a transparent solid and then evaporating a metallic or diclectric Tayer (or layers) on the surfaces.



.70 THEORY OF LASER OSCILLATION 2

Power autput and
stored energy (arbitrary units)

T. percent

Figure 6-8 Power output P, and stored energy & plotted against mirror
transmission 7.

‘€ = P_/T as a function of the coupling T is shown in Figure 6-8. As we may
expect, % is a monotonically decreasing function of 7.

5.6 MULTIMODE LASER OSCILLATION AND MODE LOCKING

In this section we contemplate the effect of homogeneous or inhomogeneous
broadening (in the sense described in Section 5.1) on the laser oscillation.

We start by reminding ourselves of some basic results pertinent to this
discussion:

1. The actual gain constant prevailing inside a laser oscillator at tlie os-

cillation frequency vis ciamﬂged, at steady state, at a value
i DEEL
1
y () = a — 7 Inrir, (6.1-8)

where [ is the length of the gain medium as well as the distance between
the mirrors which are taken here to be the same.

2. The gain constant of a distributed laser medium is

(J

y(v) = (N7 = Ny)

-

_Smﬂuzrwm g(v) (5.3-3)

(4. piee)
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3. The optical resonator can support oscillations. provided sufficient gail

is present to overcome losses, at frequencies® v, separated by

-y, = — (4.6-¢

Vst

Now consider what happens to the gain constant y(v) inside a lasc
oscillator as the pumping is increased from some value below threshold
Operationally, we can imagine an extremely weak_wave. of frequency
launched into the laser medium and then measuring the gain constant y(
as ‘‘seen’’ by this signal as v is varied.

We treat first the case of a homogencous laser. Below threshold th
inversion N, — N, is proportional to the pumping rate and y{(»), which i
given by (5.3-3), is proportional to g(1). This situation is illustrated by cury
A in Figure 6-9(a). The spectrum (4.6-4) of the passive resonances is show
in Figure 6-9(b). As the pumping rate is increased, the point is reached :
which the gain per pass at the center resonance frequency m, is equal to th
average loss per pass. This is shown in curve B. At this point, oscillation :
v, starts. An increase in the pumping cannot increase the inversion sinc

The high-order transverse modes discussed in Section 4.5 are ignored here.
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Figure 6-9 (a) Single-pass gain curves for a homogeneous atomic system (A—
helow threshold: B—at threshold: C—well above threshold). (b) Made spectrum
of optical resonator. (¢) Oscillation spectrum (only one mode oscillates). ()
Single-pass gain curves for an inhomogeneous atomic system (A—below
threshold: B—at threshold; C—well above threshold). (e) Mode spectrum of
optical resonator. (f) Oscillation spectrum for pumping level C. showing three
oscillating modes.
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From (5.4-15) and (5.5-1) we obtain

2y — 1)
| Al S s
| X T (r)
N, = NDA? (g — 1)
A7 A g |+ [400 = 1) (A 1)?] e
This expression will be used to represent the dispersion of a homogeneausly
broadened transition with a Lorentzian lineshape.
5__GAIN SATURATION IN HOMOGENEQUS LASER MEDIA
In Section 5.3 we derived an expression (5.3-3) for the exponential gain
constant due o a population inversion. It is given by
{.3
Yy = (Ny = N)) ——— g(1) (5.6-1)

8ant oo |

where N, and N, are the population densities of the two atomic levels in-
volved in the induced transition. There is nothing in (5.6-1) (o indicate what
canses the inversion (N, — Ny and this quantity can he considered as a
parameter of the system. In practice the inversion is caused by a ““pumping
agent, hereafter referred 1o as the pump. that can take various forms such
as the electric current in injection lasers, the flashiamp light in pulsed rubyv
lasers. or the energetic electrons in plasma-discharge gas lasers.

Cansider next the situation prevailing at <ome point inside a laser me-
dium in the presence of an optical wave, The pump establishes a population
imversion. which in the absence of any optical field has a value AN, The
presence of the optical field induces 2— | and [ — 2 transitions. Since Ny = Ny
and the induced rates for 2— [ and 12 transitions are equal. it follows
that more atoms are induced to undergo a transition from level 2 to level |
than in the opposite direction and that. consequent]y. the new equilibrium
population inversion is smaller than AN,

The reduction in the population inversion and hence of the gain constant
brought about by the presence of an clectromagnetic field is called<gain
saturatiors Its understanding is of fundamental importance in quantum elec-
fronics. As an example. which will be treated in the next chapter. we may
point out that gain saturationdsthe mechanism that reduces the gain inside
laser ascillators to a point where it just balances the losses so that steady
oscillation can result. )

- In Figure 5-5 we show the ground state 0 as well as the (wo laser levels
~2and Lof a four-level laser system. The density of atoms pumped per unit
time into level 2 s taken as R.. and that pumped into 1 is R,. Pumping into
I1s. of course. undesirable since it leads to a reduction of the inversion. In
many practical situations it cannot be avoided, The actual **decay lifetime
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Figure 5-5 Energv levels and transition rates of a four-Tevel faser svstem. (The
fourth level, which is involved in the original excitation by the pump. is not
shown and the pumping is shown as proceeding directly into levels 1 and 2.0 The

total lifetime of level 2 s 1., where 1= Vi, b Ui

of atoms in level 2 at the absence of any radiation field is taken as >, This
decav rale has a contribution ), that is due to spontancous (photon cmit-
ting) 2— 1 transitions as well as to additional nonradiative relaxation from
2to 1. The lifetime of atoms in level Tis f,. The induced rate for 2— 1 and
| =2 transitions due to a radiation ficld at frequency s denoted by W
and. according to (5.2-15), 1s given by

Aelr)
Wi = s S & (5 6-2)

Rmn’ :'Hf\,‘,,.,l
where et is the normalized lineshape of the transition and 7, i< the intensity

(watts per square meter) of the optical field.
The equations describing the populations of level 2 and 1 in the combined

presence of a radiation field at v and a pump are:

(/\ ‘,\-'7 ) .
= . - - (NS NOW.() (5.6-3)
dr i
dN, AN ! )
- = R, S AN, - NoWonm (5.6-4)
o1 f ipom

N.and Ny are the population densities (%) of levels 2 and | respectively.
R.and Ry are the pumping rates n ¥ — s into these levels. N./ts is the
change per unit time in the population of 2 due to decay out of level 2 to all
levels. Thisincludes spontancous transitions to | but nor induced transitions
The rate for the latter is N> W) <o that the net change in N- due to induced
transitions is given by the last term of (5.6-3). At steady state the populations
are constant with time. so putting /dr =0 in the two preceding equations,




INTERACTION OF RADIATION AND ATOMIC SYSTEMS

we can solve for N,, N,, and obtain*

Ryt; — (R + 8Ry)t,

Ng - N| =
L+ [+ (0= 8)]Wiw)

(5.6-5)

=1 / pont p b
where & Lepont- I “ eo [!Cﬂl jlc d S abSE! t, W, l)
2 y .( (]. a d [hc Imversio

ANU = szz - (R] + 5R2)r] {56-‘6}
we can use (5.6-6) to rewrite (5.6-5) as
B _ ANC
Ny = Ny= — (5.6-7)

I+ d’r\pﬂnt“‘ri(v)
where the parameter ¢ is defined by

¢=5[1+(1 —S)Q]
1y

We note that in. efﬁcien! laser systems 7, = Liponts SO 6= 1, and that , <
so ¢ = 1. Substituting (5.6-2) for W,(») the last equation becomes L

NN AN awn
I+ (A2} 8]l 1+ 11 (v) (5.6-8)

where /(1) the saturation intensity, is given by

_ 8mnthe 8mnlhy

_ BmnthvAv

L) = o =
DAL (1 tqpon A1) (1]

spont)A? G
:mdlcorrefpondc to the intensity level (walts per square meter) that caus

lL)c inversion m.drop to one half of its nonsaturated value (AN"). By ‘uq-“:-‘
(5.6-8) in the gain expression (5.6-1), we obtain our final result e

= I ANO)2
@) I + [/I(v) (871'1121 )g(u)

spont

|

o Yo(v)
. ————14%&_ (5.6-10)

ALS c 5 i

h;(l: zzil?nﬁgt\flee (rj:g)ei?%::nceqofthe gain constant on the optical intensity.
i all that (5 ..Gf!tl) applies to a homogeneous laser system.
s s due to the fact that in the rate equations (5.6-3) and (5 f-d) w
umm}ercd'a.ll the atoms as equivalent and. conchucnllv- e;‘pcrie‘n.c' (‘f:C
same transition rates. This assumption is no longer valid i‘n i.nhornog::l;geouz

laser systems. This case is treated in the next section ’

‘Levels 1 and 2 are assumed to be high enou

' : h(ine
it e e g nergy) that the role of thermal processes

A
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5.7 GAIN SATURATION IN INHOMOGENEOUS LASER MEDIA

In Section 5.6 we considered the reduction in optical gain—that is, satura-
tion—due to the optical field in a homogeneous laser medium. In this section
we treat the problem of gain saturation in inhomogeneous systems.

According to the discussion of Section 5.1, in an inhomogeneous atomic
system the individual atoms are distinguishable, with each atom having a
unique transition frequency (£, — E,)/h. We can thus imagine the inhomo-
geneous medium as made up of classes of atoms each designated by a con-
tinuous variable &° Furthermore, we define a function p(§) so that the a
priori probability that an atom has its & parameter between & and &+ dfis
p(&) dé. 1t follows that

since any atom has a unit probability of having its ¢ value belween —=

and =.
The atoms within a given class {are considered as homogenecously broad-

ened. having a lineshape function g(») that is normalized so that
[ g dv =1 (5.7-2)

In Section 5.1 we defined the transition lineshape g(1) by taking g() dv
to represent the a priori probability that a spontaneous emission will result
in a photon whose frequency is between » and v+ dvr. Using this definition

we obtain

gl dr = [ ( p(Oetr) déJ dr (5.7-3)

which is a statement of the fact that the probability of emitting a photon of
frequency between v and v+ dv is equal to the probability g(v) d» of this
occurrence. given that the atom belongs to class ¢, summed up over all the
classes.

Next we proceed to find the contribution Lo the inversion that is due to
a single class £ The equations of motion [9] are

NS NS

T = Raptd) = =2 = [N§ — NIWE)

dt 15 -

dN§ NE N S

= Ryp() - — 4+ —= + [Nf ~ NIWi() (5.7-4)
d! 1 t<pnn[

“The variable £ can. as an example. correspond to the center frequency of the lineshape function
gf(v) of atoms in group ¢
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