where we used In(a + ib) = InVaZ + b2 + § tan~!(b/a). Substituting (6.6-8) in

the second term of (6.6-7) and separating the exponent into its real and
imaginary parts, we obtain
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If we define the following parameters:

wi(z) = wé[i + (—)‘%—)2] = mé(l -+ 5;) (6.6-11)
Twin Z5

R= z[l + (”‘:j”ﬂ - Z(l + ;‘é) (6.6-12)

i n(z) = tan“(ﬂ—fgg) = tan“(f;) (6.6-13)

\

we can combine (6.6-9) and (6.6-10) in (6.6-7) and, recalling that E(x, y, z) =

¥(x, y, 7) exp(—ikz), obtain

2
E(x,y,2) = Eo—“’lexp{—f[kz— @] - i =2 }

o(z) 24(z) (6:6:14)
. K '
= Eozf-l% exp{—r[kz = {2)] = r’-[wzl(z) + ‘2;{2)]}
so that if we use (6.5-9) and (6.6-4)
R
HZ—) = R@) Iﬂ'nwz(z) (6.6-14a)

This is our basic result. We refer to it as the fundamental Gaussian-beam
solution since we have excluded the mare complicated solutions of (6.5-3)
(i.e., those with azimuthal variation) by limiting ourselves to transverse de-
pendence involving r = (x2 + ¥*)"? only. These higher-order modes will be
discussed separately.

From (6.6-14), the parameter w(z), which evolves according to (6.6-11)
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more simply, by considering the form of a spherical wave emitted by a point
radiator placed at z = 0. It is given by
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Ex pe k= 7 EXP( y

(6.6-15)
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since z is equal to R, the radius of curvature of th.e spherical wave. f&mpGa;Eg_
(6.6-15) with (6.6-14), we identify R as t}}e rad1u§ of curvature c;l : ed0 =
sian beam. The convention regarding the sign of R is the same as tha at }3> !
in Table 6.1; that is, R(z) is negative if the center of curvature occurs at |
n ";lf(;: ;cfrrrsr? 'of the fundamental Gaussian b.eam is, ac'cording.to (6.51- lt4)5
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the plane z = 0—are specified. Its spot size  and radius of curvatullrle : ris}_f
plane z-are then founid from (6.6-11) and (6.6-12). Some .Of thf‘:seﬁc arac erre-
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spond to the ray direction and are intersections of planes that include

axis and the hyperboloids

x? + y? = const. w?(2) S50

They correspond to the direction of energy propagation. The sphz;c;l Sl;;:
faces shown have radii of curvature given by (6.6-12). For large z, the hyp
boloids x2 + y? = w? are asymptotic to the cone

i /A0 = (6.6-17)
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whose half-apex angle, which we take as a measure of the angular beam
spread, is

) __A (6.6-18)

- -1
Opeam = tan ( Twoh

Twoh

This last result is a rigorous manifestation of wave diffracnon according
to which a wave that is confined in the transverse direction to an aperture
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FIGURE 6.5 Propagating Gaussian beam.



where, according to (6.5-4),

2 = 120} = o2 _ i ﬂ]
K=kK0)=uw ,u.s(())[l Ims{O)
and k; is some constant. Furthermore, we assume a solution whose transverse
dependence is on r = Vx? + y? only so that in (6.5-3) we can replace V2 by
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d

ﬂ_?‘ + @ (6.5-6)
The kind of propagation we are considering is that of a nearly plane wave

in which the flow of energy is predominantly along a single (e.g., z) direction

so that we may limit our derivation to a single transverse field component E.

Taking E as

v = E = (x, y, z)e"ke (6.5-7)
we obtain from (6.5-3) and (6.5-5) in a few simple steps
Vb — ik’ — kkyr2g = 0 (6.5-8)

where ' = di/dz and where we assume that the longitudinal variation is
slow enough that k' > " < k.
Next, we take ¢ in the form of

¥ = exp{—i[P(z) + $Q(2)r?]} (6.5-9)
that, when substituted into (6.5-8) and after using (6.5-6), gives
—Q%? - 2iQ — kr2Q' — 2kP' — kkyr? = 0 (6.5-10)

If (6.5-10) is to hold for all r, the coefficients of the different powers of r must
each be equal to zero. This leads to (Reference 7)

QX+ kQ" + kky = 0
- (6.5-11)
51
k

The wave equation (6.5-3) is thus reduced to Egs. (6.5-11).

P =

6.6 THE GAUSSIAN BEAM IN A
HOMOGENEOUS MEDIUM

If the medium is homogeneous, we can, according to (6.5-5), put k; = 0, and
(6.5-11) becomes

Q?+kQ =0 (6.6-1)
Introducing the function s(z) by the relation
Sl
@i k= (6.6-2)

v

ChElia SN

- - e R d UIILY determinant (unimodular) to obtaip

Ao A sin(s8) — sin[(s — 1)6]
_‘——%"_—_L_
sin ¢

e B sin(s6)

sin @ f
: (6.8-2)
c.. = £sin(sé) ) §
i sin 6 i
D, = Dsin(st) ~ sinf(s — 1)p)
sin @
where
cosd=4A+p)=(1_2_4 _ar
‘ ) ( ETRT 2f1f2) (6.8-3)
and then use (6.8-2) in (6.7-6) with the result
< gy = HASI09) — sinf(s — 1)])q, + B sin(s6)
Csin(s6)g, + Dsin(s6) — sin[(s — 1)6] (6.8-4) |
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that is, the same ag condition (6.1-16) for stable-ray Propagation
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given by (6.6-11) through (6.6-13). order [, and w(z), »(z), 4(z), and n are
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Laser spectra under direct modulation:

(a) for a conventional buried
heterostructure with a Fabry-Perot cavity,
and (b) for a dynamic-single-mode laser
diode. Both lasers are operating at a
current 1.2 times their threshold, and the
modulation depth is 100% for both. Note
that the dynamic-single-mode laser diode
continues to emit an extremely narrow
spectrum at modulation frequencies that
cause the conventional laser to emit over a
very broad range of modes. Figure 5
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SOME REAL LASER STRUCTURES 581

taxial layers act as cladding layers to the quaternary Ga,_,In,As,_,P, active layer.
The quaternary layer plays in this system the role played by GaAs in the GaAs/
GaAlAs laser depicted in Figure 15-9. A typical quaternary laser structure is shown
in Figure 15-18. Modern versions of these laser systems employ active regions with
thicknesses in the 50A — 100A range. These are the so-called quantum well lasers.
These lasers possess lower threshold currents and have a larger modulated bandwidth
compared to earlier generations employing “‘thick”’ (~1000A) active regions. They
are discussed in detail in Chapter 16. Recent experiments [26, 39, 41, 42] have
demonstrated propagation without repeaters at distances of ~ 150 km in optical
fibers at 1.55 pm.

Power Output of Injection Lasers

The considerations of saturation and power output in an injection laser are basically
the same as that of conventional lasers, which were described in Sections 5.6 and
6.4. As the injection current is increased above the threshold value, the laser oscil-
lation intensity builds up. The resulting stimulated emission shortens the lifetime of
the inverted carriers to the point where the magnitude of the inversion is clamped at
its threshold value. Taking the probability that an injected carrier recombine radia-
tively within the active region as 7,,> we can write the following expression for the
power emitted by stimulated emission:

I — I)n;
( I)TL hl"
e

P, = (15.4-1)
Part of this power is dissipated inside the laser resonator, and the rest is coupled out
through the end reflectors. These two powers are, according to (15.3-4), proportional
to the effective internal loss @ = e, I, + @,I', + a,and to —L™" In R, respectively.
We can thus write the output power as

({ — L)nhv  (1/L) In (1/R)

< i ¢  a+ (I/L)In (I/R) (R

The external differential quantum efficiency 7., is defined as the ratio of the photon
output rate that results from an increase in the injection rate (carriers per second) to
the increase in the injection rate:

d(Py/hv)
= e O 15.4-3
e = 2 — Tylel (2589
Using (15.4-2) we obtain
—1 4 al
U=y +1 15.4-4
o= = (m (1/R) ) (1o

*The reason for a quantum efficiency 7); that is less than unity is, mostly, the existence of a leakage
current component that bypasses the active p-n junction region.
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By plotting the dependence of 7., on L we can determine 7;, which in GaAs is
around 0.9-1.0.

Since the incremental efficiency of converting electrons into useful output pho-
tons is Mey, the main remaining loss mechanisms degrading the conversion of elec-
trical to optical power is the small discrepancy between the energy eV, supplied
to each injected carrier and the photon energy hv. This discrepancy is due mostly to
the series resistance of the laser diode. The efficiency of the laser in converting
electrical power input to optical power is thus

Py -1 hv_ In(UR)
vi~ "1 eV aL + In (I/R)

n (15.4-5)

In practice eV, ~ 1.4E, and hv = E,. Values of n ~ 30 percent at 300 K have
been achieved.

We conclude this section by showing in Figures 15-16 and 15-17 typical plots
of the power output versus current and the far field of commercial low-threshold
GaAs semiconductor lasers.

15.5 DIRECT-CURRENT MODULATION OF SEMICONDUCTOR LASERS

Since the main application of semiconductor lasers is as sources for optical com-
munication systems, the problem of high-speed modulation of their output by the
high-data-rate information is one of great technological importance.

A unique feature of semiconductor lasers is that, unlike other lasers that are
modulated externally (see Chapter 9), the semiconductor laser can be modulated
directly by modulating the excitation current. This is especially important in view
of the possibility of monolithic integration of the laser and the modulation electronic
circuit, as will be discussed in Section 15.7. The following treatment follows closely
that of Reference [27].

If we denote the photon density inside the active region of a semiconductor laser
by P and the injected electron (and hole) density by N, then we can write

dN I N

=— — — — AN — NP
drt eV T ( )
P P
d— = AN — NPT, — — (15.5-1)
dt T,

P

where [ is the total current, V the volume of the active region, T the spontaneous
recombination lifetime, 7, the photon lifetime as limited by absorption in the bound-
ing media, scattering and coupling through the output mirrors.

The term A(N — NP is the net rate per unit volume of induced transitions. N,
is the inversion density needed to achieve transparency as defined by (15.2-17), and
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