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Introduction — Confocal Microscopy

* In 1957, the basic concept was developed by Marvin
MinSky. (patented N 1961) Dec. 19, 1961 M. MINSKY 3,013N

MICROSCOPY APPARATUS

Filed Nov. 7, 1957

INVENTOR.

Marvin Minsky (MIT Media Lab) ey



Introduction — Confocal Microscopy

« Confocal microscopy is an optical imaging technique
used to increase micrograph contrast and to reconstruct
3-D images by using a spatial pinhole to eliminate out-of-
focus light (flare) in specimens that are thicker than the
focal plane.

Photo from
H. Brismar,
Cell physics, KTH

Widefield Confocal



Wide-field vs. Confocal Microscopy

f | « Wide-field Microscopy
(Conventional
Microscopy)

— The entire specimen is
lluminated and observed.

Wide-field Microscopy  Confocal Microscopy

— Only one object point is
Illuminated and observed at
a time.

j — Scanning is required to

—
o

build up an image of the
entire field.

f[:] !
Drawing by

Confocal Microscopy J.P. Robinson. @ PUCL



Confocal Laser Scanning Microscope
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Nathan et al., “Laser Scanning
Confocal Microscopy”

Coherent light emitted by the
laser system passes through

1) Light Source Pinhole Aperture
2) Detector Pinhole Aperture

— Confocal

Out-of-Focus Fluorescence
Emission Light is not detected
by the Photomultiplier tube
(PMT).

— High Resolution

Confocal microscopy can
produce in-focus images of
thick specimens.

— Optical Sectioning



Confocal Laser Scanning Microscope System
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Wide-field vs. Confocal Microscopy

Confocal

Photo from
Alberto
Diaspro

(b)

Comparison of (a) Point spread function, (b) two-point objects image
Improvement of lateral resolution (x-y) is apparent !



Wide-field vs. Confocal Microscopy

Comparison of
axial (x-z) point
spread functions.

Widefield Confocal Photo from
Nathan

Lateral & Axial extent of point spread function is reduced
by about 30% in confocal microscope. -> Resolution improved!
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Wide-field vs. Confocal Microscopy

E)

Wide-field
Microscopy

Confocal
Microscopy

(@), (b) — Mouse brain hippocampus thick section
(c), (d) — Rat smooth muscle thick section

(e), (f) — Sunflower pollen grain
Nathan et al., “Laser Scanning Confocal Microscopy”



Confocal Microscopy Optical Sections

Photo from
Nathan

Lodgepole pine pollen grain optical sections.
Each image in the sequence (1-12) represents the view
obtained from steps of 3 micrometers.



Multi-dimensional View of Living Cells

Photo from
Nathan

3-D volume renders from confocal microscopy optical sections.
(a)Sunflower pollen grain, (b) Mouse lung tissue,
(c) Rat brain thick section, (d) Fern root.



Disadvantages of Confocal Microscopy

* Limited number of excitation wavelengths are available
with common lasers, which occur over very narrow
bands and are expensive to produce in the ultraviolet
region.

« High-intensity laser irradiation to living cells and tissues
could be harmful.

* The high cost of purchasing and operating multi-user
confocal microscope systems can range up to an order
of magnitude higher than comparable wide-field
microscope.



2. Two-photon Microscopy
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Introduction — Two-photon Microscopy

Two-photon excitation employs a concept first described
by Maria GOppert-Mayer in her 1931 doctoral
dissertation.

Two-photon Microscopy has been patented by Winfried
Denk, James Strickler and Watt Webb at Cornell
University.

Two-photon excitation microscopy (multi-photon
excitation microscopy) Is a fluorescence imaging
technique that allows imaging living tissue up to a depth
of one millimeter.

Two-photon microscopy may be a viable alternative to
confocal microscopy due to its deeper tissue penetration
and reduced photo-toxicity.



Two-photon Microscopy Principles
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e Two-photons (or multi-

photons) of low energy
can promote the molecule
to an excited state, which
then proceeds along the
normal fluorescence-
emission pathway.

The probability of
absorption of two-photons
IS extremely low.

Therefore a high flux of
excitation photons is
required. (femtosecond
laser)



Two-photon Microscopy Principles

 The number of photons absorbed per fluorophore per
pulse :
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7, : the pulse duration.

0 : the fluorophore's two-photon absorption at wavelength.
P, - the average laser intensity.

f, + the laser's repetition rate.

NA: the numerical aperture of the focusing objective.

« Lasers typically used in two-photon microscope provide
100-fs pulses at about 100 MHz.



Two-photon vs. One-photon Excitation Volume

Dye solution
Safranin O

One-photon
Excitation
(543 nm,
Two-photon Green laser)
Excitation
(1046 nm,
IR Laser)

Photo from Brad Amos




Two-photon Microscopy Configuration
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Confocal vs. Two-photon

Confocal
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No pinhole aperture is required in two—photon microscopy !



2-Photon
3 microns

2-Photon
55 microns

1047 nm

Confocal

Confocal vs. Two-photon
Microscopy

 Sequence of images showing a
comparison between confocal
Imaging (488nm excitation) and
two-photon imaging (1047nm
excitation).

« The sample is a zebra fish that is
heavily stained with safranin (the
sample was prepared by B. Amos).

« Two-photon imaging is able to give
much better images deep into the
specimen.

Photo from: Multi-Photon Excitation
Fluorescence Microscope Coordinator,
Madison, WI



Advantages of Two-photon Microscopy

Fluorescence excitation 1s confined to a femto-liter
volume — less photo-bleaching.

Excitation wavelengths are not absorbed by fluorophore
above plane of focus.

Longer excitation wavelengths penetrate more deeply
Into biological tissue.

Inherent optical sectioning.



Limitations of Two-photon Microscopy

« Slightly lower resolution with a given fluorophore when
compared to confocal imaging. This loss in resolution
can be eliminated by the use of a confocal aperture at
the expense of a loss in signal. (two-photon + confocal !')

 Thermal damage can occur in a specimen If it contains
chromophores that absorb the excitation wavelengths,
such as the pigment melanin.

* Only works with fluorescence imaging.



Confocal vs. Two-ph
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FIGURE 3 Orthogonal extents of the illumination, detection, and confocal PSFs calculated under
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3. Optical Coherence Tomography
(OCT)
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Introduction — Optical Coherence Tomography

 OCT Is an interferometric imaging technigue that
provides cross-sectional views of the subsurface
microstructure of biological tissue.

* |t measures reflected light from tissue discontinuities
— e.g. the epidermis-dermis junction.

« Even in highly scattering media, it provide high spatial
resolution cross-sectional view of tissues without
excision.



Optical Coherence Tomography

Drawing by
Peter E. Andersen
Risg National Laboratory

OCT measures reflected light from tissue interfaces !



Standard OCT scheme

OCT
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Figure 1. Standard OCT scheme based on a low time-coherence Michelson interferometer. The

mtensity fg at the interferometer exit depends on the sample response hix, z) convolved with the
source coherence function [Msogeee(z). LS = low time-coherence light source; PC = personal

coOmpuUter.



Low-Coherence Interferometry
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Low-Coherence Interferometry
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OCT - Principles
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OCT — Image construction

Transverse Scanning
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Drawing by
Peter E. Andersen
Risg National Laboratory



Signal

OCT — Spatial Resolution

Coherence
Length (I5)

—

OCT depth (axial) resolution
(dz) is defined by the
coherence length.
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AM\ is the 3dB—bandwidth
Ao is the mean wavelength
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OCT transverse (lateral)

resolution (dx) depends on
— Optics.
dz — Lateral scan size step.

dx  Axial and lateral resolutions ar
e decoupled !



OCT — Axial resolution
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OCT — Light Sources

 The general requirements

— Emission in the near infrared
* Penetration of light into tissue is important.
e 1200 ~ 1800 nm wavelengths shows the deepest penetration.

— Short temporal coherence length

 The Broader the emission bandwidth of the source, the better
resolution and contrast that can be achieved.

— High irradiance
* For wide dynamic range and high detection sensitivity.



OCT — Light Sources

o SLD (Super Luminescent Diode)
— Most popular light source in OCT
— 800 nm, 1300 nm (similar to fiber optic communication bands)
— High irradiance (1~10 mW) and low cost

— Coherence lengths of SLD (15 ~ 30 um) are not short enough to
achieve the resolution required for many medical applications.

« ELED (Edge-emitting LED)
— Low cost & coherence length (17 um)
— Low irradiance (20 ~ 300 uW)

* Pulsed laser (Mode-locked Ti:sapphire laser)
— High resolution — 1.5 um coherence length
— High irradiance — 400 mW
— Used in Ultra-High-Resolution OCT (UHR-OCT)



OCT — Light Sources

Ti:Sapphire
260 nm

-
:
g
:

f00 750 800 850 900 950 41000
Wavelength (nm)

Comparison of SLD & Pulsed Laser source

Pulsed laser source shows higher axial resolution !!



OCT — Light Sources

ILM/NFL
IPL

OPFL
ONL
ELM
PR-1S
PR-OS
RPE
Ch

SLD Pulsed Laser

Figure . Topographical in vive mapping of retinal layers at the Fovea centralis along ~3 mm of the
papillomacular axis. The logarithm of the LCI signal is represented on a false-colour scale shown
on top of the igure. (@) SLD: mean wavelength 3 = 843; Ai = 30nm; depth resolution 10 pom.
(&) Ti: AlaO; laser: mean wavelength A= 800; Ax = 260nm; 3 pm depth resclution. The layers
are (from top): ILM/MNFL = inner limiting membrane/nerve fibre layer; IPL = inner plexiform
layer; OPL = outer plexiform laver; ONL = outer nuclear layer; ELM = external limiting mem-
brane: PR-IS = photoreceptors inner segment; PR-05 = photoreceptors outer segment: EPE =
retinal pigment epithelium: Ch = chonocapillaris and Chorold. Adapted from Direxler ef af { 2000).
Courtesy of Fujimoto, MIT. Reprinted by permission from Kugler Publications, The Netherlands.



OCT — Applications

Ophthalmology

— diagnosing retinal diseases.

Dermatology
— skin diseases,

— early detection of skin cance
rS.

Cardio-vascular diseases
— vulnerable plague detection.

Endoscopy (fiber-optic de
vices)

— gastrology

* Functional imaging
— Doppler OCT,
— spectroscopic OCT,
— PS-OCT.

e Guided surgery
— brain surgery,
— knee surgery.



OCT in ophthalmology

Figure 24. Patient with age-related macular degeneration with occult classic neovasculanzation
and serous detachment of the RPE. {a}—i(c) Ultra-high-resolution OCT images through the foveal
region (the logarithm of the LCI signal is represented on a false-colour scale shown left of the
figures). These pictures clearly delineate the subretinal (above RPE) and EPE detachments (below
RPE). (d) Corresponding scan positions on an infrared. (¢) and ( ) Early and late fluorescein
angiography photos. (g} ICG fundus photo.



OCT vs. Standard Imaging
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Drawing by Peter E. Andersen Risg National Laboratory



Characteristics of OCT

« Advantages
— High depth and transversal resolution
— Contact-free and non-invasive operation

« Disadvantages

— Limited penetration depth in scattering media
compared to alternative imaging modalities (MR, CT,
Ultrasound...)



4. Optical Neural Interfaces
4-1 SPR NI
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Neural Signal Detection using SPR

Surface Plasmon Resonance
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Neural Signal Detection using SPR

» Principle of SPR Sensor (3
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Neural Signal Detection using SPR
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Neural Signal Detection using SPR

 Material: Rat Sciatic Nerve
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Neural Signal Detection using SPR

» Electrical (gray) and SPR (black) Responses during
Neural Activation
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4-2 NIR BCI
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Neural Signal Detection using NIR Spectr
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Neural Signal Detection using NIR Spectr
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 Instrumentation: High-speed NIR Transmission Spectro
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Neural Signal Detection using NIR Spectr
um

 Material: Rat Brain Slices (Hippocampal Slice & Cortical
Slice)
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Neural Signal Detection using NIR Spectr
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