
Chapter 7. Coastal Structures 
 

7.1 Hydrodynamic Forces in Unsteady Flow 
         ↑ 
    Morison equation 
 
Total force = drag force + inertia force: 
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  ρ  = density of fluid 

dC  = drag coefficient =  )roughness,(Rf

mC  = inertia coefficient = ;   = added mass coefficient k+1 k
 

In potential flow, for elliptic cylinder, 
a
bk = ;  1=k  for circular cylinder  )( ba =

 
For square cylinder,  2.1=k

  
In a real fluid,  ) ,  roughness, shape, sbody'( LRfk =



7.2 Piles, Pipelines, Cylinders ← long cylindrical structures 
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Since  and u tu ∂∂ /  are  out of phase, °90
 

 
 

maxF  occurs somewhere between 0=kx  and 2/π=kx . And also  at , 
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Since  and 2DV ∝ DA ∝ , 
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Therefore, large  → inertia-dominant HD /
         small  → drag-dominant HD /
 
Keulegan-Carpenter number ( ) KC
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Defining  as Keulegan-Carpenter number ( ), since DTum / KC THum /π∝ , 
 

D
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Therefore, large  → drag-dominant KC
         small  → inertia-dominant KC
 



Vertical pile 
 
Total horizontal force acting on the pile is 
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Total moment about mudline is 
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Maximum force and moment? 
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Determination of  and  (Read text p. 195-198) dC mC

 
)(, RfCC md =  

dC ↑ as roughness of cylinder ↑ 



7.3 Large Submerged Structures 
 
Use potential flow theory 
 

si φφφ +=  
 
where iφ  = incident wave potential (known), and sφ  = scattered wave potential 
(unknown). 
 
Solve  for 02 =∇ φ φ  using the boundary condition 0/ =∂∂ nφ  on body surface. 
Then 
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7.4 Floating Breakwaters 
 
Advantages: Read text 
Disadvantage: effective only for short period waves ( 3≤T  s) 
 



7.5 Rubble Mound Structures 
 
Advantages: 

1) gradual (not sudden) damage during storms 
2) smaller wave reflection 
3) easy water exchange between ocean and harbor 
   M   

 
See figure 7.4 for typical cross-section 
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4) Outer layer (A-stone) usually consists of two layers of armor units 
 
How to estimate ? W
 

 
Let  = characteristic length of armor unit, so that l
 

33 lglW ss γρ =∝  

 
where sγ  = unit weight of armor unit. Assuming the armor unit is fully submerged 
(worst case), 
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Express drag force 22

2
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Force balance at initiation of movement: 
 

 
drag force + θμθ cossin netnet WW =  

 
where μ  = friction coefficient between armor units. Now 
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Using )(~ gHOu , 
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This is the Hudson formula, where θcot  is used instead of , and 

 = stability coefficient, which includes everything not accounted for (see Table 7.1). 
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• van der Meer (1988, 1995) included the effects of wave period, breaker type, storm 
duration, damage level, permeability. 
 
• Berm breakwater 
 

 
- Rubble mound forms an S-shaped profile to stabilize itself against wave action. 
- Construct a rubble mound being close to its equilibrium profile from the beginning. 
- Smaller size and wider size range of armor stones 

 



• Low-crested (or submerged) breakwater 
- mostly for shore protection 
- good for seascape 

 
 
- Failure usually occurs at the top of the breakwater 
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dS  = 2.0 for onset of damage, and 8.0 for failure. 
 

 
 
Note:  is used as both specific gravity and damage level in the textbook. S



7.6 Rigid Vertical-Faced Structures 
 
Non-breaking wave forces 
    ↑ 

standing wave pressure + wave setup 
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Assuming standing wave pressure varies linearly (see Figure 7.8), 
 

Crest: from 0 (at Hzz +Δ= ) to 
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Breaking wave forces 
 
Goda formula (1974) 
 

- Applicable for both non-breaking and breaking wave forces 
- Horizontal force (on front of caisson) + uplift force (on bottom of caisson) 
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where θ  = wave angle from normal to the breakwater 
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7.7 Other Loadings on Coastal Structures 
 
current, wind, ice, earthquakes (read text) 
 
 
7.8 Wave-Structure Interactions 
 
Reflection coefficient: 
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where  = empirical constants, ba,

0/ LH
mIr =  = Iribarren number 

 
Wave runup: 
 

Regular wave on smooth impermeable slope: Figure 2.15 →  iR

Regular wave on rough permeable slope: ir rRR = ; r  is given in Table 2.1 
 
For irregular waves, 
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where  = sR R  for  (assuming regular wave) sH

pR  = run-up for pRP p =− )(1  

 

 
 
If >R crest elevation, overtopping occurs. Wave overtopping is a very complex 
phenomenon, so usually hydraulic model test is used. 
 
Wave transmission:  
 

 
Wave transmission mainly due to overtopping: it TT <  in general 
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For low-crested breakwaters, 



 

)/( it HFfC =  ← see Figure 7.10 

 
Note that  can be negative. F
 

 
 
 
7.9 Selection of Design Waves 
 
Wave measurements or hindcasting (using meteorological data) 
     ↓ extreme wave analysis 
Deepwater wave of particular return period 
     ↓ wave transformation model (shoaling, refraction, diffraction) 
Waves at the location of structure 
     ↓ Rayleigh distribution 

3/1H  or  for rubble mound structures  10/1H

100/1H  or  for rigid structures (e.g. vertical caisson) maxH
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