Chapter 7. Coastal Structures

7.1 Hydrodynamic Forces in Unsteady Flow

↑

Morison equation

Total force = drag force + inertia force:

viscosity acceleration (unsteady flow)

 ρ = density of fluid C_d = drag coefficient = $f(\mathbf{R}, \text{roughness})$ C_m = inertia coefficient = 1+k; k = added mass coefficient

In potential flow, for elliptic cylinder, $k = \frac{b}{a}$; k = 1 for circular cylinder (a = b)

For square cylinder, k = 1.2

In a real fluid, $k = f(body's shape, roughness, \mathbf{R}, \cdots)$

7.2 Piles, Pipelines, Cylinders ← long cylindrical structures

Since u and $\partial u / \partial t$ are 90° out of phase,

Figure 7.1. Surface elevation and drag, inertia, and total forces versus phase position-for equal peak drag and inertia components.

 F_{max} occurs somewhere between kx = 0 and $kx = \pi/2$. And also $F_d = 0$ at $(F_i)_{\text{max}}$, and $F_i = 0$ at $(F_d)_{\text{max}}$. Using $\partial F / \partial (kx) = 0$ at F_{max} ,

$$\sin(kx)_m = \frac{2C_m V \sinh kd}{C_d AH \cosh k(z+d)} \rightarrow \text{ indicates relative magnitudes of } F_d \text{ and } F_i$$

Since $V \propto D^2$ and $A \propto D$,

$$\sin(kx)_m \propto \frac{D}{H}$$

Therefore, large $D/H \rightarrow$ inertia-dominant small $D/H \rightarrow$ drag-dominant

Keulegan-Carpenter number (KC)

$$u = u_m \cos \sigma t; \quad X = \int_0^{T/4} u_m \cos \sigma t dt = \frac{u_m T}{2\pi}$$
$$\frac{X}{D} = \frac{1}{2\pi} \left(\frac{u_m T}{D} \right)$$

Defining $u_m T / D$ as Keulegan-Carpenter number (KC), since $u_m \propto \pi H / T$,

$$KC \propto \frac{H}{D}$$

Therefore, large $KC \rightarrow$ drag-dominant small $KC \rightarrow$ inertia-dominant

Vertical pile

Total horizontal force acting on the pile is

$$F = \int_{-d}^{\eta} (F_d + F_i) dz$$

$$\approx \int_{-d}^{0} \left(\frac{C_d}{2} \rho D u^2 + C_m \rho \frac{\pi D^2}{4} \frac{\partial u}{\partial t} \right) dz$$

$$= \frac{C_d}{8} \rho g D H^2 n \cos^2(\sigma t) + C_m \rho g \frac{\pi D^2}{8} H \tanh k d \sin(-\sigma t)$$

Total moment about mudline is

Maximum force and moment?

$$\frac{\partial F}{\partial(\sigma t)} = 0 \quad \rightarrow \text{ find } F_{\max} ; \qquad \qquad \frac{\partial M}{\partial(\sigma t)} = 0 \quad \rightarrow \text{ find } M_{\max}$$

Determination of C_d and C_m (Read text p. 195-198)

 $C_d, C_m = f(\mathbf{R})$

 C_d \uparrow as roughness of cylinder \uparrow

7.3 Large Submerged Structures

Use potential flow theory

$$\phi = \phi_i + \phi_s$$

where ϕ_i = incident wave potential (known), and ϕ_s = scattered wave potential (unknown).

Solve $\nabla^2 \phi = 0$ for ϕ using the boundary condition $\partial \phi / \partial n = 0$ on body surface. Then

$$p = -\rho gz - \rho \frac{\partial \phi}{\partial t}$$
$$F = \int_{S} p dS$$

7.4 Floating Breakwaters

Advantages: Read text Disadvantage: effective only for short period waves ($T \le 3$ s)

7.5 Rubble Mound Structures

Advantages:

- 1) gradual (not sudden) damage during storms
- 2) smaller wave reflection
- 3) easy water exchange between ocean and harbor
 - ÷

See figure 7.4 for typical cross-section

- 1) Fore-slope $\leq 1:1.5$
- 2) Width of cap concrete $\geq 3 \times A$ -stone diameter
- 3) Weight of A-stone = W

B-stone =
$$\left(\frac{1}{10} \sim \frac{1}{15}\right)W$$
, C-stone $\cong \frac{1}{200}W$

4) Outer layer (A-stone) usually consists of two layers of armor units

How to estimate W?

Let l = characteristic length of armor unit, so that

 $W \propto \rho_s g l^3 = \gamma_s l^3$

where γ_s = unit weight of armor unit. Assuming the armor unit is fully submerged (worst case),

 $W_{net} \propto (\gamma_s - \gamma_w) l^3$

Express drag force $\propto \frac{1}{2} \rho_w C_d u^2 l^2$.

Force balance at initiation of movement:

drag force $+W_{net}\sin\theta = \mu W_{net}\cos\theta$

where μ = friction coefficient between armor units. Now

$$\frac{1}{2}\rho_w C_d u^2 l^2 \propto W_{net} \left(\mu\cos\theta - \sin\theta\right)$$

Using $u \sim O(\sqrt{gH})$,

$$\frac{1}{2} \rho_w g C_d H l^2 \propto (\gamma_s - \gamma_w) l^3 (\mu \cos \theta - \sin \theta)$$
$$l \propto \frac{H}{(\gamma_s - \gamma_w)(\mu \cos \theta - \sin \theta)}$$
$$l \propto \frac{H}{(S - 1)(\mu \cos \theta - \sin \theta)}; \quad S = \frac{\gamma_s}{\gamma_w}$$

Since $W \propto \gamma_s l^3$,

$$W = \frac{\gamma_s H^3}{K_D (S-1)^3 \cot \theta}$$

This is the Hudson formula, where $\cot \theta$ is used instead of $(\mu \cos \theta - \sin \theta)^3$, and K_D = stability coefficient, which includes everything not accounted for (see Table 7.1).

Stability number, $N_s = (K_D \cot \theta)^{1/3} = \frac{H}{(S-1)(W/\gamma_s)^{1/3}}$

• van der Meer (1988, 1995) included the effects of wave period, breaker type, storm duration, damage level, permeability.

• Berm breakwater

Figure 7.7. Berm breakwater cross-section.

- Rubble mound forms an S-shaped profile to stabilize itself against wave action.
- Construct a rubble mound being close to its equilibrium profile from the beginning.
- Smaller size and wider size range of armor stones

- Low-crested (or submerged) breakwater
 - mostly for shore protection
 - good for seascape

- Failure usually occurs at the top of the breakwater

$$\frac{h_c}{d} = (2.1 + 0.1S_d)e^{-0.14N_s^*}$$
$$N_s^* = \frac{H^{2/3}L^{1/3}}{(S-1)(W/\gamma_s)^{1/3}}$$

 S_d = damage level = $\frac{A}{D_{50}^2}$; $D_{50} = \left(\frac{W}{\gamma_s}\right)^{1/3}$

 $S_d = 2.0$ for onset of damage, and 8.0 for failure.

Note: S is used as both specific gravity and damage level in the textbook.

7.6 Rigid Vertical-Faced Structures

Non-breaking wave forces

 \uparrow

standing wave pressure + wave setup

Figure 7.8. Standing wave pressure distributions on a vertical wall. (U.S. Army Coastal Engineering Research Center, 1984.)

$$p_{d}(z) = \rho g H \frac{\cosh k(d+z)}{\cosh kd} \cos \sigma t$$

$$p_{d}(z = -d) = \frac{\rho g H}{\cosh kd} \cos \sigma t; \qquad H = \frac{1+C_{r}}{2} H_{i}$$

$$\Delta z (\text{wave setup}) = \frac{\pi H^{2}}{L} \coth kd$$

Assuming standing wave pressure varies linearly (see Figure 7.8),

Crest: from 0 (at $z = \Delta z + H$) to $\rho g d + \frac{\rho g H}{\cosh k d}$ (at z = -d) Trough: from 0 (at $z = \Delta z - H$) to $\rho g d - \frac{\rho g H}{\cosh k d}$ (at z = -d)

Breaking wave forces

Goda formula (1974)

- Applicable for both non-breaking and breaking wave forces
- Horizontal force (on front of caisson) + uplift force (on bottom of caisson)

Figure 7.9. Broken wave pressure distribution on a caisson. (From Goda, 1985.).

$$z = 0.75(1 + \cos \beta)H_{\max}$$
$$\beta = \begin{cases} \theta - 15^{\circ} & \text{if } \theta > 15^{\circ} \\ 0^{\circ} & \text{if } \theta \le 15^{\circ} \end{cases} \text{ for safety}$$

where θ = wave angle from normal to the breakwater

$$p_{1} = 0.5(1 + \cos \beta)(\alpha_{1} + \alpha_{2} \cos^{2} \beta)\gamma H_{\text{max}}$$

$$p_{2} = \alpha_{3}p_{1}$$

$$p_{3} = \frac{p_{1}}{\cosh kd^{*}}$$

$$p_{4} = \begin{cases} p_{1}(1 - d_{c}/z) & \text{for } z > d_{c} \\ 0 & \text{for } z \le d_{c} \end{cases}$$

$$p_{u} = 0.5(1 + \cos \beta)\alpha_{1}\alpha_{3}\gamma H_{\text{max}}$$

where

$$\alpha_{1} = 0.6 + 0.5 \left(\frac{2kd^{*}}{\sinh 2kd^{*}}\right)^{2}$$

$$\alpha_{2} = \min\left\{\frac{d_{b} - d}{3d_{b}} \left(\frac{H_{\max}}{d}\right)^{2}, \frac{2d}{H_{\max}}\right\}$$

$$\alpha_{3} = 1 - \frac{d'}{d^{*}} \left(1 - \frac{1}{\cosh kd^{*}}\right)$$

$$d_{b} = \text{water depth at } 5H_{s} \text{ from the breakwater}$$

7.7 Other Loadings on Coastal Structures

current, wind, ice, earthquakes (read text)

7.8 Wave-Structure Interactions

Reflection coefficient:

$$C_r = \frac{aI_r^2}{b + I_r^2}$$

where a, b = empirical constants,

$$I_r = \frac{m}{\sqrt{H/L_0}}$$
 = Iribarren number

Wave runup:

Regular wave on smooth impermeable slope: Figure 2.15 $\rightarrow R_i$

Regular wave on rough permeable slope: $R_r = rR_i$; r is given in Table 2.1

For irregular waves,

$$R_p = R_s \left(\frac{\ln(1/p)}{2}\right)^{1/2}$$

where $R_s = R$ for H_s (assuming regular wave)

$$R_p$$
 = run-up for $1 - P(R_p) = p$

If R > crest elevation, overtopping occurs. Wave overtopping is a very complex phenomenon, so usually hydraulic model test is used.

Wave transmission:

Wave transmission mainly due to overtopping: $T_t < T_i$ in general

$$C_t = \frac{H_t}{H_i} = C \left(1 - \frac{F}{R} \right); \quad C = 0.51 - \frac{0.11B}{d_s + F}$$

For low-crested breakwaters,

$$C_t = f(F/H_i) \leftarrow \text{see Figure 7.10}$$

Note that F can be negative.

7.9 Selection of Design Waves

Wave measurements or hindcasting (using meteorological data)

 \downarrow extreme wave analysis

Deepwater wave of particular return period

 \downarrow wave transformation model (shoaling, refraction, diffraction)

Waves at the location of structure

 \downarrow Rayleigh distribution

 $H_{1/3}$ or $H_{1/10}$ for rubble mound structures

 $H_{1/100}$ or H_{max} for rigid structures (e.g. vertical caisson)