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COMBINED AND

SPECIAL FOOTINGS

JOSEPH E. BOWLES

Professor of Civil Engineering, Bradley University

16.1 GENERAL CONSIDERATIONS

Chapter 15 has considered the commonly encountered
spread footing carrying a single column load. This chapter
will consider footings carrying more than one column in a
line (combined footings) as well as spread footings with
eccentricity, with holes or notches, and ring and chimney
foundations.

a beam on an elastic foundation.
Concrete design will use the ultimate strength (USD)
\ method based on ACI 318-71 as presented in Chapter 15.
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~ Tt may be necessary to place more than one column load
on a footing for a number of reasons such as:

({a)) Insufficient area near a property line with the result

" that a spread footing (Chapter 15) would be eccentri-
cally loaded (Fig. 16.1a).

(b) Building equipment necessitating that the spread foot-
ings be rectangular when the space between adjacent
footings is relatively small (Fig. 16.1b).

(¢) The column loads andfor soil conditions are such that
the resulting footings occupy most of the site (Fig.
16.1c).

When isolated footings are subjected to very large eccen-
tric loadings we are faced with the possibility of excessive
footing rotation, differential settlements, or exceeding of the
allowable bearing capacity of the soil. This situation may be
rectified by placing two or more of the columns in a line
on a single continuous footing. Proper proportioning of the
footing can result in a uniform pressure distribution (con-
ventional analysis) on the soil beneath the footing. The
footings may be rectangular or trapezoidal, or (rarely) of
another form as shown in Fig. 16.2. Continuous footings
may be stepped to allow increased bearing capacity or greater
basement area, to go below zones of poor soil, etc., as shown
in Fig. 16.2¢.

When spread footings for the columns begin to occupy
a large percentage of the foundation site or of the area be-
tween columns, the designer must weigh formwork costs
against the exira footing materials required by using con-
tinuous footings or mat (Chapter 17) foundations. These
are the considerations of concern for Figs. 16.2¢ through f.
Sometimes, however, alternate footings may be placed and
formwork saved by using a spacer board against the already
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Combined footings will be treated both with the conven-
tional (rigid member) design method and as the problem of

/ Property line
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(c)

@ Conditions for use of combined footings. (a) Footings

which will be subjected to overturning moment and “nonuniform
soil pressure can be combined using conventional design practice;
(b) footings loaded and placed so that space between footings is
small, Generally, if space between footings is less than B it will be
more economical to combine or abut two footings; (c) if footings
occupy most of foundation space, consider a mat .or—combining
footings.
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poured footing. This arrangement may save on reinforcing
steel (negative) as well as formwork costs.

On the other hand, it is sometimes uneconomical to use
a footing of constant width or depth to span the distance
between two columns. A possible solution is the strap or
cantilever (sometimes called a pumphandle) footing. Here
the strap is a shear and moment transferal device and is de-
signed as a beam.

The design considerations of such members, both soil and
structural, will be discussed in the following pages.

16.2 ALLOWABLE SOIL BEARING PRESSURES

Design of the footings of this chapter is based on an allow-
able soil pressure as obtained from the equations presented
by Vesi¢ in Chapter 3 or from the SPT penetration number
(see Table 15.1). Settlements and differential settlement
(Chapter 4) also will be factors to consider and may limit
the allowable pressure value. Generally the same factors
considered in Chapter 15, sections 2 through 6 are applicable
to the footings in this chapter

Allowable bearing pressure generally will require compu-

tation of an ultimate bearing pressure based on the footing

width B, which for a rectangular footing will be its least

?%I lateral dlmenswn and for a traperoidal footing its average

\.width. Eccentrically loaded footings should be considered
mdmdually, but a bearing pressure value can be obtained
using equivalent width B’ (section 15.7). The ultimate bear-
ing pressure is divided by an appropriate safety factor F of
2 or 3. A safety factor of F = 3 is generally preferred al-
though there is some diverse opinion of what the numerical
value of the factor should be as well as how to obtain it
(Brinch Hansen, 1967; Johnson and Kavanegh, 1968 ; Jumi-
kis, 1967%; and Bowles, 1968). At present, however, it

*Jumikis defines

_ Favorable quantities (forces, moments, etc.)

Unfavorable quantities

Bowles (1968), Chapter 7, shows that even this method of evaluating
F requires careful interpretation.
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Fig. 16.3 (a) Rigid design assumption of pressure distribution; (b}

langitudinal pressure distribution {probable); (c) end view of probable
pressure distribution, Edage pressures depend on soil type.

seems rational to use an F-value to compute the allowable
bearing pressure for the condition of
Dead load + Design live load: F =3
" and when part of the loads are temporary or transient
Dead load + Design live load + K;: # =12

where

K,
Ka

wind load (i=1)

earthquake (i = 2)
3)

but K, not usually taken simultaneously with K, or Kj.
Additional consideration should be taken of load duration,
foundation soil type, and groundwater conditions when
applying the safety factor since a transient load on a cohe-
sionless soil will have an immediate effect. On a soil with a
low coefficient of permeability part of the transient load
may be gone before any foundation displacement can occur,

Actual soil pressures beneath flexible footings will prob-
ably be somewhat as shown in Fig. 16.3. In reality it is
expected that most footings designed as rigid are not and
are probably intermediate between absolutely rlgld and
flexible.

Actual soil conditions such as stratification, lenses of
different soil types, changes in density, etc., as well as footing
shape will cause the actual foundation pressure to deviate
from the theoretical pressure of Eq. 15.14.

Referring again to Fig. 15.12, if the high edge pressures
shown were used in design it could result in larger bending
moments at critical sections for bending. Shear values would
probably change very little, if at all. Considering, however,
that an absolutely rigid footing will not (cannot?) be built
and any flexibility or edge differential movement will relieve
the high edge stresses, it is recommended that a planar soil
pressure distribution be used for the conventiond esign o
combined joorings (except as noted) in this ch*Tr. There
“fay be an occasional special case in which this method of
design could result in an unsafe footing, but it is expected
that the designer will recognize the occurrence of this event.

K3 =snow load (i =
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: RECTANGULAR COMBINED FOOTINGS

== (RIGID DESIGN)

This section is specifically concerned with the considerations
involved in and the structural design of rectangular combined
footings. Figure 16.2 illustrates various cases. It can be
seen that the loads may come from a load-bearing wall at
one end and column loads or, alternatively, from column
loads alone. The footing may be of a length sufficient to
just allow the columns to be set on it or extending beyond
one or both of the end columns. Sometimes it may be
necessary to change the width (Fig. 16.2d) of the footing;
however, the additional formwork may offset some of the
advantages of using a combined footing. In any case, changes
in width of footing should be accomplished by chamfers
rather than abrupt notches because of possible stress con-
centrations at abrupt cross-section changes.

Footing loads are often taken simply as axial column
loads. From a structural analysis the loading can be made
up of column axial loads, moments, and shears. Ordinarily,
shears which would result in axial forces within the horizon-
tal plane of the footing are neglected as far as the member
proportioning is concerned. Shears may, however, contri-
bute to a lateral stability problem of a building and/or
foundation translation.

Rectangular combined footings should be designed for
a uniform soil pressure if foundation space limitations will
allow it, to take advantage of computation simplicity. If
the conditions shown in Fig. 16.4b obtain, this may not be
possible, resulting in somewhat more complicated computa-
tions. Still another problem arises when the load on the
combined footings consists of more than two column loads
and with or without column moments. This latter problem
appears indeterminate until one realizes that the assumption
of a planar soil pressure distribution together with the col-
umn loads provides enough information to make a design.
An indirect solution to the proportioning of the footing for
this latter problem has been presented (Jacoby and Davis,
1941) with the solution consisting of providing a footing
centrally loaded with the soil reaction.

[‘ There are limitations and assumptions in the design of
|

combined footings generally as follows:

7(, [T A q%lﬁ design is assumed. Unless the footing is ex-
tremely thick it is not a rigid member. In fact, some designers
make the depth of the footing such that stirrups are required
for shear stresses. Except for certain types of slabs, how-
ever, the author does not recommend the use of stirrups in
rigid footings.™

f (2)

i A uniform_or planar soil pressure distributicn is ob-
* tained beneath the footing. This situation may obtain if

the footing is fairly rigid and the underlying soil is soft so

*The ACI318-71 does not recommend not using stirrups, but if they
are used they are only 50 percent effective {Art. 11.11.1).

(

that sufficient soil creep and pressure readjustment takes
place. Ordinarily it is expected that there will always be a
higher soil pressure distribution in the vicinity of the column
loads due to “dishing™ of the soil (Figs. 16.12b, 16.13) in

this region. For this reason, the conventional rigid footin,
design method generally provides a conservative (overdesign)

footing design. This is illustrated in section 16.11 where a
comparison of the rigid and the beam on an elastic founda-
tion analysis of the same footing is made. The elastic foun-
dation solution accounts in fact for larger soil pressures in
the celumn zones beneath the footing, thus reducing the
bending moments between columns.

(3) Uniform soil conditions_in the footing zone. Ob-
viously if the soil changes in density, degree of looseness
(for instance, part cut and part fill, local soft spots, ete.),
physical characteristics, soil type (parl cohesive and part
cohesionless, change in cohesion or gradation, etc.), under-
lying andfor undetected voids, or other soil conditions, the
actual soil pressure is highly indeterminate and the compu-
tation of soil pressure using the rigid footing concept will be
rather academic. Even the beam on an elastic foundation
solution (section 16.11) will be highly suspect, although, as
will be seen later, a certain amount of adjustment of soil

_ parameters can be made in this solution.

(4) Neglect of contribution of superstructure rigidity.

' The footing rests on a somewhat elastic media and the

amount of deformation at a column is related {(but not
necessarily linearly) to the column load. As soon as deforma-
tion of the foundation soil begins to take place, however,
the rigidity of the superstructure comes into play, tending
to bridge or decrease certain column loads and concentrating
additional loads to other columns. Several writers (Meyer-
hof, 1953;Chameeki, 1956; Grasshoff, 1957; Somner, 1965;
and Lee and Harrison, 1970) have considered the problem
with approximate solutions. Analytical solutions to date
verify what one would intuitively expect, namely that adding
an equivalent amount of moment of inertia to the combined
footing to account for the effect of superstructure rigidity
on the footing decreases the computed bending moments in
the footing. It naturally follows that the stiffer the super-
structure the greater the reduction of footing bending
moments.

In considering the effect of superstructure on the footing
some attention might be given to transmitting column loads
to the footing. Certainly a flexible column would react
somewhat pin-ended (no moment—only axial load). On the
other hand, does it necessarily follow that a stiff column will
transmit a footing moment? and if so how much? The
amount is geing to depend on footing rotation; remember
that there will probably be rotation unless the footing is
very rigid. Footing moments from the column will also de-
pend on how the column is attached to the foundation.

Fortunately the current state-of-the-art of soil exploration
can discover most of the potential soil problems; and soil

Equipment
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:
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footing

[V 1\]:-1\1 length
R=4.q €

(b)

(a)

~

“Fig. 16.4) (a) Soil pressure is uniform if sum of loads falls at center of footing area; (bl soil pressure is linear but nonuniform if any eccentricity
resu

between center of resultant and center of footing area.
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stabilization science can improve site characteristics to a
reasonable degree of prediction. Therefore, the design of
combined footings is no more hazardous than the ordinary
spread footings of Chapter 15. Because they are usually
overdesigned there have been no building failures to date
attributed to failures of combined footings (see also Feld,
1962).

Once the type of foundation has been selected and the
structural design of members begun, if overdesign of any of
the members of the structure is made it is axiomatic that it
should be in the foundation members. Reasons are as
follows: 3

(1) There are usually only a few footings relative to other
structural members and with a one-to-two-inch increase of
concrete depth the increased total volume of concrete is on
the order of 5 to 10 yd® for all the footings of most
structures.

(2) An assumption of 5 to 10 1b of steel extra (average)
per footing will amount to considerable overdesign, but the
total increase will be less than 1000 Ib for most jobs.

(3) The extra reinforcing steel may reduce the require-
ment for hooks and bends, thus offsetting the material costs.

(4) The extra concrete required to design footings for
no shear steel (stirrups) is offset in cost by not requiring
stirrups plus the labor costs of placing the steel.

(5) It is difficult and extremely expensive to change the
foundation design if members are underdesigned, especially
if an appreciable amount of the superstructure is in place.

The design of a combined footing with any number of
loads proceeds as follows (refer also to Table 15.3).

(1} Locate the point of application of the resultant of all
the loads on the fooling (refer to Fig. 16.4).

(2) Compute the area of the footing such that the allow-
able soil pressure 1s nowhere exceeded and with:

(a) a uniform soil pressure distribution if the resultant

of the loads does not coincide with the center of
footing area as

_z»
% A4
{b) a planar soil pressure distribution if the resultant of
the loads does not coincide with the center of footing
area as

zr 5 ZPex
oty
with terms identified in Fig. 16.4.

(3) Convert the loads Lo ultimate loads by means of load
factors as follows: "

U=14(Dead)+ 1.7(Live)

U=0.75[1.4(Dead) + 1.7(Live)
+ 1.7 (Wind or Earthquake)]

Then find a fictitious ultimate soil pressure (gy1¢) per

Joptine eheidy :

zu % exle

Tavabl

noting that ¢ = 0 for case 2a.

(4) Using ultimate loads Iand soil pressure ¢, construct
the shear and moment diagram taking column loads as
point loads. This results in incorrect shear and mo-

ment diagrams within the column zones, but correct
shear and moment values exterior from the column

qult =
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faces which are the design locations. The savings in
time offsets the academic error within the column
Zones.

(5) Find the depth of footing to satisfy without the use
of stirrups (generally) the most critical of the following
two conditions.

(a) Wide beam type shear (ACI Art. 11.10.1a) based on
an allowable concrete shear stress of

Vgiss 2¢)\/§

A more detailed analysis allows a somewhat higher
value of allowable concrete stress; however, 29/f
is conservative and is recommended. Diagonal ten-
sion shear often controls footing depths anyway.
The actual stress is computed at a distance d from
the face of the column (Fig. 16.5) as

Vu

bl A
where ¢ is a workmanship factor with a value of 0.85
for shear.

(b) Diagonal tension (punching shear as shown in Fig.
16.5 based on an allowable concrete shear stress of

vy = 4dn/FL (ACI 318-71 Art. 11.10.3)
and the actual shear stress computed as

Vu
v, = —%
“ bod
(6) With the depth of section established compute the area
of steel required to satisfy bending in the longitudinal
direction as

M, = 6A4f, (d - af2)

and check minimum steel requirements of ACI Art.
7.13. The depth ¢ of rectangular stress block of the
concrete is

Lo _Asty
0.85 f1b

where b = width of strip being analyzed—generally 12
inches.

Usually the depth d will be the overall depth of
concrete D, less 3 inches of steel cover less one-half a
bar diameter:

d = D, - 3 - (Bar diameter)/2
(7) Select steel bars to satisfy bond and anchorage (ACI
318-~71 Art. 12.5 and 12.6) using Tables 15.5a and b.

(8) Select steel in the short direction considering each
column to be supported by a fictitious beam of width

W; = a + d (Interior columns)

S o d ]
a+df? *)_L ! ! (e

E Ih|-—\ Wide beam ‘—-1 LE_;E

T hava avd

" Punching
Fig. 16.5 Locations to investigate for shear. Shear ordinarily con-
trols the depth of footing.
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or
We =a + d{2 (Exterior columns)

Depending on column placement on the footing the
distance W, may increase up to a +d as for interior
columns. Use minimum percentage of steel to satisfy
shrinkage for the remainder of the footing in the trans-
verse direction. The validity of this placement is based
on bending primarily longitudinal with the exception
of transversal bending in the immediate vicinity of the
columns. Further, most combined footing L/B ratios
will be 2 or more; thus there is a similarity to one-way
slab design.

{ EXAMPLE 16.1) Design a combined footing for the load-
ing conditions shown in Fig. E1.1. Use ACI 318-71, strength
design (USD), and conventional design procedures.* Note
that procedures to obtain loads and soil pressures have been

considered in this chapter, Chapter 15, and elsewhere; how-
ever, this example uses a value of recommended allowable

D = 140¥ D = 180%
L =90 L=110 e :
16 f;. = 3000 psi
f;, = 50000 psi
ad 15
13 l %, = 3.5ksf

Fig. E1.1

soil pressure as the structural designer usually gets in a re-
port from the soil engineer. It is assumed the structural
designer would somehow be able to obtain column loads to
apply to the footing as shown. This example does not con-
sider the rigidity effect of superstructure on the foundation.
\ Step 1. Compute the footing dimensions

ZM Column 1 =0

(230 +290) ¥ = 16 (290)
=16 (290)/520 = 8.92 ft

The length of the footing is
(1, =2(8.92 + .542) = 18.93 ft (Use 19.0 ft)

To avoid computational errors the actual computed footing
length will be used for all computations. The as built footing
will be 19.0 ft. Incidentally, the moment diagram will not
close unless the computed length of the fooling is used. Any
other footing length will introduce an eccentricity of soil
reaction for the assumptions used.

The width of the footing is

BLq,=ZP
B =520/(18.93)(3.5) = 7.85 ft (Use 8.0 ft)

( Step 2. Convert soil pressure to an equivalent ultimate

load value:
Uy

1.4D0L + 1.7LL
1.4 (140.0) + 1.7 (90) = 349.0 kips
U, =1.4(180.0)+ 1.7 (110.0)

=252.0 + 187.0 = 439.0 kips

*These procedures are essentially the recommendations of ACI com-
mittee 436 (Journal American Concrete Institute, October 1966).

Factor = (349.0 + 439.0)/520 = 1.515
Guit = 3.5 (1.515) = 5.3 ksf

( Step 3. Draw shear and moment diagrams for the footing.
In this example the column loads are treated as distributed
loads.® The column loads may be treated as point loads
without affecting the structural design since the shear and
moment values in the design zones are identical using either
approach. Treating the column loads as point loads is gen-
erally preferred for hand computation as it is simpler.

=gun X B=5.3(7.85)=41.63 kips/ft

goakill 3SIRAL
M g =41.63%"

RN ERER]
=

Fig. E1.2

considering the column load as a distributed load fromx =0
to 1.0833 ft.

q =41.63 - 349/1.0833 = 280.536 k/ft

V=Jq dx = 280.536x + Co(Co = 0 since V=0at x =0)

V =280.536 (1.083) =-303.9 kips
M= dex= 280.536x2%2 + C, (C; =O0since M =0atx=0)

280.536
M= S (1.083)? =-164.60 ft-k

Compute the shear and moment values between columns.
Take column loads as point loads at this stage since the re-
sulting values will be identical, For values of 1.083 <x
< 15917 ft

g =41.63 k/ft

V= fq dx =41.63x - 349.0

x2

M=dex=4l.63 ey 349.0 (x - .542)

Evaluating the shear and moment at other selected points
the following table can be obtained:

x, ft V, kips M, fi-kips
0 0 0
1.083 -303.9 - 164.60 Interior face of column 1
2 =265.75 - 42559
6 - 99.24 -11565.56
8 - 15.99 =1270.79
8.38 0.0 =1273.86 Maximum moment
10 67.27 =1219.51
14 233.77 - 617.42
15917 313.57 - 9280 Interior face of column 2
16.542 120.10 + 50.11 Center of column 2
17.167 - 73.39 + 64.70 Exterior face of column 2
18.0 e o] 7 ) + 1062
18.93 0 0

*Since this problem had been programmed on the computer.
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The maximum moment and its location as shown in the

preceding table is obtained from the setting shear to zero:

41.63x - 349=0

x=8.38 ft

The maximum moment is computed as
8.38\2
Mpyax = 41.63 T - 349 (8.38 - .542)=-1273.86 ft-k

The shear and moment diagrams are plotted in Fig. E1.3.

313.57

: I_A 838’ /\'
Shear

Face column 2

73.4

Face column | 64.7 fi-k

Moment

1273.86 ft-k

Fig. E1.3

———

Step 4. Find depth for wide beam shear at the location
of largest shear (the interior column in our example as shown
in Fig. E1.3); the allowable concrete stress is

207/ = 93.1 psi = 13.406 ksf

Vieam = 313.57 - 41.63d

Veone = Bdve = 7.85 (d)(13.406) = 105.237d
Equating

41.63d + 105.237d = 313.57
d=313.57/146.867 = 2.135' = 25.6"
Check diagonal tension
ve = 4¢\/fi = 186.2 psi = 26.81 ksf

At column 1 (Fig. E1.4a) the perimeter in shear is

p=2(1.083 +2.135/2) +(1.083 +2.135) = 7.519 ft

Vienear = Pdve = 7,519 (2.135)(26.81) = 430.38 > 349 kips

(0.K.)
I:__.| : | 125 +d
B e
1. +
ZI_E g g O Fr-0.76"
=2 1 083+df2 { Fr AR
2406°
(a) (b)
Fig. E1.4
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At column 2 (Fig. E1.4b) the perimeter in shear is

35
p=4(1.25+ )=S.00+4.2?=9.2? ft

Vinear = 9.27 (2.135)(26.81) = 530.5 > 439 kips (0.K.)

Note that strictly the allowable shear value should be com-
pared to the ultimate column loads less the soil pressure on
on the base as

Veone shear = Col. load - Aq

However, this computation is somewhat academic if the
allowable concrete shear is larger than the column load as in
these two checks. Check ACI Art. 10.7 to see if this mem-
ber should be classified as a deep member:

DIL =12.13/16 < 2/5 or 4/5

One might consider using the span length of column face to
column face (L = 14.83’) instead of column to column for
this check.

Step 5. Compute the area of steel required. Steel will
be required in the zone between columns on the top side
of the footing (negative steel) and on the base side in the
cantilevered portion. Steel will also be required perpendicu-
lar to the long axis in zone W; and W,, plus shrinkage steel
for the remainder of the footing length.

(a) Computing negative steel first:

My max ==1273.9 ft-k for width of 8.0 ft

M,
—=4,(d - af2) Table15.3)

@y
A 50(4
= ES%: = _8—5%)- 1.6324,
Substituting values,
As(25.6 - 1.6324,/2 = AR )
50(.9)(8.0)

81642 - 25.64,=-42.5
A? - 31.374,=-52.0
Ag=1.69in?/ft
Check p for shrinkage (note that minimum p = 200/f,, does
not apply for constant thickness members):

1.69
T12(25.6)
Total steel required across footing is

1.69(8.0) = 13.52 in?
Use 16 No. 9 bars at 6" center-to-center
Ag (furnished) = 16 (1.0) = 16 in® > 13.52 in?

Run all of bars full length of footing with hooks (ACI Art.
12.1, 12.2) on exterior column (column 1) end. Note that
we could run less than this amount the full distance (i.e., cut
some bars) but the limitation of ACI Art. 12.3.3 plus the
extra placing effort weighed against a small material savings
implies that the solution taken will be satisfactory.

Use 3 inches of clear cover.

Check ACI Art. 10.6.2 (refer to Fig. E1.5)

Z=fipA

p =.0055>.002 ACI Art. 7.13.1

SNU Geotechnical and Geoenvironmental Engineering Lab.
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125 Top of tooting
g = 3.564"
0 L
o m:\é
~ 1.128"
#9 A 3o
7,
Fig. E1.5

where
fs = .60f, = 30 ksi
tp =3.564 in
A=7128 X 12=2385.5in?
Z = 301/(3.564)(85.5) = 30 (8.52) = 166 > 145
{b) Compute positive steel in cantilever part:
M, = 64.7 ft-k/B = 8.1 fi-k/ft
816A4% - 25.64,=-8.1(12)/.9(50)
A2 - 31.3745=-2.65
Ag=.09 in?/ft
p=.09/12(25.6) = .00029 < 002

Shrinkage steel requirements control and the required steel
area is

002 (12)(25.6) = 0.61 in?/ft

Use 8-No. 9 bars at 12" center-to-center.
Check ACI Art. 7.4.3:

3t =3(25.6)=76.8in>>18in > 12 in spacing. (0.K.)

This allows all the longitudinal rebars of same size at an even
spacing.

Run 4 bars (34,) full length of footing. Run 4 bars be-
yond interior column a distance of 36.5" (Table 15.5a) ACI
Art. 12.1.5.

(¢) Design transverse steel (short direction). Use actual
footing dimensions and place short steel on top of longitu-
dinal steel:

Guit = (349 + 439)/(8)(19) = 5.18 ksf
(1) For exterior column (Col. 1)
a+df2=13+256/2=258=2.15
d for steel = 25.6 +0.56 — 1.692 assuming No. 9 bars
d=245in
The length of cantilevered footing for bending moment is
L =(8- 1.083)/2=6.917/2=3.46
M=gL?[2=5.18(3.46)?/2=31.0 ftk

/ # 6@ 12" top and bottom all way "

From previous computations
81642 - 24.54,=-31(12)/.9(50)
A -304,=-827
Ag= .29 in?/ft
p=.29/12(24.5)=.00098 < .002

Use
Ag=.002(12)(24.5) = 0.59 in? /ft

Since shrinkage requirements control the area of steel re-
quired the bar size and spacing all along the short direction
is

A fft = .002(12)(24.5) = .59 in? /ft

Use No. 6 bars at 12" center-to-center fop and bottom as
shown in final sketch (Fig. E1.6) with 3 extra bars. Space
one extra bar in zone W, and 2 extra bars in zone W; along
bottom. y

This example illustrates the elements of designing a con-
tinuous footing. It should be noted that one should weigh
overdesigning costs against design time, the construction
costs of having many bar sizes on a job, and ease of placing
rebars with even spacing in order to decide on the amount of
overdesign (if any) that will be tolerated. Again, however,
if overdesign is involved the foundation is the best location
for it.

TRAPEZOIDAL SHAPED FOOTINGS

When an exterior column of a building has a larger load than
the adjacent interior column and for some reason it is neces-
sary to place the two columns on a single footing, the re-
sulting combined footing will be frapezoidal in shape if it is
desired to have an assumed uniform distribution of soil pres-
sure beneath the footing. Referring to Fig. 16.6 one can see
‘that the minimum length of footing is out-to-out column
faces; any maximum length may be selected. From an in-
spection of the figure one notes several points of interest:
(a) No solution exists if

E'{"Wl <L[3 :

since this would result in a triangular footing with the result
that the interior column would be partly on empty space.
This case, if the column spacing is large or poor propor-
tions (since @ = 2b) are obtained, is considered in section
165,
(b) The solution becomes a rectangular combined footing

yu
307 OO
i p e O e LB e

gt. 4 bars all way

m—————————— Footing 19.0° X 8.0

if
X+w, = L2
5t ,/ 16-#9 @ 6"
1
S Ui L 3-#0@ 127
S i Ml L N
L, =364"

Fig. E1.6

SNU Geotechnical and Geoenvironmental Engineering Lab.



Week #7

Ifx+w, =L/2 j

Fig. 16.6 Trapezoidal footing.

(¢) A trapezoid footing solution exists for
LB<(x+w, <L/2)

Again referring to Fig. 16.6 the proportions of the footing
are estabfished by summing moments about column 1 to find
X. Note that only the case of two column loads is being
considered here. With X and w; (the column half-width)
known a length of footing can be established using as a guide
the range of lengths for which a solution will exist. Now let

x=X+w,

‘Then from the properties of a trapezoid

L {2b+a
X = —
3\a+bh

The soil pressure is to be uniform; therefore
qA =XV

\(16.1)

and

by =(a+b)L

5

Solving the above three equations one can find the unknown
end dimensionsa, b.

Next one converts the actual loads to ultimate loads,
finds gy,3¢ so that shear and moment diagrams can be drawn.
The footing is designed in a fashion similar to the rectangular
combined footing.

(EXAMPLE 16.2; Proportion a trapezoid footing for the
conditions shown in Fig. E2.1.

D =250k D =180k
L =200k L =140k
L=20—————
q, =4 ksp
24" 16
Fig. E2.1
Solution:

770 ¥ = 20 (320)
¥=831" x=831+1.0=9.31
A =(a+b)L[2=(a+bX21.67/2) = 10.835 (a +b) = 770/4
a+b=1777 b=17.77-a

Combined and Special Footings 511

+ b
at+b

24+ b 3
=93 e
17.97 (21.67)

2a +b=17.77(1.29)
2+ 17.77-a=2292
a=515" b=1262
U; = 1.4(250) + 1.7(200) = 690
U, = 1.4(1.80) + 1.7 (140) = 490
Gy = 1180/192.5 = 6.13 ksf

x=LJ3 =931

12.62'

]

6901& 20 j 490k
6.13 X 5.15 =
6.13X1262 = 31.51 k/ft
T7.41 kfft

Fig. E2.2

5.15¢

16.5 STRAP OR CANTILEVER FOOTINGS

The previous section indicated situations of column loadings
or spacings such that a combined footing could not be made
to work (at least with a uniform soil pressure), i.e., when the
distance x <TL{3. A large spacing between two columns can
create a situation where a continuous footing is uneconomi-
cal due to the use of a large quantity of concrete in the
footing and because of the high negative bending moments
between columns.

Figure 16.7 illustrates an alternative to the combined
footing, namely the strap footing (also termed a cantilever
and, by some designers, a pumphandie). Essentially this
type of footing uses spread footings or pads beneath the
columns and a rigid beam connecting the two pads to trans-
mit the unbalanced shear and moment from the statically
unbalanced footing to the second footing.

Two simplifying assumptions are made to obtain this
solution; first, uniform soil pressures are obtained beneath
each footing pad and, secondly, the strap or beam connecting
the two footings is perfectly rigid. Often the connecting
beam is assumed to be weightless—it doesn’t matter if the
footings are assumed weightless since those weights cancel.
The rigid connecting beam is assumed to have no vertical soil
reactions. This can be accomplished by loosening the soil

P, Py
|- :
&
iy X
Strap §1’5+<—_\‘ -

—

W= e | Xy
R, R,
Fig. 16.7 Strap or cantilever footing.

ST
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Referring to Fig. 16.10 for signs (use the left hand rule: with
thumb pointing in direction of arrow, +M direction is indi-
cated by fingers grasping the axis) the following equations
of statics can also be written

P= fqu Mx=fqya'A My=[qdi (16.9)

Substituting Eq. 16.9 into Eq. 16.8 and noting that

A A A
J. c?A=f di:f ydA =0
4] o 0

with respect to the centroid of the footing we obtain

P=cd (a)

My =alyy, +bl, (b)

My =aly, + bl ()

Selving Eq. 16.10a directly the value of the c-coefficient is
e=iPlA

and solving 16.10b and 16.10c¢c simultaneously the @ and &
coefficients are

(16.10)

o~ My - M, nyﬁx)

AT
and

Mx - My Uyyily)
From which Eq. 16.8 becomes

My = My (Ixp(Ix) My = My (Ixy/ly) g

. 0+ o)+

iy ) A
(16.11)

where
Iy = product of inertia and may be (+) or (=)
M., My, = moments defined in Fig. 16.10

x, ¥ = distance from center of area to point where
pressure is desired; may be (+) or (=)

¢ = soil pressure, positive = compression

Il = moments of inertia with respect to the cen-
troidal x and ¥ axes.

Note that a nepgative value of ¢ indicates soil tension and
Eq. 16.11 becomes invalid. For the case of a partially effec-
tive footing area the designer should use a trial procedure.
However, as this will most likely be an isolated case a redesign
so that the footing is totally effective will probably be more
economical than the increased cost of the designer’s time
chargeable to that footing. Strict attention to signs is neces-
sary to arrive at correct answers when using Eq. 16.11.

.MODU LUS OF SUBGRADE REACTION

The modulus of subgrade reaction (also soil “‘spring™ con-
stant, or coefficient of subgrade reaction) is expressed as

ks =qfy

with units of force/length® (FL™*), since ¢, the intensity of

— 9 —
P
[ ! 1 ] 1
= '“"M“*“TTEE#**“*%W
N
{a)

q, k/in® ——==

k= (g/y), kfin®

¥, in

(k)

Fig. 16.11 (a) Line details of plate load test with three plates
stacked, Dial gauges must be independently attached; {b} presenta-
tion of data to evaluate the modulus of subgrade reaction k. Note
sensitivity of kg to curve coordinates.

contact pressure is in FL 2 and the soil deformation, y, is
in units of length.

The modulus of subgrade reaction can be obtained by
performing a plate load test and plotting a curve of g vs. ¥
as shown in Fig. 16.11. It is difficult to load a plate uni-
formly (exactly axial and concentrically); in addition, the

. plate will bend unless it is quite rigid. To avoid the bending

problem, a 30-inch-diameter plate may have stacked on it
24- and leﬁEh_TQates. A 12-inch square or round plate
may be used, but the zone of influence is so shallow (= 25)
that unless test pits are dug the results may not be very in-
dicative of actual soil performance. Plate shape influences
results also, i.e., a square plate will have a different load
settlement curve than a round one.

To extrapolate results of a plate load test to the actual
structure is a real problem. The plate load test for a 30-
inch-diameter plate tested to 10 ksf will require a dead load
apparatus of around 50-60 kips (slight allowance for ineffi-
ciency); therefore, only small plates are practical to field
load test. Empirically, Terzaghi (1955) proposed the fol-
lowing formula for clay soils when the contact pressures are ‘1
less than one-half the ultimate bearing Capacity

ks/kp = B,/B

=

16.12)

where kp, is the plate load value of the subgrade modulus,
using a plate of dimension B k; is the value to use under

the actual footing of width B.

On cohesionless soils it was proposed to use

B+1\? :
=iy (251

The work of Bond (1961) and others indicates that this
equation may not give reliable values of k; for medium
dense to dense sands (say D, > .4). It appears that the use
of this equation for sands may give a value of kg as much as
100 percent too small over the usual range of B of 5 to 10
feet.

To obtain the modulus of subgrade reaction for a rec-

R o
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tangular plate of dimensions B and L = mB_using the sub-
grade modulus of a square plate Terzaghi (1955) proposed
m+ 0.5
kg =kp | ——— 16.14
st @

To attempt to find a value of modulus of subgrade reac-
tion [using laboratory tests} several proposals have been
made. Vesic (1961, 1961a) proposed using the modulus of
elasticity from laboratory{triaxial tests.\ Although Vesi¢ did
not say so, it is obvious the confining cell pressure (o3)
should be representative of the depth of average stress influ-

ence zone (about .58 io B). The modulus of elasticity is

used as
kg = 0.65 (BB 5 16.15)
e a Ebf Il Vz :
where
ksp = kB (FL™?)
B = width of footing
£ = modulus of elasticity of footing
/ = moment of inertia of footing
E; = modulus of elasticity of the soil

v = Poisson’s ratio

Vesi¢ also considered _extrapolating results of a plate load
test to footings of width B as follows:
(a) Solve the equation

Ey

T Blyaly

The shape factor I, = 0.82 (see Bowles, 1968 p. 87) for a
square plate and g/y = k and if B = 1; then

(b) Put this value in Eq. 16.15 with #* = 0 and obtain

12/pp4
52 L k'
Eyl

Other methods to obtain a value of modulus of subgrade
reaction include using[consolidation test datal(Yong, 1960)
as follows: o

kg B (16.16)

S = AgmyH
or
I/ym H = Aq[S = qfy

or

ks = 1myH ((16.17))

Thus, if a consolidation test is performed and the coeffi-
cient of volume compressibility m,, is evaluated, &g can be
computed by using a value of H = 0.58 to B. Tsche-
botarioff (1951) indicated that this is not a very highly rec-
ommended method, especially for silt soils; however, later
work by Recordon (1957) indicates that this method may
in fact provide reasonable values of subgrade modulus.

Another method to find k; is to use CBR test data
(Nascimento and Simoes, 1957; Recordon, 1957; Black,
1961; Barata, 1967). If we assume that the modulus of
elasticity of the soil is approximately

()

a

5 (16.18)

e
i

)

_10_
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then using the equation from mechanics of materials § =
PL{AE = ¢L/[E, the average stress in the influence zone of
depth B, and terms consistent with this chapter in the above
equation, we may assume that the average strain through
the stress zone is

€ = penetration (say 0.05, .1, .2 in.)/B = y/B

The modulus of elasticity of the CBR test can be computed
for any CBR penetration value y-inches. The diameter B of
the CBR piston is 1.95 inches (A = 3.00 in?). The piston
load is recorded at various penetrations and the load can be
converted to the stress in Eq. 16.18 by dividing by the area
of the piston. From Eq. 16.18 it is observed that a/y = kg;
therefore

ke = 2E[B = 2E[1.95 = E

If one uses the stress at 0.1-in penetration

[k = 10 cBR] 6191

Barata (1967) shows that the value of kg computed using
the CBR test (which includes a surcharge, incidentally)
should be corrected for the fact the failure zone probably
interferes with the side of the 6-inch mold. After correc-
tion one may take the equivalent value of kg for a 1-ft plate
as one-half the k; from CBR.
This chapter has presented several methods of obtaining
an indication of the modulus of subgrade reaction:
(1) Plate load tests (Palmer, 1948, describes in some de-
tail field methods).
(2) Extrapolate from triaxial tests.
(3) Extrapolate from consolidation tests.
(4) Extrapolate from CBR tests.
(5) Estimate for cohesive soils using £ from unconfined
compression test divided by B.
Major problems associated with the concept of modulus
of subgrade reaction are:

(a) Soil is not elastic and results are some sensitive to
curve coordinates ¢ and y

(b) Depth and footing size effects

(¢) Footing shape factor

{d) Soil stratification or other changes with depth which
may not show when testing with a small plate

(e} Duplicating in-situ conditions when laboratory test-

ing.

Values of kg which one might expect to get range from
about 50 k/ft3 for loose wet sand to, say 2000 k/ft> for
dense sand. In clays, values might run from 100 kfft3 for
soft clay to 500 kjft;“ for hard clay. Generally, one should
not use a table of values, as each project becomes an indi-
vidual matter depending on soil, location of water, size of
foundation, etc.

The modulus of subgrade reaction would be expected to
increase as a footing is placed at a greater depth in the
ground if the soil modulus can be written as

Ey=Cz

Referring to Fig. 15.4 and taking the average depth of stress
influence as 8 with an approximate average stress intensity
within this zone of g4/2, then

But already it has been shown in Eq. 16.18 that
: Eg = (B[2)k,

Now considering a footing located at a depth D in a soil
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mass for which the modulus of elasticity is proportional to
depth, the average modulus occurring at 8/2 below the base
of the footing is

Ey=C, = C(D+B/2)

where C is a constant of proportionality. Rearranging, we
have

Es=(CB[2)(2D/B + 1)

Equating this value of F; with the previous value of E; =
(B/2) kg and using kg to define the modulus of subgrade
reaction at the depth of D + B/2 the proportionality con-
stant is

C =keq/(2D[B + 1)

At the ground surface D = 0 and kg = kg and C becomes
kgs. Equating C-values:

ksa‘r"(me‘*' 1) = "css
ksa = kss/(1 +2D[B) (16.20)

From this it is seen that the modulus of subgrade reac-
tion increases with depth. [t should be pointed out that
Eq. 16.20 depends heavily on the assumption of stress
penetration into the soil and on the assumption of increase
in modulus of elasticity with depth. It is doubtful that
kgg is much greater than 2k, for any D/B ratios larger than
Q

(\16.9 RIGIDITY OF CONTINUOUS FOOTINGS
ey

The conventional analysis of footings, in general, uses the
concept of a rigid footing. Borowicka’s curves (Fig. 15.12)
show that this sifuation results in a nonuniform soil pres-

sure distribution against the footing base. Actually to have
a uniform soil pressure distribution of g = P/4 requires a
very flexible footing. Now if one accepts the concept of
soil being elastic (modulus of elasticity or coefficient of
subgrade reaction) the settlement of a rigid footing would
be uniform and for a flexible footing the settlement would
be nonuniform—but if this is the case then how can the
contact pressure be uniform (recall ¢ = ky)? In reality, of
course, one has a soil structure interaction problem and
there is monuniform soil pressure and differential settle-
ments within the footing. These concepts are illustrated
for a continuous footing with two column loads (the foot-
ing of Example 16.1) in Fig. 16.12. From these curves one
can see that for 5

AL < 0.8 the member is rigid

0.8 <AL <3 the member is intermediate
3 <AL the member is flexible
where
4
ks B ;
AL =L VT 5(16'21)

L = member length

B, E, I = member (footing) properties (width, modulus of
elasticity, and moment of inertia) in consistent
units

ky = modulus of subgrade reaction units of FL™?

The above values of AL defining a type of flexible member
have also been proposed by Vesi¢ {1961a).

From inspection of the curves of Fig. 16.12 and referring
to the deflection curve we see that a rigid member is char-

G

Moment (10%)

Nz
£
T
y

Rigid

r=— Intermediate
|

Flexible

2
0.8 &)
0 RSy e S N B T
0.1 1.0 100 30.0@
Py P,
0 1 T #

Deflection, in

| ! I | 1
0L 0.1 0.2 0.3 0.4 0.5

- AL=02, 1.0
o= ar=20
Mo=3.0

™= aL=50

| | |
0.7 0.8 09 LOL @

Distance along beam

Fig. 16.12 (a) Bending moment as a function of AL (beam of Example 16-1); (b) deflections vs. AL at 0.1 points along beam of Example 16-1.
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acterized by high bending moments and relatively small,
uniform deflections.

An intermediate member, as the term implies, has inter-
mediate bending and deflection values.

The flexible member has very large bending moments
and deflections in the immediate vicinity of the loads and
small values elsewhere.

One may deduce that the assumption of a rigid footing
results in designing for assumed bending moments which
are larger than the actual bending moments may be. The
resulting design is conservative, generally, but may not be
economical. This is illustrated in Example 16.5, which
reconsiders Example 16.1 as a beam on an elastic medium.

@ THE CONTINUOUS FOOTING AS A BEAM
ON AN ELASTIC FOUNDATION

| The beam on an elastic foundation problem has occupied
the attention of many investigators for some time. There
seems to have emerged two branches of thought, namely, to
treat the soil as a bed of springs (so-called Winkler founda-
tion proposed by E. Winkler, ca. 1867) or as an elastic solid
(Biot, 1937). . oy
- The majority of the solutions have been of rigorous and
semirigorous mathematical solutions: Hetenyi (1946), De
Beer (1948), Levinton (1949), Popov (1951), Gazis (1958),
Ray (1958), Malter (1960), Vesi¢ (1961), Vesi¢ (1961a),
Dodge (1964), lyengar (1965), Reti (1967), and Szava-
Kovats (1967), to cite a few sources. Many of these solu-
tions went directly to the mathematics of the problem and
usually attempted to present results in terms of influence
values tabulated or charted so that the designer could, ina
reasonable length of time, come up with a solution.

Only a few investigators—notably De Beer (1948a) and
Vesié and Johnson (1963)—have obtained experimental
data to establish any validity of the analytical solution. In
general, the experimental results do not appear to be
beyond normal magnitudes of error when dealing with soil.
A few measured values have not been very good; however,
tests run on the surface of sand and/or carried to ultimate
load may yield poor results as compared to normal service
loads which stress the soil from 4 to !/, of the ultimate.
A look at Fig. 16.11 illustrates that beyond y, the subgrade
modulus k; has no significance; therefore, in this range of
testing one should expect to obtain considerable disagree-
ment between experimental and theoretical results.

The major problem with the beam on an elastic founda-
tion is to establish ky, or E; depending on the approach
chosef By the designer. since &g = f(kg) one should expect
similar results from either solution if the correct elastic
value of the soil is used.

The basic solution for the Winkler foundation (preferred
by the author because of simplicity) is as follows (refer 1o

Fig. 1613):
E[ TR k;lr’ (F g 16 13f @
s ————— F: ; )

This is a linear fourth-order differential equation whose
general solution is,

y= M (4 cos Ax + B sin Ax) + e MF(C cos Ax i L
+D sin Ax) ((16.23))

where A is as defined in Eq. 16.21 and is used to account
for the width of the footing (or beam) and as a convenience
to simplify Bq. 16.22.

_12_
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’K. =i
P
(a) = a h

}—b 2’

A B C
(b) Deflection = y —= = ”’JF =

— et S B o

(c) Slope =0 _ e E R T —

S i

{d) Moment = M =

(e) Shear =V _

e i~

(N Load =_:_D_ t l '

q =k By
Fig. 16.13 The beam on an elastic foundation.
Successive differentiations of Eq. 16.23 yield

dy/dx =8 = slope
d?yjdx? = M = bending moment
d3yldx3 = V = shear

These equations contain arbitrary constants of 4, B,C, D
which must be found. For the specific case shown in Fig.
16.13, boundary conditions are

Shear=0atx=0,x=1L

Shear to left of @ + shear to right of 2 = P
Moment =0 atx =0,x =L

M]en :Mn'gm atx = ¢

Orert = 6right atx =a

Yieft = Vight atx =a

The classic solution is the case of Fig. 16.13, where
a = b =90, For this the boundary conditions are:

dy/dx =0 at x = 0 and *oo,
d?y/dx? =0 at x = £oo
d3yldx? =-Pf2atx=0=0atx =too

Solving, one obtains

y= ir ¢ (cos Ax + sin Ax)

2k,
0= % e ™ sin Ax
P“ e ‘ 7{16.24)
M=I):e (cos Ax - sin Ax) =
V=- ge’“ cos Ax

kg = kB in units of FL™2
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The above solution is of limited use since practical prob-
lems involve beams of finite length. To obtain the theoreti-
cal solution is laborious; however, the case of a finite beam
loaded with a concentrated load Pal a distance a from the
left end is given for finding deflection, bending moment,
and shear at a distance x from the left end. In these equa-
tions when x > ¢ measure x from C (refer to Fig. 16.13a).

PA
kg(sinh? AL - sin? AL)

y=

_13_

atithe 0.1 points) and arbitrarily place the column loads as
point loads at the nearest 0.1 points.

Note: To convert to USD moments and shears multiply-
output values by the factor

349 + 430

Factor = 230 4 290 =1.515

{2 cosh Ax cos Ax (sinh AL cos ha cosh Ab

— sin AL cosh A\a cos Ab) + (cosh Ax sin Ax
+ sinh Ax cos Ax)[sinh AL (sin Ag cosh Ab - cos Aa sinh Ab)
+sin AL (sinh Aa cos Ab - cosh Aa sin Ab)] }

P

M= {2 sinh Ax sin Ax (sinh AL cos Aa cosh Ab

2A(sinh? AL = sin? AL)

— sin AL cosh Aa cos Ab) + (cosh Ax sin Ax - sinh Ax cos Ax)
X [sinh AL (sin Aa cosh Ab - cos Ae sinh Ad)

[ (16.25)

+ sin AL (sinh Aa cos Ab - cosh Aa sin Ab)]}

P

¥ =——F——————— {(cosh Ax sin Ax + sinh Ax cos Ax)

sinh? AL - sin? AL

X (sinh AL cos Ag cosh Ab - sin AL cosh Aa cos Ab)
+ sinh Ax sin Ax [sinh AL (sin Aa cosh Ab ~ cos Aa sinh Ab)
+ sin AL (sinh Az cos Ab ~ cosh Ae sin Ab)] }

The above equations can be rewritten as

A
YK X, A

b (16.26)
M=_—B
V =PC

since coefficients 4, B, € correspond only to trigonometric
identities in Eq. 16.25. The only practical solution to a
problem is to program these equations on the computer.
Example 16.1 has been reworked this way with data shown
in Table E5.1 so that the user may prepare and debug his
computer program. Note that Table E5.1 accounts for
shear to left and right of column; deflections are in feet.
The shear and moment values would be multiplied by the
ratio of the sum of the ultimate loads divided by the actual
loads of 520 kips to convert values to M, and V, for
strength design. - Table 16.1 is a partial computer output of
Eq. 16.25 for additional user assistance.

There are two factors (besides what to use for k;) to
consider:

(a) This solution implies that the soil can take tension as
well as compression.

(b) The solution cannot easily adapt to a change in &g,
cavities in the base, or changes in moment of inertia 7
of the beam. Note: kg = kB,

Because of these shortcomings the element method of the
next section is preferred, since all sorts of contingencies
may be accounted for.

EXAMPLE 16.5. Analyze the continuous footing of Ex-
ample 16.1 asa beam on an elastic foundation via Eq. 16.25.
Use superposition, program on the computer for moments
P e

D =140k

=349
L =90k ][” 3%

D =180k

[ = 436
L=110k }b 439k

13" 15"
t D, = 30"

e 90 S RS ]

Fig. E5.1

TABLE 16.1 TYPICAL COMPUTER OUTPUT DATA
FROM PROGRAMMING THE TRIGONOMETRIC
QUANTITIES OF EOS. 16.25. NOTE OUTPUT

IS FOR 1/10 POINTS AND POINTS JUST TO

LEFT AND RIGHT OF LOAD POINT ARE
CONSIDERED. ONLY SUFFICIENT DATA

FOR DEBUGGING A COMPUTER PROGRAM

IS GIVEN.

AL =1.0

Load at 0.0L Load at .5L

Dist Def Mom Shear Dist Def Mem Shear

0.0 4.0378 0.0000 0.0000 0.0 .9814 0.0000 0.0000
0.0 4.0378 0.0000 -1.0000 =1 9896 .0098 .0985
- AN3MA196 =616 S =.6272 .2 9976 .0394 .1979
2 28004 -.2660 -—.3163 .3 1.0048 .0890 .2980
3 2.1883 =.2023  =.0669 4 10102 .1587 .3988
—4 15820 -.2858 1214 5 1.0124 .2486 .4999
"5 9814 -.2477 .2496 5 1.0124 .2486 -.4999
3] .3856 -.1900 3179 B 1.0102 .1587 -.3988
7 -.2062 -.1245 .3268 .7 1.0048 .0890 -.2980
8 -.7957 -.0631 2767 8 9976 .0394 -.1979
9 —1.23839 =.0177 677 9 9896 .0098 -.0985
1.0 -1.9716 0.0000 0.0000 1.0 .9814 0.0000 0.0000
AL = 3.0
Load at .2L Load at .5L
Dist Def Mom  Shear Dist  Def Mom  Shear
0.0 9182 0.0000 0.0000 0.0 .0327 0.0000 0.0000
A 8336 .0801 .2629 A 1623 .0068 .0292
2. 7324 .31 4986 .2 2903 .0428 .0972
2 7324 3100 -.5013 3 4097 1310 .2026
3 5913 .0712 -.3019 4 .5045 .2926 .3407
A 4359 -.0614 -.1479 5 5452 .5442 4999
5 2903 -.1154 -.0394 5 .5452 5442 -.4999
6 1647 —.1168 .0283 6 65045 2926 -.3407
7 0696 —.0883 .0614 7 4097 1310 -.2026
.8 -.0295 -.0488 .0657 8 2903 .0428 -.0972
9 -.1099 -.0145 .0446 9 .1623 .0068 -.0292
1.0 -.1874 0.0000 0.0000 1.0 .0327 0.0000 0.0000
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although each column load factor should be considered
separately if the individual factors differ appreciably from
the average (1.517 and 1.514 in this example for negligible
difference).

The output is shown in Table E5.1. From the table it
can be seen that the maximum moment is about 12 percent
less than the “rigid” design value.

Input Data:

Py =230 kips; P, = 290 kips;
kB =152(7.848) = 1192.96 ksf = kj
D, =30in.; E. = 3000 ksi;

=Br3/lz =10.219 ft%; AL = 2.48.

TABLE E5.1 THE TOTAL DEFLECTION, MOMENT
AND SHEAR AT THE 0.1 POINTS

Distance, ft Deflection, ft Moment, ft-ic Shear, kips
0.0 0.0403 0.0 0.0
0.0 0.0403 0.0 -348.4495
1.9000 0.0313 —540.4719 -225.6334
3.8000 0.0235 -875.9280 -131.9437
5.7000 0.0177 —1056.7764 -61.7413
7.6000 0.0144 -1120.5657 -7.3309
9.5000 0.0136 —1089.1458 —39.9574
11.4000 0.0153 -967.6533 88.9210
13.3000 0.0193 -744.9695 147.7496
15.2000 0.0249 —-395.5894 223.2625
17.1000 0.0315 116.9417 320.0002
17.1000 0.0315 116.9418 -119.3491
19.0000 0.0380 —-0.0002 0.0001

SOLUTION OF A BEAM ON AN ELASTIC

FOUNDATION USING FINITE DIFFERENCES

The preceding section considered the rigorous solution of a
beam on an elastic foundation. This section will consider in
some detail a solution as proposed by Malter (1960) using
finite differences. This method requires the solution of 10
or more simultaneous equations, thus necessitating the use
of a computer. The solution can be adapted to continuous
footings with any number of column loads which may in-
clude both axial loads as well as moments.

Referring to Fig. 16.14, the average slope of the elastic
curve at station 3 is

CEle

'i-—:?l Ax=h

oot Tty ihihihi ?

3 4 5

R, = Ry T R = s 1o Ru
Cyk By, Cak By,

- —:'_\,x—hf—
,'-”1L___ Ya ¥a l‘J b“___b‘g——i\——_h, L P Lo JJ It

Yo ———

Fig. 16.14 Mathematical model for the finite difference solution
for a beam on an elastic foundation. (a) Assumed loading (Winkler
foundation); (b) equivalent loading; (c) deflection.

_14_
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The above expression is termed a finite difference expres-
sion as Ay, Ax will assume finite values as indicated as op-
posed to dyfdx, which approaches a limit as dx = 0.

Now, taking forward and back differences at stations 4
and 3, we obtain

Yai=M8 and Y3 Va2
h h

Since the second derivative is

d?y i dyiy = A(Ay[Ax)

dx? \dx/ Ax
We obtain by substitution

Ay/Ax) 8% 1fya-ys (s- yg))
Ax Ax?  h h h

which simplifies to the following equation for the second
derivative at station 3:

A2y _Ya—2y3tys

Ax? h?
In general the second derivative is

i A’y ~ Indis 2Yn t¥n-1
Y= Ax? (Ax?)

Equation 16.27 is the central difference expression for the

second derivative. By differentiating Eq. 16.27 one ob-

tains the central difference expression for the third deriva-
2¥n+1 T2V

tive as
2(Ax)?

These two expressions are sufficient to solve the beam on
an elastic foundation problem by finite differences. There
are many other forms of difference expressions, e.g., first
central differences, second central differences, first forward,
second forward, first backward, and second backward (see
Bowles, 1968, p. 248).

From mechanics of materials one can write

: Ely'" = M (moment)

e :y"“‘ﬁ >

ETy"" = V (shear)
and using finite differences and & for Ax (Fig. 16.15):
EI
h2 On+1 = 2Vn T ¥n-1) =M,
EI
e One2 = 2Vne1 + 2001 - J"n-z}:_yn

{ From the concept of the Winkler foundation consisting of a

, series of springs one can replace the foundation with a

" series of concentrated springs on the base of the footing as
shown in Fig. 16.14b, It is recommended to use 10 divi-
sions of Ax =k for the beam elements. Fewer than 10 may
not give good results; more divisions increases work with
insignificant increase in precision. For computational sim-
plicity make h = constant.

One may use any type of pressure distribution of soil to
footing; however, the author recommends a stepped pres-
sure distribution (see Fig. 16.15). Using the stepped pres-
sure distribution the reactions against the beam of Fig.
16.14b become

R, = 3 ksBhy,
R, to Ry = ksBhy;
Ry = % ksBhy 11

SNU Geotechnical and Geoenvironmental Engineering Lab.



Week #7

522 Foundation Engineering Handbook
LS i e 3 R N s e
||* i } t f t 1
1

Le) q‘L.....‘ 4z qu e Vi g, =k By,
bl ot i o]

1 RT RL ;\Iz T

fa)

Ry =h{24(7g, +6g; —¢3)
Ry =R, ,=h{l2(g,_, +10q, *q,, )
R, =hl24(7q, +6q,_, —a,_;)

(b)

e

Ry =h{6(2q, +q,)
R es h-".ﬁ(qu—W t4q, td, . ]
R, = H6Qq, + 4, )

(c)
Fig. 16.15 Various assumed soil pressure distributions and corre-
sponding equations to compute the eguivalent soil reactions on
beam for finite difference solution for beam on an elastic foundation.
{a) Stepped pressure distribution; {b) parabolic pressure distribution;
{c) linear pressure distribution.

The bending moment at station 2 is
SN Aste O e

Er
hﬁ(}’l =2y, ty3)}=Rh-Pi(h-x)
Let
El
i

Arranging for a computer solution, we have
[ Cri-2Cp;+Cys -3 kgBhy, =P, (h - x)
( y1(C~ 3 ksBR) = 2Cyy + Cyz ==Py(h - x)
and at station 3
[ COa2 - 2p3 +ya) =R (2h) + Rph — Py (2h - x)
L

In like manner one proceeds through each station including
» 10, yielding 9 equations. Next one may sum moments at
either end; thus at right end

{ | Ry (10A) +R,(9h) + Ry (Bh)+ Ra(Th)y + R (6h) + R ((5h)
| +R;(4h) + Rg(Bh) + Ro(2Rh) + Roh

v =iy (10}1 x) - Py(2hsx;)=0
¢ Summing forces in the vertical direction gives

=11
R;=Py-P, =0
‘.‘Il

_15_

\/\‘ We have now obtained 11 equations in 11 unknovgn values

_{Q___y_r The mome

Tid shear at each station is obtained by
back substitution of the beam deflections (¥'s) into Egs.
16.27 and 16.28 at each station.

EXAMPLE 16.6) Beam on an elastic foundation by finite
difference: Resolve Example 16.1 and compare results.

Solution: Actual loads will be used and the results com-
pared by dividing the output of Example 16.1 by the ratio
of ZUJZP =(349 +439)/520=1.515.

Note: Actual B-dimension used for comparison pur-
poses. Take

E, =3000.0 ksi
1=17.848(2.5)3/12 =10.219
h=19/10=1.90 ft
C=EIfn? = 1222883.1 :

ke =152 k/ft3

kB =1192.96 k/ft?

‘Assume stepped pressure distribution (Fig. 16.15a).
Set up coefficient matrix:
First equation: ZM, =0

Cy - 292 +¥1) + X keBhy (W) - Py(h - .542) =0
1222883y, - 2445766y, + 12228833 +2153y; =312
1225036y, - 2445766y, + 1222883y, =312 (1)

Second equation: TM; =0

C(yy = 293 +¥a) + 5 ksBhy (2h) + keBhyoh
=P (2h- 542)=0
C(yg = 2y3 +y4)+4307y, +4307y, - 750=0
4307y, + 1227190y, - 244576613 + 122883y, =750
)

In similar mariner the remaining seven equations are written.
Next, sum moments about either end and set them equal to
zero. Example uses left end for Eq. 11. For Eg. 10
TF,=0 gives Z'R;- ZP =0 or

1133y, + 2267y, + 2267y, ++ -+ 226710
+1133y,; =520 (10)

The recommended précedure is to have the coefficient
matrix generated on the computer and back substitution
for final output as shown, (Flg E6.1).) Note there are minor
differences in y- coeff1c1ents by hand and computer, but
they do not affect final output. Output data is plotted in
Fig. E6.2 and compared to earlier solutions of same
“problem.

16.72 ROUND OR RING FOUNDATIONS

Circular foundations are used for several type structures
such as storage tanks, silos, chimneys, and ring type founda-
tions for towers and water tank type structures.

A circular slab on an elastic media is the usual form of
solution to evaluate bending and shear at various points
within the slab and would be applicable for uniform loads
over relative thin plates. This situation is described by the
following fourth-order differential equation:

& 1@\ [f@w  1aw\ _a-kw

dr®>  vdr)\dr* v ar D
where D =E¢3 [12(1 - #2); w is the plate deflection, and ¢
is the uniform load on the plate. Timoshenko (1959) solves

(16.29)
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