
Overview of Optimization

An Example of Code Optimization
Overview of Optimization Concepts

An Example of Code Optimization

--------------- Source C Code ------------------
int a[25][25];
main()
{

int i;
for (i=0; i<25; i++)

a[i][0] = 0;
}

------------- Optimized Assembly Code ----------------

ADDIL LR’a-$global$,%r27 ;offset 0x0
LD0 RR’a-$global$(%r1),%r31 ;offset 0x4
LDI -25,%r23 ;offset 0x8

$00000003
ADDIB,< 1,%r23,$00000003 ;offset 0xc
STWM %r0,100(%r31) ;offset 0x10

Un-optimized Code
STW 0,-40(30) register notations
LDW -40(30),206 30: stack pointer
LDI 25,212 27: pointer to global data
IFNOT 206 < 212 GOTO $00000002 area
NOP

$00000003
LDW -40(30),206
ADDILG LR’a-$global$,27,213
LDO RR’a-$global$(213),208 int a[25][25];
MULTI 100,206,214 main()
ADD 208,214,215 {
STWS 0,0(215) int i;
LDW -40(30),206 for (i=0; i<25; i++)
LDO 1(206),216 a[i][0] = 0;
STW 216,-40(30) }
LDW -40(30),206
LDI 25,212
IF 206 < 212 GOTO $00000003
NOP

$00000002

Representation: a Basic Block

Basic Block = A Consecutive Sequence of Instructions (Statements)
A sequence of consecutive instructions in which flow of control
enters at the beginning and leaves at the end without halt or
possibility of branching except at the end
A Basic Block Header: Target instruction of a branch or a control
join point

Optimizations within a basic block are local optimizations.

How to build basic blocks?
First build a control flow graph of instructions, then identify basic
block headers
Many optimizations work on a control flow graph of basic blocks

Building Basic Blocks for the Example
Code

Local Optimizations

Analysis and transformation performed within a basic block
No control flow information is considered

Examples of local optimization
― Load to copy optimization: when a store followed by a load

― store x @z; y=load @z -> store x @z; y=x

― Local common sub-expression elimination (CSE):
Analysis: some expression evaluated more than once in BB
Transformation: replace with single calculation (delete later
ones if they have the same target register)
x=y+z; … w=y+z -> x=y+z; … w=x;

x=y+z; .. x=y+z -> x=y+z; …

Local Optimizations

Examples of local optimization (continued)
― Local constant folding or elimination

Analysis: expressions can be evaluated at compile-time
Transformation: replace by constant, compile-time value
if (4>3) -> if (true)

― Dead code elimination
― When none uses the target of an instruction, it is dead code
― x=y+1; ….

― Copy propagation or constant propagation
― x=y;… z=x+100 -> x=y;… z=y+100

One Thing to Note

Some of these optimizations do not seem to arise in
practice if you “program very well”, such as common
subexpression elimination (CSE), dead code elimination,
and copy propagation, constant propagation, constant
folding, etc.

CSE: x=y+z; … w=y+z -> x=y+z; …w=x;
Copy propagation: x=y;… z=x+100 -> x=y;… z=y+100
Constant folding: if (4>3) -> if (true)

The reality is that although you may be able to avoid explicit
ones while you do your programming, the compiler still
generate those opportunities

E.g., address computations
In our example, the same memory loads and computations are
executed repeatedly

After Local Optimizations
STW 0,-40(30)
LDWCOPY 0,206 :: <== LDW -40(30),206
LDI 25,212 load-copy opt.

$00000003
LDW -40(30),206
ADDILG LR’a-$global$,27,213
LD0 RR’a-$global$(213),208
MULTI 100,206,214
ADD 208,214,215
STWS 0,0(215) :: Deleted LDW -40(30),206
LD0 1(206),216 CSE opt.
STW 216,-40(30)
LDWCOPY 216,206 :: <== LDW -40(30),206
LDI 25,212 load-copy opt.
IF 206 < 212 GOTO $00000003
NOP

$00000002

Extended Basic Block

A chain of sequential basic blocks that has no incoming branches
yet can have outgoing branches

Can we apply same optimizations on extended basic blocks? Yes

Global Common Subexpression
Elimination (CSE)
Redundant Definition Elimination

Value numbering:
Hints for applying CSE: our code generator is expected to
assign the same target pseudo register for the same right-
hand-sides (RHS):

redundant expressions will always have same target register

Compute available expressions across all paths
an expression x+y is available at a point p if every path to
p evaluates x+y and after last evaluation prior to reaching
p, there are no subsequent assignment to x or y

Delete redundant expressions at p

After Global CSE Optimization

STW 0,-40(30) ; @i
LDWCOPY 0,206 ; @i
LDI 25,212

$00000003 :: what are available expressions here?
ADDILG LR’a-$global$,27,213 :: deleted LDW -40(30),206
LDO RR’a-$global$(213),208
MULTI 100,206,214
ADD 208,214,215
STWS 0,0(215) ; @a[i][0]
LDO 1(206),216
STW 216,-40(30) ; @i
LDWCOPY 216,206 ; @i
IF 206 < 212 GOTO $00000003 :: deleted LDI 25,212
NOP

Definition, Use, and Live range

Notation for accesses to locations
Definition means writing, Use means reading

E.g., there is one definition and two uses in x = y + z
Live range: a set of definitions and uses

Which access the same location (register or memory)
For each use in the set, all definitions that might reach it
should also be in the set
For each definition, all of its uses should also be in the set

x = load x = x+1

y= x/2
There are two kinds of live ranges:

Register live range (web): register allocation unit
Memory live range: access the same memory location

Promotion of Memory Operations

Promote memory operation into register operations
E.g., for (i=0; i<100; i++){} : where would i be located?

First build a memory live range, which is
a set of stores and loads accessing the same memory location

A live range of memory can be promoted to register
operations if certain conditions are met

Should be a singleton variable (no array, pointer, struct, etc)
Action: stores are promoted into copies and loads are deleted
The front-end provides some information on which loads and
stores access the same location, or you can find it by yourself by
analyzing the assembly code at this phase

By analyzing address derivations for memory instructions
STW 0,-40(30):

Address derivation: -40 + SP (r30)

Example

After Register Promotion
There are two Memory Live Ranges

STW 0,-40(30) ; @i STW 216,-40(30) ;@i
LDWCOPY 0,206 ; @i LDWCOPY 216,206 ;@i

After Optimization
Copy 0,206
LDI 25,212
NOP

$00000003
ADDILG LR’a-$global$,27,213
LDO RR’a-$global$(213),208
MULTI 100,206,214
ADD 208,214,215
STWS 0,0(215)

$00000001
LDO 1(206),216
COPY 216,206
IF 206 < 212 GOTO $00000003
NOP

Loop Transformation

Traditional loop optimizations
Loop invariant code motion (LICM)
Strength reduction
Induction variable elimination

After Loop Optimization
COPY 0,206
LDI 25,212
ADDILG LR’a-$global$,27,213 :: ← loop invariant code
LDO RR’a-$global$(213),208 :: ← motion into loop header
LDI 0,218 :: ← newly inserted
LDI 2500,219 :: ← at the loop header

$00000003
COPY 218,214 :: ← MULTI 100,206,214
ADD 208,214,215
STWS 0,0(215)

LDO 100(218),220 :: ← LDO 1(206),216

COPY 220,218 :: ← COPY 216, 206
IF 218 < 219 GOTO $00000003 :: ← IF 206 < 212 GOTO $00000003

Building Register Live Ranges (Webs)

Live range of register definition and uses
Unit for register allocation
Helps for dead code elimination

After Building Register Live Ranges

Two Dead Instructions
COPY 0,206
LDI 25,212

After Optimization (each register number is replaced by web number)
ADDILG LR’a-$global$,27,66
LDO RR’a-$global$(66),65
LDI 0,69
LDI 2500,71

$00000003
COPY 69,67
ADD 65,67,68
STWS 0,0(68)
LDO 100(69),70
COPY 70,69
IF 71 < 69 GOTO $00000003

Instruction Scheduling

Assume that the machine has two ALUs and can issue two
instructions per clock cycle

We group independent instructions together

ADDILG LR’a-$global$,27,66
LDO RR’a-$global$(66),65
LDI 0,69
LDI 2500, 71

$00000003
COPY 69,67
LDO 100(69),70 :: ← code motion
ADD 65,67,68
COPY 70,69 :: ← code motion
STWS 0,0(68)
IF 71 < 69 GOTO $00000003

Register Allocation

Allocate registers to live ranges (webs)
Two live ranges cannot be allocated to the same
register if they interfere (e.g., x and y below)
x = RHS1; y = RHS2; z = x*10; .. = y/31

Graph coloring register allocation
Interference graph

Nodes: live ranges, Edges: interference relationship
Color the graph with the given number of registers
NP-complete, so we use heuristics

If we do not have enough registers to keep all
webs allocated, we need to spill some to memory

Add store right after defs , add load right before uses

Copy Elimination

Two approaches
Copy propagation: make copy dead

x=y; z=y+1 => x=y; z=x+1

Copy coalescing: if the target live range and the
source live range of a copy instruction does not
interface, those live ranges are merged together
and are allocated the same register; the copy is
deleted since it has the form of “copy r1 r1”

Negative impact on the interference graph:
Merged nodes are hard to color due to more edges

After Register Allocation
“COPY 69,67” is propagated and deleted
“COPY 70,69” is coalesced as “COPY 69 69”
Result after Copy Elimination (for non-scheduled version)

ADDILG LR’a-$global$,27,66
LDO RR’a-$global$(66),65
LDI 0,69
LDI 2500,71

$00000003
ADD 65,69,68
STWS 0,0(68)
LDO 100(69),69
IF 71 < 69 GOTO $00000003

For scheduled version, coalescing is not possible

Wrap-up

We skimmed thru some basic optimization
techniques or optimization processes
We will learn each optimization technique in
detail throughout the semester
Optimizations are possible after analyzing the
code completely, though
We will learn basic analysis techniques first

	Overview of Optimization
	An Example of Code Optimization
	Un-optimized Code
	슬라이드 번호 4
	Representation: a Basic Block
	Building Basic Blocks for the Example Code
	Local Optimizations
	Local Optimizations
	One Thing to Note
	After Local Optimizations
	Extended Basic Block
	Global Common Subexpression Elimination (CSE)
	After Global CSE Optimization
	Definition, Use, and Live range
	Promotion of Memory Operations
	Example
	After Register Promotion
	Loop Transformation
	After Loop Optimization
	Building Register Live Ranges (Webs)
	After Building Register Live Ranges
	Instruction Scheduling
	Register Allocation
	Copy Elimination
	After Register Allocation
	Wrap-up

