
Foundations of Data Flow Analysis

Meet operator
Transfer functions
Correctness, Precision, Convergence, Efficiency
Summary homework: Chapter 8.2



Questions on Data Flow Analysis

Correctness
Equations will be satisfied when the program 
terminates. Is this the solution that we want?

Precision: how good is the answer?
Is the answer ONLY a union of all possible execution 
paths?

Convergence: will the answer terminate?
Or, will there always be some nodes that change?

Speed: how fast is the convergence?
how many times will we visit each node?



A Unified Dataflow Framework

Data flow problems are defined by
Domain of values: V (e.g., set of definitions in reaching 
definition analysis, set of variables in liveness analysis, 
set of expressions in global CSE)

V = {x|x⊆{d₁,d₂,d₃}} where d₁,d₂,d₃are definitions 

Meet operator (V x V → V), initial value
A set of transfer functions F: V → V

Usefulness of this unified framework
We can answer above four questions for a family of 
problems which have the same properties for their  meet 
operators and transfer functions



I. Meet Operator
We expect the meet operator to satisfy the 
following properties:

commutative: x∧y = y∧x
idempotent: x∧x = x
associative: x∧(y∧z) = (x∧y)∧z
There is a Top element T such that x∧T = x



I. Meet Operator
meet operators that satisfy those properties 
define a partial ordering on values, with ≤

Let us define x≤y if and only if x∧y = x
Then, ≤ is a partial ordering. Why?

Transitive: if x≤y and y≤z than x≤z
x∧y=x, y∧z=y;  x∧z = x∧y∧z = x∧(y∧z) = x∧y = x

Anti-symmetric: if x≤y and y≤x then x = y
x∧y = x, y∧x = y, x∧y = y∧x (commutative); x=y

Reflexive: x≤x
x∧x = x (idempotent)



Review of Partial Ordering (Discrete Math)

Binary Relation: a set of order pairs
E.g., ≤ defines a binary relation on integers 
R={(1,1), (1,2), (1,3)…, (2,2), (2,3),…..}

Partial ordering: a binary relation R that is 
reflexive, anti-symmetric, and transitive

Reflexive: (x,x) ∈ R
Transitive: if (x,y)∈R, (y,z)∈R => (x,z)∈R 
Anti-symmetric: if (x,y)∈R, (y,x)∈R => x=y
e.g., the set of integers is partially ordered 
with ≤ relation



Partial Ordering Example

Let domain of values V = {x|x⊆{d₁,d₂,d₃}}
Let ∧ = ∩

How partial ordering with ≤ is defined?

Top and Bottom elements
Top T such that x∧T = x is {d₁,d₂,d₃}
Bottom ⊥ such that x ∧⊥ = ⊥ is { }



Partial Ordering Example

Let domain of values V = {x|x⊆{d₁,d₂,d₃}}
Let ∧ = ∪

How partial ordering with ≤ is defined?

Top and Bottom elements
Top T such that x∧T = x is { }
Bottom ⊥ such that x ∧⊥ = ⊥ is {d₁,d₂,d₃}



Semi-Lattice

Values and meet operator in a data flow problem defines 
a semi-lattice (i.e., there exists T, but not necessarily ⊥)

If x, y are ordered: x ≤ y ⇒ x∧y = x
What if x and y are not ordered? w≤x, w≤y ⇒ w≤x∧y

Why? w∧x=w, w∧y=w, then w∧(x∧y) = (w∧x)∧y = 
w∧y = w, so w≤x∧y
This means that w cannot be greater than x∧y



Review of Lattice

Lattice: Characterizing various computation 
models (e.g., Boolean Algebra)

A partially ordered set in which every pair of 
elements has a unique greatest lower bound 
(glb) and a unique least upper bound (lub)
Each finite lattice has both a least (⊥) and a 
greatest (T) element such that for each 
element a, a≤T and ⊥≤a
Due to the uniqueness of lub and glb, binary 
operations ∨ and ∧ (meet) are defined such 
that a∨b = lub(a,b) and a∧b = glb(a,b)



Representation of Each Variable

When∧ = ∩ , we can represent a variable by
1 means it exists, 0 means it does not exist



Descending Chain

The height of a lattice
Def: the largest number of ≥ relations that will fit in a 
descending chain:
x₀ > x₁> ...
E.g., height of a lattice in reaching definitions: 
Number of definitions (# of 1 bit transitions)

Important property: finite descending chain
Useful for proving convergence
For finite lattice, there is finite descending chain, obviously
Can infinite lattice have a finite descending chain?



An example: constant propagation and folding
Domain of values: undef, .. -2, -1, 0, 1, 2, .., not-a-constant
What is the meet operator and the lattice for this problem?

Finite descending chain of length 2

Finite descending chain is important for convergence 
Its height can be the upper bound of the running time
One more property needed: monotone framework



II. Transfer Functions

Basic Property f: V → V
Has an identity function

There exists an f such that f(x) = x for all x

Closed under composition
if f1, f2∈ F, f1ㆍf2 ∈ F

Some useful properties of ∧
x∧y ≤ x
If x ≤ y, then w ∧ x ≤ w ∧ y



Monotonicity

A framework (F, V, ∧) is monotone iff
x≤y implies f(x) ≤ f(y)
i.e. a “smaller or equal” input to the same function will 
always give a “smaller or equal” output

Equivalently, a framework (F, V, ∧) is monotone iff
f(x∧y) ≤ f(x)∧f(y) Why equivalent? 
(1) x∧y ≤ x, so f(x∧y)≤f(x) (2) x∧y ≤ y, so f(x∧y)≤f(y). 
Now f(x∧y) ≤ f(x)∧f(y) 
This means (1) merge input then apply f is smaller than 
or equal to (2) apply f individually then merge

How do our iterative algorithms work? Like (1) or like (2) ?



Example

The case of reaching definition analysis
f(x) = Gen ∩ (x-Kill), ∧ = ∪
Def. 1: x1≤ x2: Gen∪(x1 - Kill) ≤ Gen ∪( x2 - Kill) 
Def. 2: (Gen ∪((x1∪ x2) - Kill)) ≤ 

(Gen∪(x1 - Kill) ∪ Gen ∪( x2- Kill)) 
Actually, it is = (identical) for reaching definitions

Reaching definitions are monotone



Meaning of Monotone Framework

Monotone framework does not mean that f(x)≤x
e.g., reaching definitions; suppose fb : Gen = {d1} 
Kill = {d2}, then if x = {d2} f(x) = {d1} 

Then, what does the monotonicity really mean?
It is related to convergence



Convergence of iterative solutions

If input(second iteration) ≤ input(first iteration)
result(second iteration) ≤ result(first iteration)

If x ≤ y, then w ∧ x ≤ w ∧ y

If input are going down, the output is going down
This property and the finite-descending chain give 
you the convergence of iterative solution



Distributive Framework

A framework (F, V, ∧) is distributive iff
f(x∧y) = f(x)∧f(y)
i.e. merge input then apply f is equal to apply the 
transfer function individually then merge result
e.g. reaching definitions, live variables
What we do in iterative approaches is somewhat 
like f(x∧y), while the ideal solution is somewhat 
like f(x)∧f(y)
f(x∧y) ≤ f(x)∧f(y) means that f(x∧y) gives you 
less precise information

An example problem that is not distributive: 
Constant propagation



Non-distributive: Constant Propagation

Out[A] = {x = 2, y = 3}, Out[B] = { x = 3, y = 2 }
f(Out[A]) = {z = 5, x = 2, y = 3}, f(Out[B]) = {z = 5, x = 3, 
y = 2}
f(Out[A])∧f(Out[B]) = {z = 5, x = NAC, y = NAC}
f(Out[A]∧Out[B]) = {z = NAC, x = NAC, y = NAC}



III. Data Flow Analysis
Definition

Let f1, ..., fm : ∈, fi is the transfer function for node i
fp = fnkㆍfnk-1 ㆍfn1, p is a path through nodes n1, .., nk

fp = identity function, if p is an empty path

Ideal data flow answer
For each node n:
∧fpi(init), for all possibly “executed” paths pi, reaching n

Unfortunately, determining all possibly executed paths is 
undecidable



Meet-Over-Paths (MOP)

Takes an error in conservative direction (e.g., 
reaching def: consider more (all possible) paths)
Meet-Over-Paths (MOP)

For each node n:
MOP(n) = ∧fpi(init), for all paths pi, reaching n
A path exists as long there is an edge in the code
Consider more paths than necessary
MOP = Perfect-Solution ∧ Solution-to-Unexecuted-Paths
MOP ≤ Perfect-Solution
Potentially more constrained, so solution is small and safe

Desirable solution: as close to MOP as possible



Solving Data Flow Equations

What we did for iterative solution:
We just solved those equations, not for all execution paths
Any solution satisfying equations: Fixed Point (FP) Solution

Iterative algorithms - the case of reaching definitions
Initialize out[b] to {}
If converges, it computes Maximum Fixed Point (MFP) 
solution: MFP is the largest of all solutions to equations
How iterative algorithms give you the MFP?
Initialize T (init). Move down only when we see a definition

Properties:
FP ≤ MFP ≤ MOP ≤ Perfect-Solution
Which has been proved



Correctness and Precision

If data flow framework is monotone, then if the 
algorithm converges, IN[b] ≤ MOP[b]

If data flow framework is distributive, then if the 
algorithm converges, IN[b] = MOP[b]

Why? meet-early (iterative) = meet-late (MOP)
True for reaching definitions and live variables

If monotone but not distributive
MFP ≠ MOP
True for constant propagation



Properties to Guarantee Convergence

Monotone data flow framework converges if there is 
a finite descending chain

For each variable IN[b] and OUT[b], consider the 
sequence of values set to each variable across iterations
If sequence for IN[b] is monotonically decreasing, 
sequence for OUT[b] is monotonically decreasing. (OUT[b] 
is initialized to T)
If sequence for OUT[b] is monotonically decreasing, 
sequence for IN[b] is monotonically decreasing.



Speed of Convergence

Convergence depends on the order of node visits

Use reverse post-order for of forward problems
Roughly corresponds to topologically sorted order in acyclic graph

Reverse “direction” for backward problems



Computing Reverse Post-order

Step 1: compute depth-first post-order
main () {

count = 1;
Visit(root);

}
Visit (n) {

for each successor s that has not been visited
Visit (s);

PostOrder(n) = count;
count++;

}

Step 2: reverse the post-order
For each node i;

rPostOrder = NumNodes – PostOrder(i)



rPost-order Forward Iterative Algorithm

Input: Control Flow Graph CFG = (N, E, Entry, Exit)

/* Initialize */
OUT[Entry]  = { }
for all nodes i

OUT[i] = { }
Changes = TRUE

/* Iterate   */
While ((Changes) {

Change = FALSE
For each node i in rPostOrder { 

IN[i] = U (OUT[p]), for all predescessors p of i
oldout = OUT[i]
OUT[i] = f_i(IN[i]) /* OUT[i] = GEN[i] U (IN[i] – KILL[i]) */
if (oldout != OUT[i]) {

Change = TRUE
}

}
/* Visit each node the same number of times */



Speed of Convergence

If cycles do not add information
Information can flow in one pass down a series of 
nodes of increasing rPostorder order number
Passes determined by the number of back edges 
in the path which is, essentially, the nesting depth 
of the graph

What is the depth ?
Corresponds the depth of intervals for “reducible” 
graphs (loops)
In real programs: average 2.75



Check List for Data Flow Problems

Semi-Lattice
Set of values, meet operator, top & bottom, finite 
descending chain

Transfer Function
function of each basic block, monotone, distributive

Algorithm
initialization step (entry/exit)
visit order: rPostOrder
depth of the graph
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