
Foundations of Data Flow Analysis

Meet operator
Transfer functions
Correctness, Precision, Convergence, Efficiency
Summary homework: Chapter 8.2

Questions on Data Flow Analysis

Correctness
Equations will be satisfied when the program
terminates. Is this the solution that we want?

Precision: how good is the answer?
Is the answer ONLY a union of all possible execution
paths?

Convergence: will the answer terminate?
Or, will there always be some nodes that change?

Speed: how fast is the convergence?
how many times will we visit each node?

A Unified Dataflow Framework

Data flow problems are defined by
Domain of values: V (e.g., set of definitions in reaching
definition analysis, set of variables in liveness analysis,
set of expressions in global CSE)

V = {x|x⊆{d₁,d₂,d₃}} where d₁,d₂,d₃are definitions

Meet operator (V x V → V), initial value
A set of transfer functions F: V → V

Usefulness of this unified framework
We can answer above four questions for a family of
problems which have the same properties for their meet
operators and transfer functions

I. Meet Operator
We expect the meet operator to satisfy the
following properties:

commutative: x∧y = y∧x
idempotent: x∧x = x
associative: x∧(y∧z) = (x∧y)∧z
There is a Top element T such that x∧T = x

I. Meet Operator
meet operators that satisfy those properties
define a partial ordering on values, with ≤

Let us define x≤y if and only if x∧y = x
Then, ≤ is a partial ordering. Why?

Transitive: if x≤y and y≤z than x≤z
x∧y=x, y∧z=y; x∧z = x∧y∧z = x∧(y∧z) = x∧y = x

Anti-symmetric: if x≤y and y≤x then x = y
x∧y = x, y∧x = y, x∧y = y∧x (commutative); x=y

Reflexive: x≤x
x∧x = x (idempotent)

Review of Partial Ordering (Discrete Math)

Binary Relation: a set of order pairs
E.g., ≤ defines a binary relation on integers
R={(1,1), (1,2), (1,3)…, (2,2), (2,3),…..}

Partial ordering: a binary relation R that is
reflexive, anti-symmetric, and transitive

Reflexive: (x,x) ∈ R
Transitive: if (x,y)∈R, (y,z)∈R => (x,z)∈R
Anti-symmetric: if (x,y)∈R, (y,x)∈R => x=y
e.g., the set of integers is partially ordered
with ≤ relation

Partial Ordering Example

Let domain of values V = {x|x⊆{d₁,d₂,d₃}}
Let ∧ = ∩

How partial ordering with ≤ is defined?

Top and Bottom elements
Top T such that x∧T = x is {d₁,d₂,d₃}
Bottom ⊥ such that x ∧⊥ = ⊥ is { }

Partial Ordering Example

Let domain of values V = {x|x⊆{d₁,d₂,d₃}}
Let ∧ = ∪

How partial ordering with ≤ is defined?

Top and Bottom elements
Top T such that x∧T = x is { }
Bottom ⊥ such that x ∧⊥ = ⊥ is {d₁,d₂,d₃}

Semi-Lattice

Values and meet operator in a data flow problem defines
a semi-lattice (i.e., there exists T, but not necessarily ⊥)

If x, y are ordered: x ≤ y ⇒ x∧y = x
What if x and y are not ordered? w≤x, w≤y ⇒ w≤x∧y

Why? w∧x=w, w∧y=w, then w∧(x∧y) = (w∧x)∧y =
w∧y = w, so w≤x∧y
This means that w cannot be greater than x∧y

Review of Lattice

Lattice: Characterizing various computation
models (e.g., Boolean Algebra)

A partially ordered set in which every pair of
elements has a unique greatest lower bound
(glb) and a unique least upper bound (lub)
Each finite lattice has both a least (⊥) and a
greatest (T) element such that for each
element a, a≤T and ⊥≤a
Due to the uniqueness of lub and glb, binary
operations ∨ and ∧ (meet) are defined such
that a∨b = lub(a,b) and a∧b = glb(a,b)

Representation of Each Variable

When∧ = ∩ , we can represent a variable by
1 means it exists, 0 means it does not exist

Descending Chain

The height of a lattice
Def: the largest number of ≥ relations that will fit in a
descending chain:
x₀ > x₁> ...
E.g., height of a lattice in reaching definitions:
Number of definitions (# of 1 bit transitions)

Important property: finite descending chain
Useful for proving convergence
For finite lattice, there is finite descending chain, obviously
Can infinite lattice have a finite descending chain?

An example: constant propagation and folding
Domain of values: undef, .. -2, -1, 0, 1, 2, .., not-a-constant
What is the meet operator and the lattice for this problem?

Finite descending chain of length 2

Finite descending chain is important for convergence
Its height can be the upper bound of the running time
One more property needed: monotone framework

II. Transfer Functions

Basic Property f: V → V
Has an identity function

There exists an f such that f(x) = x for all x

Closed under composition
if f1, f2∈ F, f1ㆍf2 ∈ F

Some useful properties of ∧
x∧y ≤ x
If x ≤ y, then w ∧ x ≤ w ∧ y

Monotonicity

A framework (F, V, ∧) is monotone iff
x≤y implies f(x) ≤ f(y)
i.e. a “smaller or equal” input to the same function will
always give a “smaller or equal” output

Equivalently, a framework (F, V, ∧) is monotone iff
f(x∧y) ≤ f(x)∧f(y) Why equivalent?
(1) x∧y ≤ x, so f(x∧y)≤f(x) (2) x∧y ≤ y, so f(x∧y)≤f(y).
Now f(x∧y) ≤ f(x)∧f(y)
This means (1) merge input then apply f is smaller than
or equal to (2) apply f individually then merge

How do our iterative algorithms work? Like (1) or like (2) ?

Example

The case of reaching definition analysis
f(x) = Gen ∩ (x-Kill), ∧ = ∪
Def. 1: x1≤ x2: Gen∪(x1 - Kill) ≤ Gen ∪(x2 - Kill)
Def. 2: (Gen ∪((x1∪ x2) - Kill)) ≤

(Gen∪(x1 - Kill) ∪ Gen ∪(x2- Kill))
Actually, it is = (identical) for reaching definitions

Reaching definitions are monotone

Meaning of Monotone Framework

Monotone framework does not mean that f(x)≤x
e.g., reaching definitions; suppose fb : Gen = {d1}
Kill = {d2}, then if x = {d2} f(x) = {d1}

Then, what does the monotonicity really mean?
It is related to convergence

Convergence of iterative solutions

If input(second iteration) ≤ input(first iteration)
result(second iteration) ≤ result(first iteration)

If x ≤ y, then w ∧ x ≤ w ∧ y

If input are going down, the output is going down
This property and the finite-descending chain give
you the convergence of iterative solution

Distributive Framework

A framework (F, V, ∧) is distributive iff
f(x∧y) = f(x)∧f(y)
i.e. merge input then apply f is equal to apply the
transfer function individually then merge result
e.g. reaching definitions, live variables
What we do in iterative approaches is somewhat
like f(x∧y), while the ideal solution is somewhat
like f(x)∧f(y)
f(x∧y) ≤ f(x)∧f(y) means that f(x∧y) gives you
less precise information

An example problem that is not distributive:
Constant propagation

Non-distributive: Constant Propagation

Out[A] = {x = 2, y = 3}, Out[B] = { x = 3, y = 2 }
f(Out[A]) = {z = 5, x = 2, y = 3}, f(Out[B]) = {z = 5, x = 3,
y = 2}
f(Out[A])∧f(Out[B]) = {z = 5, x = NAC, y = NAC}
f(Out[A]∧Out[B]) = {z = NAC, x = NAC, y = NAC}

III. Data Flow Analysis
Definition

Let f1, ..., fm : ∈, fi is the transfer function for node i
fp = fnkㆍfnk-1 ㆍfn1, p is a path through nodes n1, .., nk

fp = identity function, if p is an empty path

Ideal data flow answer
For each node n:
∧fpi(init), for all possibly “executed” paths pi, reaching n

Unfortunately, determining all possibly executed paths is
undecidable

Meet-Over-Paths (MOP)

Takes an error in conservative direction (e.g.,
reaching def: consider more (all possible) paths)
Meet-Over-Paths (MOP)

For each node n:
MOP(n) = ∧fpi(init), for all paths pi, reaching n
A path exists as long there is an edge in the code
Consider more paths than necessary
MOP = Perfect-Solution ∧ Solution-to-Unexecuted-Paths
MOP ≤ Perfect-Solution
Potentially more constrained, so solution is small and safe

Desirable solution: as close to MOP as possible

Solving Data Flow Equations

What we did for iterative solution:
We just solved those equations, not for all execution paths
Any solution satisfying equations: Fixed Point (FP) Solution

Iterative algorithms - the case of reaching definitions
Initialize out[b] to {}
If converges, it computes Maximum Fixed Point (MFP)
solution: MFP is the largest of all solutions to equations
How iterative algorithms give you the MFP?
Initialize T (init). Move down only when we see a definition

Properties:
FP ≤ MFP ≤ MOP ≤ Perfect-Solution
Which has been proved

Correctness and Precision

If data flow framework is monotone, then if the
algorithm converges, IN[b] ≤ MOP[b]

If data flow framework is distributive, then if the
algorithm converges, IN[b] = MOP[b]

Why? meet-early (iterative) = meet-late (MOP)
True for reaching definitions and live variables

If monotone but not distributive
MFP ≠ MOP
True for constant propagation

Properties to Guarantee Convergence

Monotone data flow framework converges if there is
a finite descending chain

For each variable IN[b] and OUT[b], consider the
sequence of values set to each variable across iterations
If sequence for IN[b] is monotonically decreasing,
sequence for OUT[b] is monotonically decreasing. (OUT[b]
is initialized to T)
If sequence for OUT[b] is monotonically decreasing,
sequence for IN[b] is monotonically decreasing.

Speed of Convergence

Convergence depends on the order of node visits

Use reverse post-order for of forward problems
Roughly corresponds to topologically sorted order in acyclic graph

Reverse “direction” for backward problems

Computing Reverse Post-order

Step 1: compute depth-first post-order
main () {

count = 1;
Visit(root);

}
Visit (n) {

for each successor s that has not been visited
Visit (s);

PostOrder(n) = count;
count++;

}

Step 2: reverse the post-order
For each node i;

rPostOrder = NumNodes – PostOrder(i)

rPost-order Forward Iterative Algorithm

Input: Control Flow Graph CFG = (N, E, Entry, Exit)

/* Initialize */
OUT[Entry] = { }
for all nodes i

OUT[i] = { }
Changes = TRUE

/* Iterate */
While ((Changes) {

Change = FALSE
For each node i in rPostOrder {

IN[i] = U (OUT[p]), for all predescessors p of i
oldout = OUT[i]
OUT[i] = f_i(IN[i]) /* OUT[i] = GEN[i] U (IN[i] – KILL[i]) */
if (oldout != OUT[i]) {

Change = TRUE
}

}
/* Visit each node the same number of times */

Speed of Convergence

If cycles do not add information
Information can flow in one pass down a series of
nodes of increasing rPostorder order number
Passes determined by the number of back edges
in the path which is, essentially, the nesting depth
of the graph

What is the depth ?
Corresponds the depth of intervals for “reducible”
graphs (loops)
In real programs: average 2.75

Check List for Data Flow Problems

Semi-Lattice
Set of values, meet operator, top & bottom, finite
descending chain

Transfer Function
function of each basic block, monotone, distributive

Algorithm
initialization step (entry/exit)
visit order: rPostOrder
depth of the graph

	Foundations of Data Flow Analysis
	Questions on Data Flow Analysis	
	A Unified Dataflow Framework
	I. Meet Operator
	I. Meet Operator
	Review of Partial Ordering (Discrete Math)
	Partial Ordering Example
	Partial Ordering Example
	Semi-Lattice
	Review of Lattice
	Representation of Each Variable
	Descending Chain
	슬라이드 번호 13
	II. Transfer Functions
	Monotonicity
	Example
	Meaning of Monotone Framework
	Convergence of iterative solutions
	Distributive Framework
	Non-distributive: Constant Propagation
	III. Data Flow Analysis
	Meet-Over-Paths (MOP)
	Solving Data Flow Equations
	Correctness and Precision
	Properties to Guarantee Convergence
	Speed of Convergence
	Computing Reverse Post-order
	rPost-order Forward Iterative Algorithm
	Speed of Convergence
	Check List for Data Flow Problems

