

- * Meet operator
- * Transfer functions
- * Correctness, Precision, Convergence, Efficiency
- * Summary homework: Chapter 8.2

Questions on Data Flow Analysis

* Correctness

- * Equations will be satisfied when the program terminates. Is this the solution that we want?
- * Precision: how good is the answer?
 - Is the answer ONLY a union of all possible execution paths?
- * Convergence: will the answer terminate?
 - * Or, will there always be some nodes that change?
- Speed: how fast is the convergence?
 - how many times will we visit each node?

A Unified Dataflow Framework

* Data flow problems are defined by

 Domain of values: V (e.g., set of definitions in reaching definition analysis, set of variables in liveness analysis, set of expressions in global CSE)

* $V = \{x | x \subseteq \{d_1, d_2, d_3, \}\}$ where d_1, d_2, d_3 are definitions

- * Meet operator (V x V \rightarrow V), initial value
- * A set of transfer functions F: $V \rightarrow V$
- * Usefulness of this unified framework
 - We can answer above four questions for a family of problems which have the same properties for their meet operators and transfer functions

I. Meet Operator

- * We expect the meet operator to satisfy the following properties:
 - * commutative: $x \land y = y \land x$
 - * idempotent: $x \land x = x$
 - * associative: $x \land (y \land z) = (x \land y) \land z$
 - * There is a Top element T such that $x \wedge T = x$

** ***

I. Meet Operator

- ★ meet operators that satisfy those properties define a *partial ordering* on values, with ≤
 - * Let us define $x \le y$ if and only if $x \land y = x$
 - * Then, \leq is a partial ordering. Why?
 - **∗** Transitive: if $x \le y$ and $y \le z$ than $x \le z$

* $x \land y=x, y \land z=y; x \land z = x \land y \land z = x \land (y \land z) = x \land y = x$

* Anti-symmetric: if $x \le y$ and $y \le x$ then x = y

* $x \land y = x, y \land x = y, x \land y = y \land x$ (commutative); x=y

- Reflexive: x≤x
 - * $x \land x = x$ (idempotent)

Review of Partial Ordering (Discrete Math)

***** Binary Relation: a set of order pairs

- * E.g., ≤ defines a binary relation on integers $R=\{(1,1), (1,2), (1,3)..., (2,2), (2,3),....\}$
- * Partial ordering: a binary relation R that is reflexive, anti-symmetric, and transitive
 - * Reflexive: $(x,x) \in R$
 - * Transitive: if $(x,y) \in R$, $(y,z) \in R => (x,z) \in R$
 - * Anti-symmetric: if $(x,y) \in R$, $(y,x) \in R => x=y$
 - * e.g., the set of integers is partially ordered with ≤ relation

Partial Ordering Example

- ★ Let domain of values V = {x | x ⊆ {d₁, d₂, d₃}}
 ★ Let $\land = \bigcap$
 - * How partial ordering with \leq is defined?

- * Top and Bottom elements
 - * Top T such that $x \wedge T = x$ is $\{d_1, d_2, d_3\}$
 - * Bottom \perp such that $x \land \perp = \perp$ is { }

Partial Ordering Example

- * Let domain of values $V = \{x | x \subseteq \{d_1, d_2, d_3\}\}$ * Let $\land = \bigcup$
 - * How partial ordering with \leq is defined?

- * Top and Bottom elements
 - * Top T such that $x \wedge T = x$ is { }
 - * Bottom \perp such that $x \land \perp = \perp$ is {d₁, d₂, d₃}

Semi-Lattice

- * Values and meet operator in a data flow problem defines a semi-lattice (i.e., there exists T, but not necessarily \perp)
 - * If x, y are ordered: $x \le y \Rightarrow x \land y = x$
 - * What if x and y are not ordered? $w \le x, w \le y \Rightarrow w \le x \land y$
 - * Why? $w \land x=w$, $w \land y=w$, then $w \land (x \land y) = (w \land x) \land y = w \land y = w$, so $w \le x \land y$
 - * This means that w cannot be greater than $x \wedge y$

** ***

Review of Lattice

- Lattice: Characterizing various computation models (e.g., Boolean Algebra)
 - A partially ordered set in which every pair of elements has a unique greatest lower bound (*glb*) and a unique least upper bound (*lub*)
 - * Each finite lattice has both a least (\perp) and a greatest (T) element such that for each element a, a \leq T and $\perp \leq$ a
 - * Due to the uniqueness of *lub* and *glb*, binary operations \lor and \land (meet) are defined such that $a \lor b = lub(a,b)$ and $a \land b = glb(a,b)$

Representation of Each Variable

When $\land = \cap$, we can represent a variable by * * 1 means it exists, 0 means it does not exist

Lattice for each variable: Lattice for three variables:

1

Descending Chain

* The height of a lattice

* Def: the largest number of \geq relations that will fit in a descending chain:

 $X_0 > X_1 > ...$

- * E.g., height of a lattice in reaching definitions:
 Number of definitions (# of 1 bit transitions)
- * Important property: finite descending chain
 - Useful for proving convergence
 - * For finite lattice, there is finite descending chain, obviously
 - * Can infinite lattice have a finite descending chain?

An example: constant propagation and folding

- * Domain of values: undef, ... -2, -1, 0, 1, 2, ..., not-a-constant
- * What is the meet operator and the lattice for this problem? Meet operator \land v = x v = y

Finite descending chain of length 2

* Finite descending chain is important for convergence

- * Its height can be the upper bound of the running time
- * One more property needed: monotone framework

II. Transfer Functions

* Basic Property f: $V \rightarrow V$

- Has an identity function
 - * There exists an f such that f(x) = x for all x
- Closed under composition
 - * if f_1 , $f_2 \in F$, $f_1 \cdot f_2 \in F$

* Some useful properties of \wedge

- * $x \land y \le x$
- * If $x \le y$, then $w \land x \le w \land y$

Monotonicity

* A framework (F, V, \land) is **monotone** iff

- * $x \le y$ implies $f(x) \le f(y)$
- i.e. a "smaller or equal" input to the same function will always give a "smaller or equal" output

* Equivalently, a framework (F, V, \land) is monotone iff

- * f(x ∧ y) ≤ f(x) ∧ f(y) Why equivalent? (1) x ∧ y ≤ x, so f(x ∧ y)≤f(x) (2) x ∧ y ≤ y, so f(x ∧ y)≤f(y). Now f(x ∧ y) ≤ f(x) ∧ f(y)
- This means (1) merge input then apply f is smaller than or equal to (2) apply f individually then merge
 - * How do our iterative algorithms work? Like (1) or like (2) ?

Example

* The case of reaching definition analysis

- * f(x) = Gen \cap (x-Kill), \land = \cup
- * Def. 1: $x_1 ≤ x_2$: Gen ∪ (x_1 Kill) ≤ Gen ∪ (x_2 Kill)
- ★ Def. 2: (Gen \cup ((x₁ \cup x₂) Kill)) ≤
 - (Gen \cup (x₁ Kill) \cup Gen \cup (x₂ Kill))
 - * Actually, it is = (identical) for reaching definitions
- Reaching definitions are monotone

Meaning of Monotone Framework

Monotone framework does not mean that $f(x) \le x$

* e.g., reaching definitions; suppose f_b : Gen = {d₁} Kill = {d₂}, then if x = {d₂} f(x) = {d₁}

Then, what does the monotonicity really mean?

* It is related to convergence

Convergence of iterative solutions

If input(second iteration) \leq input(first iteration)

- * result(second iteration) ≤ result(first iteration)
 - * If $x \le y$, then $w \land x \le w \land y$
- * If input are going down, the output is going down
- This property and the finite-descending chain give you the convergence of iterative solution

Distributive Framework

- ***** A framework (F, V, ∧) is **distributive** iff
 ***** f(x∧y) = f(x)∧f(y)
 - i.e. merge input then apply f is equal to apply the transfer function individually then merge result
 - * e.g. reaching definitions, live variables
 - * What we do in iterative approaches is somewhat like $f(x \land y)$, while the ideal solution is somewhat like $f(x) \land f(y)$
 - * $f(x \land y) ≤ f(x) \land f(y)$ means that $f(x \land y)$ gives you less precise information

An example problem that is not distributive:
 Constant propagation

Non-distributive: Constant Propagation

Z	=	X	+	у	
---	---	---	---	---	--

				$\mathbf{X} = \mathbf{Z}$	р	$\mathbf{X} = 3$
X	У	Z	Α	y = 3	В	y = 2
c1	NAC	NAC				
	c2	c1+c2				
	undef	undef			$\mathbf{z} = \mathbf{x} + \mathbf{z}$	$\mathbf{y} f$
undef	NAC	undef				
	c2	undef				
	undef	undef				
NAC	undef	undef				
		NAC				

* $Out[A] = \{x = 2, y = 3\}, Out[B] = \{x = 3, y = 2\}$

- # f(Out[A]) = {z = 5, x = 2, y = 3}, f(Out[B]) = {z = 5, x = 3, y = 2}
- # f(Out[A]) ∧ f(Out[B]) = {z = 5, x = NAC, y = NAC}
- * $f(Out[A] \land Out[B]) = \{z = NAC, x = NAC, y = NAC\}$

III. Data Flow Analysis

* Definition

- Let f₁, ..., f_m : ∈, f_i is the transfer function for node i
 * f_p = f_{nk} · f_{nk-1} · f_{n1}, p is a path through nodes n₁, ..., n_k
 * f_p = identity function, if p is an empty path
- Ideal data flow answer
 - * For each node n:

* $\wedge f_{pi}(init)$, for all possibly "executed" paths *pi*, reaching *n*

 Unfortunately, determining all possibly executed paths is undecidable

Meet-Over-Paths (MOP)

- * Takes an error in conservative direction (e.g., reaching def: consider more (all possible) paths)
- Meet-Over-Paths (MOP)
 - * For each node n: MOP(n) = $\wedge f_{pi}(init)$, for all paths *pi*, reaching n
 - * A path exists as long there is an edge in the code
 - Consider more paths than necessary

 - * MOP \leq Perfect-Solution
 - Potentially more constrained, so solution is small and safe
- * Desirable solution: as close to MOP as possible

Solving Data Flow Equations

* What we did for iterative solution:

- * We just solved those equations, not for all execution paths
- * Any solution satisfying equations: Fixed Point (FP) Solution
- Iterative algorithms the case of reaching definitions
 - * Initialize out[b] to {}
 - If converges, it computes Maximum Fixed Point (MFP) solution: MFP is the largest of all solutions to equations
 - How iterative algorithms give you the MFP?
 Initialize T (init). Move down only when we see a definition
- * Properties:
 - ∗ FP \leq MFP \leq MOP \leq Perfect-Solution
 - * Which has been proved

** ***

Correctness and Precision

- If data flow framework is monotone, then if the algorithm converges, IN[b] ≤ MOP[b]
- If data flow framework is distributive, then if the algorithm converges, IN[b] = MOP[b]
 - * Why? meet-early (iterative) = meet-late (MOP)
 - * True for reaching definitions and live variables
- * If monotone but not distributive
 - * MFP ≠ MOP
 - True for constant propagation

Properties to Guarantee Convergence

- Monotone data flow framework converges if there is a finite descending chain
 - For each variable IN[b] and OUT[b], consider the sequence of values set to each variable across iterations
 - If sequence for IN[b] is monotonically decreasing, sequence for OUT[b] is monotonically decreasing. (OUT[b] is initialized to T)
 - If sequence for OUT[b] is monotonically decreasing, sequence for IN[b] is monotonically decreasing.

Convergence depends on the order of node visits

- * Use **reverse post-order** for of forward problems
 - * Roughly corresponds to topologically sorted order in acyclic graph
- Reverse "direction" for backward problems

*** ***

Computing Reverse Post-order

Step 1: compute depth-first post-order * main () { count = 1;Visit(root); } Visit (n) { for each successor s that has not been visited Visit (s); PostOrder(n) = count;count++; } * Step 2: reverse the post-order For each node i;

```
rPostOrder = NumNodes - PostOrder(i)
```

** ***

rPost-order Forward Iterative Algorithm

Input: Control Flow Graph CFG = (N, E, Entry, Exit)

```
/* Initialize */
    OUT[Entry] = \{ \}
    for all nodes i
        OUT[i] = \{ \}
    Changes = TRUE
/* Iterate */
    While ((Changes) {
        Change = FALSE
        For each node i in rPostOrder {
               IN[i] = U (OUT[p]), for all predescessors p of i
               oldout = OUT[i]
               OUT[i] = f_i(IN[i]) /* OUT[i] = GEN[i] U (IN[i] - KILL[i]) */
               if (oldout != OUT[i]) {
                  Change = TRUE
        }
/* Visit each node the same number of times */
```

Speed of Convergence

* If cycles do not add information

- Information can flow in one pass down a series of nodes of increasing rPostorder order number
- Passes determined by the number of back edges in the path which is, essentially, the nesting depth of the graph
- * What is the depth ?
 - Corresponds the depth of intervals for "reducible" graphs (loops)
 - * In real programs: average 2.75

Check List for Data Flow Problems

* Semi-Lattice

- Set of values, meet operator, top & bottom, finite descending chain
- Transfer Function
 - function of each basic block, monotone, distributive

* Algorithm

- * initialization step (entry/exit)
- * visit order: rPostOrder
- depth of the graph