
Introduction

What is the topic of this course?
What can optimizing compilers do?
What do you get out of this class?

Topic of this Course

In your undergraduate compiler class, you
learned about compiler front-ends

Lexical analysis, syntax analysis, symbol table,
semantic analysis, intermediate code generation

Now, we will talk about compiler back-ends
Especially, focus on compiler optimizations
Also deal with run-time architectures briefly

Structure of Modern Compilers

What are Compiler Optimizations?

Optimization
Transform a computation to an equivalent but
better computation
Not actually optimal

Optimization is done via phases
Code becomes better as passing thru phases
Phase ordering issues

How Optimizations Affect Performance

Execution Time of a Program:
1. Instruction Count (# of Instructions Executed)
2. CPI (Average # of Cycles/Instruction)
3. Cycle Time of the Machine

Compiler optimizations affect (1) and (2)

What Compiler Optimizations Can Do

Reduce the number of executed instructions
Replace expensive instructions with simpler ones

e.g., replace multiplication with addition or shift

Reduce cache misses
Both instruction cache and data cache

Group independent instructions for parallel execution
Superscalar or EPIC (VLIW) microprocessors

Sometimes code size is more important than the speed
Embedded CPUs: microcontroller or DSPs

Why Compilers are Interesting?

For improving overall program performance
Speedup of system = hardware + compiler
Compiler optimization is important in performance
report

e.g., refer to SPEC web pages (www.spec.org)

Compilers affect CPU architecture designs
E.g., prefetch instructions, address compare buffers,
EPIC, speculative loads, multi-threading, single-chip
MP, …

http://www.spec.org/

Why Compilers are Interesting?

Compiler optimization is a key technology to
virtual machine (VM), which is a software for
cross-platform (ISA or OS) compatibility

A platform can run programs bounded to a different
platform using a VM
VM translates one ISA to another ISA and execute it,
which will be much slower than native execution
Code optimizations can reduce the performance gap
VM with dynamic code optimization can even improve
native execution speed, or for co-designed ISA (e.g.,
Transmeta Crusoe)

Why Compilers are Interesting?

An example of a large software system
Debugging complexity is extremely high

Why? The output of a compiler is code, not data

If you are working on a H/W, please never ask
“Make a compiler for my chip within a month”

There are many software engineering Issues

Optimizations Affect the ISA Design
An Example that can exploit Store/Load-base update
instructions in IBM Power or HP PA-RISC

There are only TWO instructions in the loop!
Update instructions assume this type of optimization

#define N 100
main ()
{

int A[N], i;
for (i = 0; i < N; i++) A[i] = 0;

}
Optimized Assembly Code

LDO -440(%r30),%r31
LDI -100,%r23

$003
ADDIB,< 1,%r23,$003
STWS,MA %r0,4(%r31) ; 0 -> A[i], i ++.

$002 -------------------- ---------------

Problem Solving in Optimizing Compilers

Find common cases
Formulate mathematically
Decide appropriate phase(s)
Develop algorithms
Implement
Evaluate on real data

Never work on optimization that has little cases

What do You Get out of this Course?

Basic knowledge of modern optimizing compilers
Basic program analysis and code transformation techniques
Some mathematical & graph theory for optimizations
Learn some advanced optimizations techniques

Personally, I believe optimization techniques are hard to
understand unless you actually implement & evaluate them

On the other hand, it is very hard to implement/debug and
evaluate them in a short period of time

If you want some real knowledge, try to implement some or
read some of the open-source compiler code (SUIF, ORC, …)

What Can Optimizations Do for You?

Let’s See an Example: Bubble Sort Program
#define N 100
main ()
{

int A[N], i, j;
int temp;
for (i = N-1; i >= 0; i--)

for (j = 0; j < i; j++)
{

if (A[j] > A[j+1]) {
temp = A[j];
A[j] = A[j+1];
A[j+1] = temp;

}
}

}

- We Compiled With/Without
Optimizations for the PA-RISC
(i.e., cc –S test.c and cc –O –S test.c,
repectively)

LDI 99,%r1 | LDWX,S %r20(%r21),%r22; A[j+1]
STW %r1,-48(%r30) ; 99->i | LDW -44(%r30),%r1 ; j
LDW -48(%r30),%r31 | LDO -448(%r30),%r31; &A
COMIBF,<=,N 0,%r31,$002; i>=0 ? | SH2ADD %r1,%r31,%r19 ; A[j]

$003 | STWS %r22,0(%r19);A[j+1]->A[j]
STW %r0,-44(%r30) ; 0->j | LDW -44(%r30),%r20;
LDW -44(%r30),%r19 | LDO 1(%r20),%r21
LDW -48(%r30),%r20 | LDW -40(%r30),%r22
COMBF,<,N %r19,%r20,$001;j<i ? | LDO -448(%r30),%r1

$006 | SH2ADD %r21,%r1,%r31
LDW -44(%r30),%r21 | STWS %r22,0(%r31);temp->A[j+1]
LDO 1(%r21),%r22 ; j+1 |$004
LDO -448(%r30),%r1 ; &A | LDW -44(%r30),%r19 ; j
LDW -44(%r30),%r31 ; j | LDO 1(%r19),%r20 ; j++
LDWX,S %r31(%r1),%r19 ; A[j] | STW %r20,-44(%r30)
LDO -448(%r30),%r20; &A | LDW -44(%r30),%r21
LDWX,S %r22(%r20),%r21; A[j+1] | LDW -48(%r30),%r22 ; i

COMB,<=,N %r19,%r21,$004;A[j]<A[j+1] | COMB,< %r21,%r22,$006 ; j<i ?
LDO -448(%r30),%r22 ;&A | NOP
LDW -44(%r30),%r1 ; j |$001
LDWX,S %r1(%r22),%r31 ; A[j] | LDW -48(%r30),%r1 ; i
STW %r31,-40(%r30) ;A[j]->temp | LDO -1(%r1),%r31 ; i--
LDW -44(%r30),%r19 | STW %r31,-48(%r30) ;
LDO 1(%r19),%r20 ; j+1 | LDW -48(%r30),%r19

LDO -448(%r30),%r21 ; &A | COMIB,<= 0,%r19,$003 ; i>=0 ?

Optimized Assembly Code
LDI 99,%r31

$003
COMBF,<,N %r0,%r31,$001
LDO -444(%r30),%r23
SUBI 0,%r31,%r24

$006
LDWS -4(%r23),%r25
LDWS,MA 4(%r23),%r26
COMB,<=,N %r25,%r26,$007
STWS %r26,-8(%r23)
STWS %r25,-4(%r23)

$007
ADDIB,<,N 1,%r24,$006+4
LDWS -4(%r23),%r25

$001
ADDIBF,< -1,%r31,$003
NOP

$002

Compare the number of instructions in the Loop!

	Introduction
	Topic of this Course
	Structure of Modern Compilers
	What are Compiler Optimizations?
	슬라이드 번호 5
	How Optimizations Affect Performance
	What Compiler Optimizations Can Do
	Why Compilers are Interesting?
	Why Compilers are Interesting?
	Why Compilers are Interesting?
	Optimizations Affect the ISA Design
	Problem Solving in Optimizing Compilers
	What do You Get out of this Course?
	What Can Optimizations Do for You?
	슬라이드 번호 15
	Optimized Assembly Code

