

Definition of a loop
Algorithm to find a loop
Summary: 7.2, 7.3, 7.4, 7.5

What is a Loop ?

- * Loop Definition
 - Define a loop in graph-theoretic terms on a control flow graph, where nodes are BBs and edges are next execution
 - Not sensitive to input syntax, uniformly treat for all loops
- Not every cycle is a "loop" from the optimization perspectives
 - * What are loops here?

Intuitive properties of a loop

- Single entry point
- Edges must form at least a cycle

Formal Definitions

* Dominators

A node *d* dominates a node *n* in a graph (*d* dom *n*) if every path from the start node to *n* goes through *d*

- * Dominators can be organized as a tree
 - * $a \rightarrow b$ in the dominator tree if a immediately dominates b

Natural Loops

- Definition
 - Single entry-point: header
 a header dominates all nodes in the loop
 - A back edge is an arc whose head dominates its tail a back edge must be a part of at least one loop
 - * The **natural loop** of a back edge is
 - * the smallest set of nodes that includes the head and tail of the back edge, and has no predecessors outside the set except for the predecessors of the header
 - Domination is important in identifying loops

Algorithms to find Natural loops

- * Find the dominator relations in a flow graph
- # Identify the back edges
- Find the natural loop associated with each back edge

1. Finding Dominators

- * A node *d* dominates a node *n* in a graph (*d* dom
 n) if every path from start node to *n* goes thru *d*
 - Node *d* lies on all possible paths reaching node *n*
 - Need to compute who dominates whom for a given control flow graph (CFG)
 - How do we compute the dominator relationship?
 - Weight Using a data flow analysis

Formulate as a Dataflow Problem

* Compute dominators at each BB boundaries

- * Domain of values?
- What would be the meaning of IN[b], OUT[b]?
- Forward or backward problem?
- What is the meet operator?
- * Top? Bottom?
- Initialization for iterative algorithm?
- Boundary condition?
- Finite descending chain? Monotone? Distributive?
- Transfer function of a BB n?

Answers to Dataflow Problem

- * Domain? Subset of nodes in a graph
- Forward or Backward? forward
- Meet operator? intersection
- * Top? Bottom? universal set, null set
- Initialization for iterative algorithm? universal set
- Boundary condition? null set
- Finite descending chain? yes
- * Transfer function: OUT[b] = IN[b] U {b}
 * MFP = MOP since distributive

2. Finding Back Edges

Depth-first spanning tree

 Edges traversed in a depth-first search of the flow graph form a depth-first spanning tree

* Categorizing edges in graph

- Advancing edges: from ancestors to proper descendents
- * Cross edges: from right to left
- Retreating edges: from descendants to ancestors (not necessarily proper)

Back Edges

- * Definition
 - * Back edge: $t \rightarrow h$, h dominates t
- Relationship between graph edges and back edges
 - ★ back edges ⊆ retreating edges

* Algorithm

- Perform a depth-first search
- ★ For each retreating edge $t \rightarrow h$, check if h is in t's dominator list
- In most programs (all structured code and most goto programs), retreating edges = back edges
 - * Called a Reducible Flow Graph

3. Constructing Natural Loops

* Algorithm

- * delete h from the flow graph
- * find those nodes that can reach t(those nodes + h form the natural loop of $t \rightarrow h$)

Inner Loops

If two loops do not have the same header

- they are either disjoint, or
- * one is nested within the other
- * If two loops share the same header
 - Hard to tell which is the inner loop
 - Combine as one

Preheader

- Optimization often require code to be executed before the loop
- Create a preheader basic block for every loop

