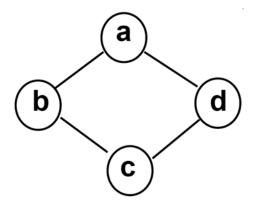


- * Optimistic Coloring
- * Rematerialization
- Coalescing

** ***

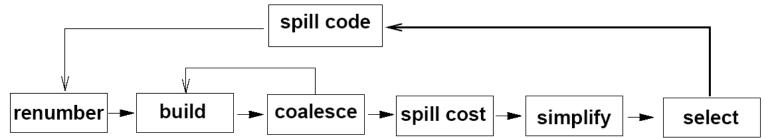
Details of Chaitin's Coloring Phases[82]



- * renumber: rename live ranges
- Build: constructs the interference graph
- Coalesce: merge all pairs of copy-related nodes if they do not interfere
- Spill cost of a node: c x 10^{d,} where c: cost in target machine, d: loop nesting depth
- Simplify: remove and insert to stack or mark spill
- * Spill code: if simplify decides to spill any node
- Select: assigns colors to registers

Motivating Problem 1

For the diamond interference graph that cannot be colored with two registers by Chaitin's, we can still color it



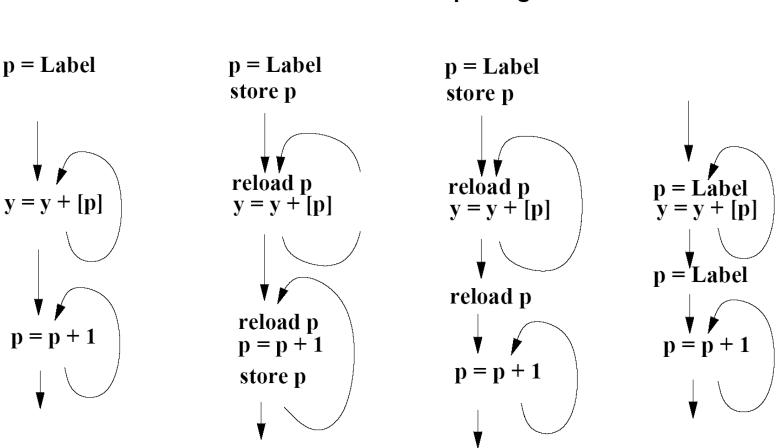
Briggs' Optimistic Coloring

- Simplify Phase
 - Remove nodes whose degree < n and insert into stack</p>
 - Spill candidates are also inserted in stack for possible coloring
- Select Phase
 - If no color is available for a node, leave the node uncolored and continue with next nodes. Any uncolored node must be one that Chaitin's would also spill
 - If all nodes receive colors, Done;
 Otherwise, insert spill code for the corresponding live ranges and repeat from renumber
 - The decision to insert spill code is made at the select phase, not at simplify phase

Details of Briggs' Coloring Phase[89]

* Benefit of Deferring the Spill decision

- Eliminate some unproductive spills
- It can color any graph that Chaitin's can, and it can color some graphs that Chaitin's cannot
- If spilling is necessary, it will spill a subset of live ranges that Chaitin's would spill


Rematerialization [Briggs92]: Idea

Splitting

Ideal

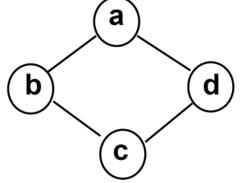
Chaitin

Source

* "Never-Killed" values can be recomputed instead of being spilled and reloaded

Rematerialization: Opportunities

* Opportunities for Rematerialization


- Immediate loads (copies) of integers constants
- Computing a constant offset from the stack pointer or global data area pointer

Copy Coalescing

Impact of copy coalescing on graph colorability

- * Negative impact
 - Generate significant-degree nodes
- * Positive impact
 - Reduce degree of nodes that interferes with both source and target of the copy

Coalescing Approaches

- * Aggressive coalescing: Chaitin's coalesces any noninterfering copy-related nodes
 - Best effect on copy elimination & positive impact
 - Suffers seriously from negative impact
- Conservative coalescing: Briggs (and Iterated coalescing) coalesces only when it does not produce a significant-degree node
- Optimistic coalescing: use aggressive coalescing, but if significant-degree nodes are to spilled, split them back to help coloring some splits