
Introduction to Instruction Scheduling

Scheduling Constraints
Basic Block Scheduling (list scheduling)

Instruction Scheduling

Scheduling or reordering of instructions to
improve CPU performance

Important impact to performance
Hottest issues in 90’s
CPU optimization is less important than memory
optimization these days
Optimization for multi-threaded CPUs is hotter
than multi-issue CPUs these days

History of Instruction Scheduling

Early pipelined machines before RISC
Overlapping the execution of instructions requires
microcode compaction

Early single-issue RISC machines
Filling branch/load delay slot requires reordering

Superscalar (multi-issue) RISC, VLIW, CISC
Elaborate code scheduling to fill multiple issue
slots for parallel execution

Instruction Scheduling Techniques

Categories of instruction scheduling
Local, basic block scheduling
Global, cross-block scheduling
Software pipelining

Instruction scheduling is done via code motion
or code placement

Instruction scheduling is constrained by
resource and dependence constraints

Scheduling Constraints

Resource Constraints
Caused by mutual exclusion of functional units
Machine constraints of real CPUs are complex

Program Constraints
Caused by precedence dependences in program
Control dependences
Data dependences
Techniques to overcome these constraints

Control Dependences

An example
if (a > t) then {

b = a*a;
}
c=a+d;

Control Dependence
b=a*a is control dependent on a>t

Cannot move b=a*a ahead of the branch (a>t)

c=a+d is not control dependent on a>t although it is
located after the branch (a>t)

Can move c=a+d before the branch with no problem

Overcoming Control Dependences

Speculative code motion
Move control-dependent instruction before conditional
branch so that they are executed speculatively

b = a*a;
if (a > t) then {

}
c=a+d;

Effectiveness of speculative execution
If the original path is taken: successful
If the original path is not taken: nothing to lose
Speculative code motion should be made to use
otherwise idle resources

Speculation

Correctness of speculative code motion
Should not affect the correctness

/* if b is live after c=a+d */
b’ = a*a;
if (a > t) then {

b = b’;
}
c=a+d;

Should not cause an exception
Speculative loads

Should not cause a permanent update
No speculative stores

Useful code motion

Non-speculative code motion
c=a+d;
if (a > t) then {

b = a*a;
}

Should perform useful code motion as many as possible
Non-speculative code motion
Partially-speculative code motion

Unification
Speculative code motion with higher hit ratio

Based on profiling

Unification

A

x=load()

y = x + 1
B

z = x + 1

y = x + 1
A

x=load()
y = x + 1

B

z = y

• Simplest form: moving an instruction below a hammock to above the hammock

• More sophisticated form of unification

Data Dependences

Must maintain the order of accesses to the
potentially same locations

True dependence: write → read
Anti dependence: read → write
Output dependence: write → write

Analysis on register operands is easy

Overcoming Data Dependences

Anti and output data dependences are non-
true dependences

Caused by conserving registers
Speculative code motion can cause violation of
data dependences
Can be overcome by (partial) renaming

True data dependences on copies can also be
overcome by forward substitution

Renaming

add r1,2->r2 add r2,2->r3

add r1,2->r2’

mov r2’->r2 add r2,2,r3

...
add r1, 1 -> r2

...
sub r3, 2 -> r1

...

...
sub r3, 2 -> r1’

...
add r1,1 -> r2

...
mov r1’ -> r1

...

Forward-substitution

...
mov r1-> r2

...
add r2,1->r3

...

...
add r1,1->r3

...
mov r1-> r2

...

Parallelism and Registers

Register Allocation: more register < - >
more parallelism

r1 = r2 + r3 r1 = r2 + r3
a = r1 a = r1
r1 = r2 + r5 r4 = r2 + r5
b = r1 b = r4

Analysis of Memory Data Dependences

Analysis on Memory Variables
Simple: base+offset1 = base+offset2 ?
Data dependence analysis: A[2i] = A[2i+1] ?
Interprocedural analysis: global = parameter ?
Pointer analysis: p1 = p2 ?

Requires memory disambiguation
Front-ends may help
Back-ends can also analyze by itself by following
the roots of memory addresses

Memory Disambiguation

Memory disambiguation results
Yes: store-load can be replaced by store-copy
Partially yes
No: no data dependence
Maybe: speculative code motion

Exploit unsafe load and address compare buffer

Overview of Scheduling

Local, basic block (BB) scheduling
List scheduling
Interaction between register allocation and
scheduling

Global Scheduling
Cross-Block code scheduling

Software Pipelining

Machine Model

Machine model used in our scheduling examples
Parallel operations

One integer operation:
ALUop dest = src1, src2 (1 cycle)

One memory operation:
LD dest = addr (2 cycle), ST src, addr (1 cycle)

All registers are read at the beginning of a cycle,
and are written at the end of a cycle

LD r2=0(r1) followed by ALU r1=r3, r4 can execute in
parallel
load uses the old value of r1
Anti-dependence has a delay of zero cycle

Precedence Constraints
Data dependences among instructions in a
BB form a directed acyclic graph (DAG)

Nodes: instructions
Edges: data dependence constraints, labeled
by its delay cycles
An example BB

i1 : LD r2 = 9(r1)
i2 : ST r4, 0(r3)
i3 : ADD r4 = r4, r3
i4 : ADD r1 = r5, r4
i5 : ADD r6 = r2, r4

Scheduling without Resource Constraints

Topological Sort
Ready = nodes with zero predecessors
Loop until READY is empty

Schedule each node in READY as early as possible
Update predecessor count of successor nodes
Update READY

Length of the schedule = critical path length

Scheduling with Finite Resources
Optimal scheduling is NP-complete in general
Need a heuristic solution

List scheduling
READY = nodes with zero predecessors
Loop until READY is empty

Let n be the node in READY with highest priority
Schedule n in the earliest slot

that satisfies precedence + resource constraints
Update predecessor count of n’s successor nodes
Update READY

List Scheduling

Scope: DAGs
Schedule operations in topological order
Never backtracks

Consider “best” among those in the critical
path, branch-and-bound for microinstruction
scheduling [Fisher]

Variations of List Scheduling

Priority function for node n
delay: max delay slots from n to any node
critical path: max cycles from n to any node
resource requirements
source order

Direction: top-down vs. bottom-up

Operation vs. cycle scheduling

Direction: Top-down vs. Bottom-up

Bottom-up (ALAP) shortens register lifetimes for
expression trees than top-down (AEAP)

Bottom-Up Top-Down

Cycle vs. Operation Scheduling

Operation scheduling
Schedule critical operations first

Cycle Scheduling
Concept of a current cycle
Only instructions ready in the current cycle are
considered

Cycle vs. Operation Scheduling

Advantages of operation scheduling
highest priority operation gets highest priority

Advantages of cycle scheduling
Simpler to implement
(no need to keep history of resource usage)
Easier to keep track of register lifetimes

Phase Ordering of RA and IS

Allocation and assign registers → Schedule
round robin, partial renaming, forward substitution

Allocate to infinite registers → Schedule →
Assign registers

Add spill code later

Allocate to infinite registers → Schedule →
Assign registers → Schedule (spill code)

Current popular wisdom

Integrated Solution

Integrated register allocation & scheduling
[Goodman & Hsu]

List schedule (keep track of liveness of registers)
Priority 1: maximize parallelism
Priority 2: reduces registers

When remaining registers > threshold, use
priority 1
Otherwise, use priority 2

	Introduction to Instruction Scheduling
	Instruction Scheduling
	History of Instruction Scheduling
	Instruction Scheduling Techniques
	Scheduling Constraints
	Control Dependences
	Overcoming Control Dependences
	Speculation
	Useful code motion
	Unification
	Data Dependences
	Overcoming Data Dependences
	Renaming
	Forward-substitution
	Parallelism and Registers
	Analysis of Memory Data Dependences
	Memory Disambiguation
	Overview of Scheduling
	Machine Model
	Precedence Constraints
	Scheduling without Resource Constraints
	Scheduling with Finite Resources
	List Scheduling
	Variations of List Scheduling
	Direction: Top-down vs. Bottom-up
	Cycle vs. Operation Scheduling
	Cycle vs. Operation Scheduling
	Phase Ordering of RA and IS
	Integrated Solution

