

*Modulo Scheduling

Modulo Scheduling

Most popular software pipelining technique

- * Originally developed by B. Rau, later simplified by M. Lam
- * All commercial compilers include this technique
 - * Another commercial technique is EPS

Trial-and-error method to get a pipelined schedule

- Compute the minimum initiation interval (*MII*) based on both precedence constraints (precedence MII) and resource constraints (resource MII)
- * Try to obtain a schedule with such an *MII*
 - * Based on instruction placement, not code motion
- * If cannot find a schedule, try with *MII* + 1, and continue

Determining *MII* : Resource Constraints

Representation of resource constraints: reservation table

A reservation table for "MUL r1 r2 r3"

Resource Constraints and the //

- * If an instruction is scheduled at cycle x, it will also execute at cycle x + II, x + 2x II, and so on
- * The resource requirements of a single iteration should not exceed the available resources
- The available resources of the kernel increase as the II increases



Resource MII (RMII)

- * For all resources *i*,
 - * Number of units required by one iteration: r_i
 - * Number of units in system: R_i

*
$$RMII = \max_{i} \left[\frac{r_i}{R_i} \right]$$

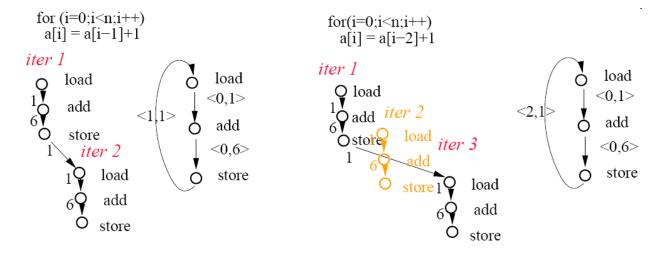
If the ratio is not integral, unrolling can improve the lower bound (e.g., 3 mem refs / 2mem ports = 1.5)

Determining *MII* : Precedence Constraints

Representation of precedence constraints:
 data dependence graph

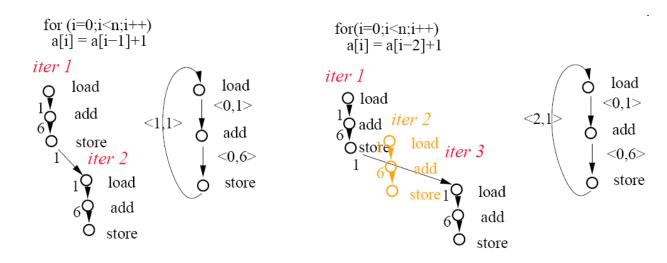
Node: instruction, Edge: dependence relationship

- * Observation of dependence relationship
 - Must show iteration difference as well as delay



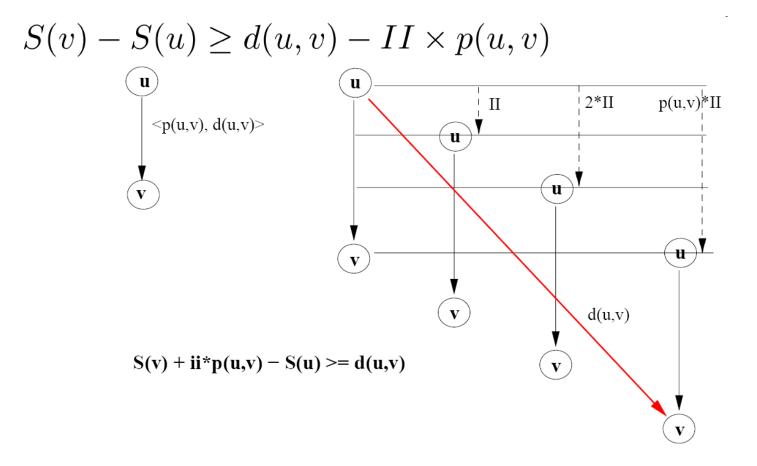
Determining *MII* : Precedence Constraints

- * An edge u, v in data dependence graph has < p, d >
 - *d* : a delay value
 - * *V* can start no earlier than *d* cycles after node *u* starts
 - *p*: a value representing minimum iteration distances
 - p = 0: intra-iteration dependence, p > 0: loop-carried dependence
- Some observation of precedence MII
 - * 8 cycles in the left example but 4 cycles in the right example



II and the Schedule

 Given an initiation interval // and S(x) is the cycle where x is scheduled,



Precedence MII (PMII)

For all cycles c in the data dependence graph

 $PMII = \max c \frac{cycle_length}{iteration_differences}$

* Why? For each dependence edge in the cycle,

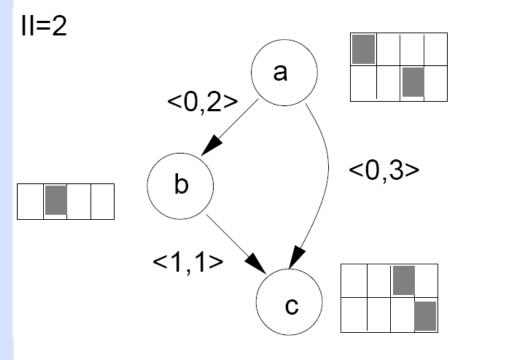
- * Represent S(v) S(u) >= d(u, v) p(u, v) * II
- Then, sum them up, which will make
 0>= sum(d) sum(p) * II, meaning II>=sum(d)/sum(p)
- If the PMII ratio is not integral, unrolling can improve the lower bound

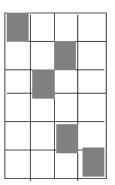
Modulo Scheduling

- Determining Minimum Initiation Interval (MII)
 - * MII = min(RMII, PMII)
- Interdependence between // and constraints
 - Constraints determine the minimum //
 - // affects modulo reservation tables, scheduling functions, S(x), etc
 - Minimizing // is NP-complete
- Goal of scheduling
 - Determine //
 - Solve the scheduling function S(x) for each instruction in the loop

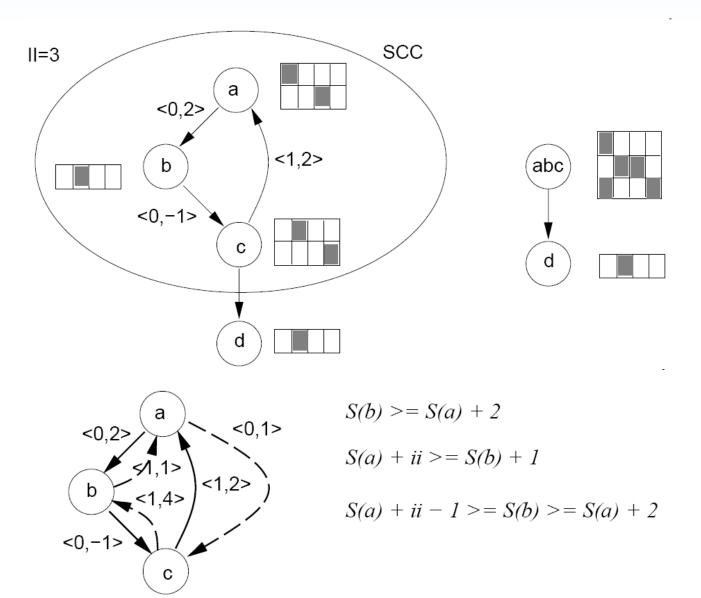
Generating Pipelined Schedules

Scheduling Acyclic Data Dependence Graph: List Scheduling





Scheduling Cyclic Graph



Cyclic Precedence Constraints

- Observation: scheduling a node make the schedules of all other nodes from above and below
 Depends on the II
- Implementation: pre-compute longest path lengths between all points based on II value
 - * Once for all II by using a symbolic value for //
 - * Why longest paths? Meeting worst-case constraints

Why Longest Path? An Example $\mathbf{a}[\mathbf{i}] = \mathbf{c}[\mathbf{i}] + \mathbf{b}[\mathbf{i}]$ T(2) - T(1) >= 1(1)b[i-1] = a[i](2) $T(1) + ii - T(2) \ge 1$ $T(1) - T(2) \ge 1 - ii$ (3) c[i-2] = b[i-1] $T(1) - T(2) \ge 3 - 2*ii$ $T(1) + 2*ii - T(2) \ge 3$ when ii = 3longest path from 2 to 1 when ii = 2<0,1> T(1) = 0bigger one between T(1) = 01-ii and 3-2ii T(2) = 1 $T(2) \le 2 \text{ or } T(2) \le 3$ ii=3 $T(2) \le 2$ ii=3 $T(2) \le 3$ a[i] = c[i] + b[i]0 $\mathbf{a}[\mathbf{i}] = \mathbf{c}[\mathbf{i}] + \mathbf{b}[\mathbf{i}]$ b[i-1] = a[i]2 $\mathbf{a}[\mathbf{i}] = \mathbf{c}[\mathbf{i}] + \mathbf{b}[\mathbf{i}]$ b[i-1] = a[i]c[i-2] = b[i-1] a[i] = c[i] + b[i]3 4 c[i-2] = b[i-1]b[i-1] = a[i]5 c[i-2] = b[i-1] a[i] = c[i] + b[i]b[i-1] = a[i]6 7 c[i-2] = b[i-1]

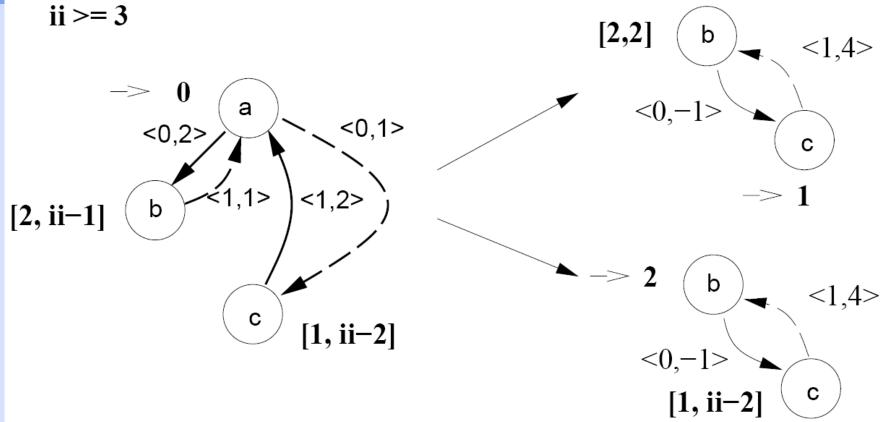
Longest Paths

* The closure of the cost of a path e

* d(e) – ii x p(e)

 To capture all possible maximum costs between two nodes, the longest path is represented as a set

Scheduling Order



- Topological ordering on intra-iteration constraints
- * Upper bounds increases with //

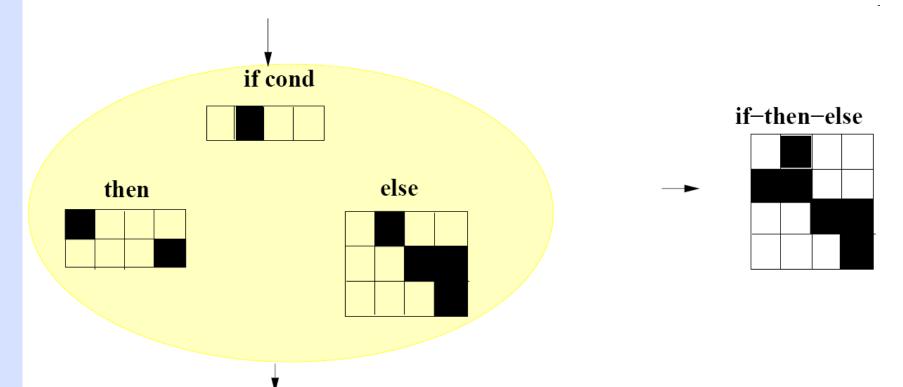
Scheduling Algorithm Summary

- Given //, Schedule SCCs first
 - * Scheduling a node bounds rest nodes from below and above
 - Satisfy precedence constraints
 - * Pre-compute all-points longest paths
 - * Allow fast update on the range of each node
 - Satisfy resource constraints
 - Topological ordering on intra-iteration edges
 - Upper bounds increases with initiation interval
 - Schedule reduced acyclic graphs
 - Schedule node in topological ordering
 - Find conflict slots within initiation window

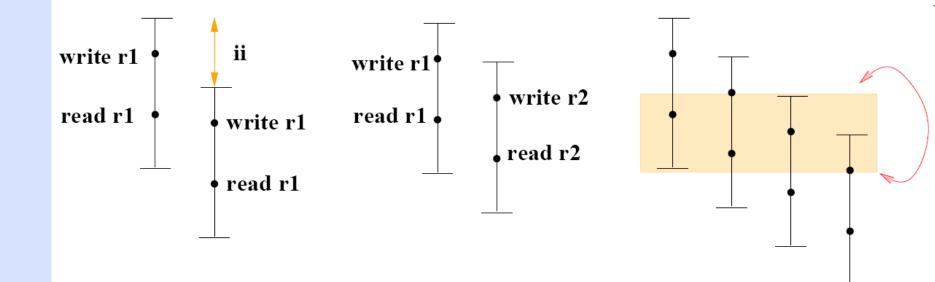
Hierachical Reduction

* For hammock-type conditional statements

Union both resource and precedence constraints



Modulo Variable Expansion



Modulo Variable Expansion Algorithm

- Schedule without considering cross-iteration anti-dependences
- * lifetime > // : multiple registers are needed
- * Assign registers
 - * L(v) = lifetime of variable v
 - # *ii* = initiation interval
 - * Suppose $L(u) = 3 \times ii$ and $L(v) = 2 \times ii$
 - * Unroll three times, use three registers for each u and v
 - * If only two registers for ν , unroll 6 times

Rotating Register (RR)

* Can use rotating registers instead of unrolling

- Architectural mechanism for renaming
- Employed in Intel's P6 Itanium processors
- Composed of n registers (RR(0) ~ RR(n))
- Includes a brtop (or brexit) instruction
 - If a brtop is taken, RR(i) is accessible via RR((i+1)%n)
 - * That is, a block shift of registers, RR(i+1) = RR(i), occur
- We allocate RR to those whose lifetime > II, we can avoid cross-iteration register overwrites