2.1. Transport Equations
-2.1.1 from BTE to DDE(Drift Diffusion) Equation
-2.1.2 from Wigner function to Density Gradient®
-2.1.3 NEGF**

Goal;

To derive the current equation from the BTE (Boltzmann Transport

Equation) and understand the terms affecting the carrier transport.

1.1. Boltzmann Transport Equation

Objective I To understand BTE equation describing the collective carrier

motion in the phase spce.

— We consider the carrier motion in the energy band as if the carriers
are the carrier gas in the spce.

— Phase space: Consider a small volume in r space and k space as,

3
dr = dx dy dz

3
dk = a’kxdkydkz

The volume in the phase space is large enough so that the number of
carriers exist and small enough that the variation of physical quantities

such as concentration of carriers, average velocity and so on.

— Define f as the distribution function (probability per unit phase

volume). Then the number of carriers in the phase spce volume dN



and total number of carrigers 3N can be writter as,

dN = Ar, k) drdk

N = [Rrkodrdr

Also, any mean value

(B> = L [oAr k1 dt

Here,

n= [ Rr k) &k

— Now consider time variation of A7, % ¢) in a small time interval At

is large compared with the time taken during a scattering event T4

(scattering time) but small compared with the free flight time T.

If there is no collision during At,
-7 = rtuvAt
—k = k+FMt

N

=)

so that
Ao, k) &r @k = Ar+ v At k+ FALt+ 0D &Y d°F

Liville theorem states that

dr dk = dv &k

The f in RHS can be written as,

Rr,kt) = Az, k D+ (



so that



1.2. The Moment Equation of BTE

Objective I To find the moment equation of BTE up to the 4th moment

and understand the physical quantities affecting the current under the

external force F.

A. Formation

— Some background

Since the volume of each state in the k space is

4]23/V, the conversion from 3} to f , can be done as,
o,V (3
% id k.

Summing all the states in conduction band in the Brillouine zone gives

the total number of electrons, so that

SR =5 [ADd k= nV

Then the ensemble average of any quantity ¢(%) can be written as

| fona'
[Rba'k
- L [fnewdr

4m3n

P (k)> =

Generalized Moment equation for ¢(%) can be found by integrating
BTE in the Brillouine zone(k space) after multiplying each term of
BTE by ¢(k) as follows;

0B = 4B-24 +
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Then letting ¢=1, mv;, E and Ev, we obtain up to 4th moment of BTE.
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In the above equations, small letter represents the physical quantity of
interest and capital letter represents the averages of it taken in k space

at some space point x.

v; : ith component of the group velocity
1% : jth component of average velocity
d/dx; : summation for j =1,2,3 (Einstein convention)

kgTi=<mvp;> electron temperature

E : energy of electrons
w : average energy of electrons
Si : <Ev> : ith component of energy flux

F=nV; : jth component of carrier flux

— Another representation of the 1st moment can be made if ¢= /K,

instead of muv;

0(nhK) _ _ J) 3
ot T " T ) + ot coll hKld k
where k,T,;=<hK,K;>. Notice that the carrier temperature is defined in

a dlfferent way.



— The %) term represents the increase rate of the physical quantity
coll

due to collision(including interband scattering).
For convenience, the scattering integral is represented by "some
average quantity"” which can be connected to "measurable quantities"

such as mobility, energy relaxation time and so on.

B. Conservation of momentum (2b) and average velocity V

Let q)=hkl
1 ﬁ[) 5, _  nK; Vi
w0 Jor) , ek = =) ®3
nV; .
= - T (<m >ij)
where
K. hK;
L (38 e = v
4r? fat) ol hEid'k
Then,
o __q Tt 0 .
Vl <m*>l‘j 8] n< m*>i]~ ax]' (nkBTU) (B4)
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The above equation is a general equation for the ensemble average of
electrons. Notice that it depends not only the electric field, but also

gradient of n and temperature.

Thermoelectric effect can be modeled by the above equation, where the
carrier flux is the function of the electron temperature, where the ’electron

temperature” is defined above.

Also notice that the mobility and tau are definitions , not approximations.



C. Energy balance equation : Eq. (2¢)

0(nW) _ __0_ 1 ﬂ) 3
ot G S, Sit g fat Ed'k

coll

1st term of RHS: energy gain rate from E field per unit volume

3nd term of RHS: energy loss by heating lattice (by way of generating
phonon)

Notice that for the uniform sample in the steady state, the energy balance

equation in the above represent the Joule heating.

D. Energy flux equation : Eq. (2c)

Consider the 1st term of RHS.

n 0 . n UZaE Eal)l' )
n , vOE | Edv;

= $Tor, Tk

= nlv,v;>+ n< E* >

i

5 (B.5)

- 2nd term of RHS is the thermal diffusion term.

- 3rd term of RHS is the increase rate of energy flow by collision.

Defining a relaxation rate as — .S/t ,

S
where T,=— (6)
n [2L ) Evd’k
ok coll

Then the average energy flux can be written as,

E 0
Si=—qetnlvv,>— qetnl ) >— T, 3x;

(n<Ev;v,>) (7)



Usually, in practice, people prefers to use the simple form for S as

the approximate form as,

quTsn< m*>< Ul'vj>

S=- ™ TR
9 mNnEvvp
i o 8)
o 9 mEYRT,
= Sjusn(kBTZ]+<E>) U ax] q
h bility f = Ls_
where mobpniil y or energy 115 <m*>

The last term is usually modeled by

9 (n<E>kBTZ~/~)_ e 4 nkBTz-g
o, . =umkyT; ox, KEY+uEy—— PR 9)

If the last term is coupled with the drift term in eq. (8),

S can be written as,

T,
S = —epalhs Tyt CEN =1yt T,)
o [ nkgT; 8 kT 4
—us<E>a—xj(—§L) n kT ox, -(E>+u Bq - (nky T3) (10)
- nV(kBT[j—I—<E>)—1lsnkBTg%<E>
J

The above equation shows that the energy flux are dependent upon
three terms; each is called as

- 1st term: thermal pressure term.

- 2nd term: convection term

- 3rd term: thermal diffusion term.

— Usually the thermal diffusion term is written as follows:
Thermal duffusion term = (C +%)Usnk3Tﬁ%(k3 T (11)
J
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C is the correction parameter to include the approximations made
in E = 1.5 kT (neglecting the contribution from V) and others.
Usually, C =-0.5 in silicon.

1.3. Relaxation Time Approximation in BTE

Objective I To find the current flux form from the relaxation time.

% Ref>
1. R. Stratton, "Semiconductor Current Flow Equations,"
IEEE TED, pp. 1288-1291, 1972.<= reading material #4

2. Ashkroft, Solid State Physics, pp. 310-319,
Holt Rinehart Winston.

3. J. Mckelvey, Solid state and semiconductor physics,
A Harper international, 1966, chaper 7

The increase rate of f due to collision is assumed to be

_8£> _ _JITh

ot T (D

coll



with T as function of E" with r varying according to scattering centers

and fy is the equilibrium distribution function.

Equation (1) is called the relaxation time approximation and the rigorous

discussion on the issue can be found, for example, in Ashkroft.

A. Approximation form for f

VS =0 @

I

Let the solution for BTE as f=/f,+ 7. Then f; can be written as,

v v L v = £ ©
or
H=—1(u,- 1f0+?F - Vo) (4)
—1( Vg lf0+£ lkfl)

If the 2nd part of RHS is neglected as f; is much smaller than fo,

fx =t YA V) (5)

If F is in Z direction,

_ 0 _ _0EF o0
vlafo - akz [ akz aEfo (6)
hik,

(= —% f, @ for apherical band)
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Since f, is known so the f, all the physical quantities of interest can be
obtained from equations in §1.3.2. See Mckelvy(ref. 3 above) for derivation

of thermal and electrical conductivity.

B. Current Equation Represented by Relaxation Approximation

reading #4> Stratton, 'Diffusion of hot and cold electrons in

semiconductor barriers,” phys.Rev., vol. 126, no. 6, pp2002-2014, 1962

Let /=7,+1 7, : even 7, : odd function;  (7)

Also let %>wzz = — f;f"

Then 7, = fo-l-%T%—w-%—%f (8)

V= % 4113 ffﬂgaﬁk 9)
= % ﬁj[(jhi T%)v—(ﬂz gf)v d’k

Or F = nv = fi((a-(p]d

— 1st term (9a)

Fi=—h j( Tiv 59/{,- )vl-dBk
d
= Lo, Je g o (10a)
= el Ul [f 5 (o)d'd
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<Ex> Compare this with

_ _ _.q [ 9(tw)
M T Th ”< ok; >8f
M; ) o(tv;)
Y= TﬁL< ok, ) (10b)

This form is another representation of T, in terms of T and effective

mass and the < >.

— 2nd term : (9b)
_ 1 _of \, 3
Fi= -5 [r(o, vk
_ _ 1 | (9 3, 0
=~ L[ B Coda [ 1 ax]-(”f”z‘)dgk]

1 0 0
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F = —% [ndt v ]+ ncw 1}%0 (11)
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<Ex> Compare the carrier flux in §1.3.2.

Now consider again Eq.(11). How can we express terms in Eq.(11)
as a more tractable, or physically meaningful form

(such as D, n, p)?

P 0
F = -—= [t v ]+ ncw ﬂww (12)
= —%I - [#D]1+2U
where
D=<1t0v 12
b (12a)
=~ or



ref. See the review paper on the HD issue and prediction capability of

the related device characteristics can be found in ,

Reading material #5
A Review of Hydrodynamic and Energy-Transport Models for Semiconductor

Device Simulation

TIBOR GRASSER, TING-WEI TANG, FELLOW, IEEE, HANS KOSINA,
MEMBER, IEEE, AND

SIEGFRIED SELBERHERR, FELLOW, IEEE

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 2, FEBRUARY 2003

HW> Verify that the ratio between the thermal conductivity and the electrical
conductivity of the metal like material(where the conduction is decided by ’electrons’
is the function of T only. Or

L=®]/ ® )*1/T) = 2k¥ &°

Hint. See the McKelvy p 195



