2.3. Relaxation Time

-2.3.1 Relaxation time associated with Oth momentum (minority carrier life time)
-2.3.2 Relaxation time associated with 1st momentum (mobility)
-2.3.3. Relaxation time associated with 2nd momentum(energy relaxation time)

Goal;

To understand the relaxation time constants characterizing the each

moment equation in the HD framework.

1. Minority carrier life time

Objective I To understand the generation and recombination model to

describe the "time increase rate’ of n and p.

To understand the concept of the 'minority carrier life time” .

A. Model for generation and recombination

-The increase rate of n, p in the semiconductor can be written as,

on _ 0 1 [(.f 3
b =2 opt b5 [9) (2a)
1 (97 3 ; of '
where 1 5 t) m”d k term is only nonzero when T ) . term is

associated with the “intervalley scattering’.



-ﬁ %) d’k term includes all the possible physical mechanisms
coll

contributing to the “intervalley scattering’.
They are generation and recombination through traps, tunneling and

enhancement of the tunneling by traps and the impact ionization.

- General equation including 4}t3 f %) BE s
coll

Gth : generation rate

GL: generation rate due to illumination

Gii: generation rate due to impact ionization

GT: Generation and recombination of n and p through traps;
Rn, Rp, Gn, Gp

- In the chapter, only the Rn, Rp, Gn, Gp will be considered.

Rn: Electron Capture rate by the trap

= Cn *n* Nt(1-ft)
Rp; Hole capture rate by the trap

= Cp* p* Nt ft
Gn: Electron Generation rate from the trap

= en * Nt * ft
Gp: Hole Generation rate from the trap

= ep *Nt*( 1-ft)

(1)

where Cn, Cp: Capture cross section of the traps

en, ep : emission probability of electrons and holes.



B. SRH (_Shockley Read Hall ) model for generation and

recombination through traps

In the uniform sample ;

dn/dt = Gn - Rn + GL

dp/dt = Gp - Rp + GL--

d{Nt *ft} /dt = Rn + Gp - Gn- Rp

and the Poisson Effect

- =q(p - n + Nd+ - Na- + NTd(1-ft))

NTd; Concentration of the net donor like states

f, ; occupancy probability of the trap with the energy
level in E,

In the steady state where d{Nt*ft} =0,

d{Nt *ft} /dt = Rn + Gp - Gn- Rp =0,

so that

Gn-Rn=Gp-Rp - (2)

-Now the trick to arrive at the SRH model is that first we find the

en and ep in the thermal equilibrium( where f, = - ;ff A7)
e /

and use the en and epp values in the non equilibrium as well.

If you plug the (2) to (1) using the en and ep values obtained in thermal
equilibrium nd solve for ft( the occupation probability of

electrons in the trap),
ft =

Also, the general equation for U can be obtained as,

U(net recombination rate in the steady state)

- e ©



<Comments>
1. When Cn = Cp,

2. The driving force of net U is np - n%;.

<reading material> Grove, pp 127-146.

C. The Minority carrier life time

In the case when the concentration of the minority carrier is much

smaller than the majority carrier in non equilibrium case ( n >>p +* p

in the n type : the case is called the 'low level injection” ),

U can be written as,

UC (p-po)/ s

Here  is called the minority carrier life time.

p.

2. Momentum relaxation time

In the derivation of the 1st moment of the BTE, the increase rate of the

momentum due to scattering can be written as,

Let ¢ = mo;,
0 . nV;
41[3 f%) , mvid’k = — - - )

where . is the momentum relaxation time.



Averge velocity in j direction can be written as the function of
the electric field (drift term) and the gradient of n and Tn(electron
temperature) in the “tensor form’.

Vl < Wl*> i 8] n( m*> i axj (nkB TU)

_ _ My 0
R i ™ qn ij(nkBT’7)

- Meaning of

-
Consider the continuity equaion for momentum in the uniform sample
with -Ex is applied,

d(mVx)/dt = qE - mVx)/

In the steady state,
Vx0= (q ,/m) E so that the mobility in the "uniform field’

is related with _ as,

m

u=(q o/m).

If E =0 when t=07,

Vx = Vx0 exp ( -t/ ) meaning that _ is the parameter indicating

m
how fast the average velocity returns to zero after the field is switched
off.

< Comments>

-, can be obtained as the function of electric field from the relationship

between mobility and .
+ = ( m/q) *u(E). Notice that u(E) is known from the measurements,

we can safely find | vs. E relationship.

m
- However, the relationship is only valid for the steady state and the
uniform case. For the case when E varies abruptly in space ( and/or

time), (so the mobility) is not only the function of E as obtained in the

steady state and the wuniform case. This phenomenon is called the

‘nonlocal effect’” for the carrier mobility.



*There are two approaches to handle this problem.

~ . (E), (Tn) and others to

See the more detailed discussion on this issue can be found from
T. Grassera, 'Review of Hydrodynamic and Energy-Transport Models for

Semiconductor Device Simulation,' PROCEEDINGS OF THE IEEE, VOL. 91, NO. 2, FEBRUARY 2003
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In the figure above, the 1D n+nn+ silicon bar is considered with Lc as the



length of n region to resemble the channel region of NMOSFET.
Notice that the electron temperature and the carrier velocity are much higher

than the local counterpart.

C. Energy Relaxation time

In the 2nd of moment of the BTE,is

o0aW _ _ _ 9 1 ﬁ) 3
at - QSJF] ax] S]+ 4]‘[3 at COHEdk

, 3nd term of RHS: energy loss by heating lattice (by way of generating

phonon) can be written as

L [%) Eak = nW -W0)/

e

coll

where is the ‘energy relaxation time’.

e
In the uniform sample where E is constant in the space and time,

electron energy can obtained from

quE?= (W - W0/

e

o is usually know from the photo measurement or the Monte CwH| 7}

simulation.  , in silicon is in the order of 0.4e-12 second.

— The empirical relationship for the energy relaxation time as the function of
carrier temperature can be found as,

Tw Tw.l:l f Tw.'. x
T, 2 T, T
“p[clx (3ﬂﬂK+C°] Tax (3&}1(*‘:“) TG X (3(}(]1

For the nonalloy material,



Matenal Tw.0 Ip"i] T, lp"'i] Ca O C Cs

S T.0 058 0 W 00 01T
Ge 0.26 1.49 0 —0.434 1.322 0
GaAs 0.48 0,025 0 —0.053 0,853 0.5
AlAs 0.17 0.025 61 0.053 0,853 0.5
InAs 0.08 0.025 3 —0.053 0.853 0.5
For alloy material,
Matenal 'I",...,-I_m‘l [ps] Tw,1 I_DS] Co - C C- C;
AlGaAs —0.35 0.025 —61 —0.053 0,853 0.5
InGaAs 1.8 0.025 34 —0.053 0.853 0.5

ref.

B. Gonzalez et.al, An energy relaxation time model for device simulation
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Fig. 1. Energy relaxation time as a function of electron temperature. Comparison of
the model and MC data for Si at several lattice temperatures.






