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Overview (from reference)

• Reinforcement learning  is learning what to do – how to map situations to actions 
– so as to maximize a numerical reward signal (value).  The agent (learner) is not 
told which actions to take, as in most forms of machine learning, but instead 
must discover which actions yield the most reward by trying them.

• The agent and the environment interact continually: the agent selecting actions 
by sensing the state of the environment (exploration & expoitation) and the 
environment responding to those actions and presenting new situations to the 
agent. The environment also gives rewards, special numerical values that the 
agent tries to maximize over time.

• A task is a complete specification of an environment, one instance of the 
reinforcement learning problem: If the agent-environment interaction breaks into 
subsequences, called episodes, such as plays of a game, trips through maze, or 
any sort  of repeated interactions, then the task with episodes of this kind is 
called a episodic task. If it does not break naturally into identifiable episodes but 
goes on continually without limit, it is called a continuing task.
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Overview (cont.)

• The agent implements a mapping (policy) from states (situations) to actions so as 
to maximize the total amount it receives, not the immediate reward but the 
cumulative reward over time. 

• The goal of the reinforcement learning methods is to find the optimal policy 
maximizing the cumulative reward starting from any given state (situation).

• Markov property for reinforcement learning problem: When considered how a 
general environment might respond at time t +1 to the action at time t, in most 
general and casual cases this response depends on everything that has happened 
earlier. If the state and reward response at t +1 depends on only on state and 
action happened at time t, then the environment is said to have the Markov 
property.

• A reinforcement learning task satisfying the Markov property is called a Markov 
decision process. If the state and action spaces are finite, then it is called a finite 
Markov decision process. 
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Preview (from text)

• Reinforcement learning
– How an autonomous agent that senses and acts in its 

environment can learn to choose optimal actions to achieve its 
goals?

– Learn from indirect, delayed reward to choose sequences of 
actions that produce the greatest cumulative reward.

– Q learning that can acquire optimal control strategies from 
delayed rewards, even when the agent has no prior knowledge 
of the effects of its actions on the environment.

• Related to dynamic programming algorithm
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Introduction

• Agent
– Has a set of sensors to observe the state of its environment, and 

a set of actions it can perform to alter its state

Agent

Environment

ActionState Reward

0s 1s 2s0a 1a 2a
0r 1r 2r

Goal: Learn to choose actions that maximize +++ 2
2

10 rrr γγ
10where <≤ γ



AI & CV Lab, SNU 6

• Agent’s learning task
– At each discrete time step t, the agent senses the current state st, chooses a 

current action at, and performs it. The environment responds by giving the 
agent a reward and by producing the succeeding state. The succeeding state 
functions δ and the reward function r, which are either nondeterministic or 
deterministic, are part of the environment and are not necessarily known to 
the agent. 

– In an MDP (Markov Decision Process), the functions δ(st,at)  and r(st,at), 
as defined here, depend only on the current state and action, and not earlier 
states, actions, and rewards.

– Agent performs sequences of actions, observes their consequences, and 
learns a control policy to choose actions that maximize the 
reward accumulated over time.

AS →:π

Introduction (cont.)
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• Several characteristics of reinforcement learning
– Delayed reward

• Training example has the form of a sequence of immediate reward 
values as the agent executes its sequence of actions rather than the form 
of               : Temporal credit assignment problem determining which of 
the actions in its sequence are to be credited with producing the eventual 
rewards. 

– Exploration & Exploitation
• The agent influences the distribution of training examples by the action 

sequence it chooses.
• Exploration of unknown states and actions (to gather new information)
• Exploitation of states and actions that it has already learned will yield 

high reward (to maximize its cumulative reward)

)(, ss π

Introduction (cont.)
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– Partially observed states
• In many practical situations agent’s sensors cannot perceive the entire 

state of the environment at each time step but provide only partial 
information. When agent chooses actions, thus, it needs to consider its 
previous observations together with its current sensors.

– Life-long learning
• Robot learning often requires that robot learns several related tasks 

within same environment using same sensors: A mobile robot need to 
learn how to dock on its battery charger, how to navigate through 
narrow corridors, and how to pick up output from laser printers. This 
setting raises the possibility of using previously obtained experience or 
knowledge to reduce sample complexity when learning new tasks.

Introduction (cont.)
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Learning Task

• Problem based on Markov Decision Process (MDP)
– Assume a finite set     of states, a finite set      of actions, and the 

deterministic functions of δ and r.
• Task of the agent

– Learn a policy,                                        ,  that maximize the cumulative 
reward.

– Cumulative reward value following an arbitrary policy     from an arbitrary 
initial state       :

• : discounted cumulative reward
• : discounted factor for future rewards.

tt asAS =→ )(,: ππ

S A

10 <≤ γ
)(sV π

ts

∑
∞

=
+++ ≡+++≡

0
2

2
1)(

i
it

i
tttt rrrrsV γγγπ

π



AI & CV Lab, SNU 10

– Other definition

– Optimal policy
• Policy       that maximizes             for all statesπ )(sV π

)(),(argmax* ssV ∀≡ π
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Learning Task (cont.)
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– Simple grid-world environment 9.0=γ
G : goal state,

an absorbing state 90001000 32 =++++ γγγ

81010000 32 =++++ γγγ

Learning Task (cont.)
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Q Learning
• How can an agent learn an optimal policy in arbitrary environment?

– difficult to learn the function                      directly
• The training examples of the form (s,a) is not given but the sequence of 

immediate rewards              for  i = 0,1,2… is available.
• Learn a numerical evaluation function defined over states and actions 

and implement the optimal policy in terms of this evaluation function.
• What evaluation function should the agent attempt to learn?

– The optimal action in state    ,

– Agent can acquire the optimal policy by learning V*, provided it has prefect 
knowledge of the immediate the reward function     and the state transition    , 
which is impossible in many practical robot control problems.

AS →:*π
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Q Function

• Q function
– Maximum discounted cumulative reward that can be achieved starting from s

and applying a as the first action

– Optimal action a in s,

– If the agent learn the Q function, 
• it can choose optimal actions even when it has no knowledge of the 

functions     and      

• it can choose optimal action without ever conducting a look ahead search
– get optimal policy by selecting actions with maximal Q values
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Algorithm for Learning Q

• Iterative approximation
– Relationship between Q and V*:
– Recursive definition of Q:

– : learner’s estimate (hypothesis) to Q.
• Represent hypothesis      by large lookup table (Q table) for each state-

action pair
• Table entry with the pair <s, a> stores             

• Training rule

– Learn by observing the resulting new state    and reward r
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• Q learning algorithm (for deterministic MDP)
– For each         initialize the table entry           to zero
– Observe the current state
– Do forever

• Select an action      and  execute it
• Receive immediate reward
• Observe the new state
• Update the table entry for             as follows

• s

as,
s
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deterministic Markov decision process

r is bounded

every state-action pair is visited infinitely often

Algorithm for Learning Q (cont.)
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Illustrative Example

• Assume that training consists of a series of episodes, where episode 
is a sequence of interactions between agent and environment:
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– During each episode, the agent begins at some randomly chosen initial state 
and execute actions until it reaches the goal state

– When it reaches the goal state, the episode ends and the agent is transported 
to a new, randomly chosen, initial state for the next episode.

• Two general properties of Q learning algorithm 
– values never decrease during training.

– Every     value will remain in the interval [0, true Q].

• Deterministic MDP.
• Initialize all     values to zero.
• Non-negative reward.

Q̂

Q̂

),(ˆ),(ˆ  ),,( 1 asQasQnas nn ≥∀ +

),(),(ˆ0  ),,( asQasQnas n ≤≤∀
Q̂

Illustrative Example (cont.)
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Convergence

• The     converge to the true Q!
– Assumption

• System is a deterministic MDP.
• The immediate reward values are bounded.
• The agent selects actions in such a fashion that it visits every possible 

state-action pair infinitely often. 

– The key idea
• The table entry           with the largest error must have its error reduced 

by a factor     whenever it is updated.

Q̂
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• Proof:
– Let      be the table after n updates, and       be the maximum 

error in      ; that is

– For any table entry             updated on iteration n+1, the error in 
the revised estimate                is 

nQ̂
nQ̂
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Convergence (cont.)
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Experimental Strategies

• How actions are chosen by the agent?
– Selection the action     that maximizes           (exploitation)

• The risk to overcommit to actions that are found during early training to 
have high      values

• failing to explore other actions that have even higher values.

– Use a probabilistic approach

• Actions with higher Q values are assigned higher probabilities
• Large k exploit, Small k explore (k<1, k=1, 1<k)
• k is varied with the number of iterations (exploration exploitation)
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Updating Sequence

• Strategy for improving the rate of convergence (training 
efficiency)
– Train the identical episode in reverse chronological order

• Converge in fewer iterations, but requires more memory

– Store past state-action transitions along with the immediate 
reward

• If                is determined by                of the successor state 
and subsequent training changes           , retaining on the 

transition <s,a> may result in the altered value for 

• If            and            are known, many more efficient 
methods possible (simulation)
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Nondeterministic Reward and Actions

• Nondeterministic case
– Reward function           and transition function          : 

probabilistic outcomes

• Nondeterministic Markov decision process
– The probabilistic distributions of           and            depend 

solely on the current state and action
– Expected value of the discounted cumulative reward

– Covered the deterministic case
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• Redefine of Q-value: taking expected value of Q

• Training rule

• : the number of times this state-action pair has been visited 
up to and including the nth iteration
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Nondeterministic Reward and Actions (cont.)
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– Revisions to     are made more gradually than  deterministic 
case 

– By reducing    at some rate during training, convergence to 
correct Q function is achieved

• Convergence of Q learning for nondeterministic MDP
– bounded reward, initialize to arbitrary finite value,

Q̂
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Nondeterministic Reward and Actions (cont.)
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Temporal Difference Learning

• Q-learning
– Learns by iteratively reducing the discrepancy between Q value 

estimates for adjacent states
– A special case of general class of temporal difference algorithms

• learn by reducing discrepancies between estimates made by agent at 
different times

– Q learning training rule :

...

• TD(λ) by Sutton(1988)
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– If         ,
• Considers only one-step discrepancies in the      estimate

As λ increases, the algorithm emphasizes on discrepancies 
based on more distance lookaheads

– If         ,
• Only the observed        values are considered, with no contribution from 

the current       estimate

Motivation of TD(λ)
• In some settings, training will be more efficient if more distant 

lookaheads are considered

0=λ

1=λ

Q̂

Q̂
1+ir

Temporal Difference Learning (cont.)
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Generalizing from Examples

• Most constraining assumption of Q learning
» The target function is represented as an explicit lookup table, 

with a distinct table entry for every distinct input value (state-
action pair)

– A kind of rote learning and make no attempt to estimate the Q
value for unseen state-action pairs by generalizing from those 
that have been seen
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• Practical systems 
– Incorporate function approximation methods (BP) into the Q

learning rule, by substituting a neural network for the lookup 
table and using each update as a training examples :

• Using the encoded state and action as input the network is trained to 
output the target values of      given by training rules (13. 7) and (13,10)

),(ˆ asQ

Q̂

Generalizing from Examples (cont.)
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Relationship to Dynamic Programming

• Reinforcement learning (Q learning) are closely related
with dynamic programming to solve MDP.
– DP: Perfect knowledge of          and       

• Find method using less computational effect  

• Bellman’s equation
– The foundation for many dynamic programming

• Note that Bellman showed that the optimal policy      satisfies the above 
equation, and any policy     satisfying this equation is an optimal policy.

( ) [ ])))(,(())(,()( ** ssVssrEsVSs πδγπ +=∈∀
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• Dynamic Programming: It refers to a collection of algorithms that can be 
used to compute optimal policies, given a perfect model of the environment as a 
Markov decision process. Classical DP algorithms are of limited utility in 
reinforcement learning both because of their assumption of a perfect model and 
because of their great computational expense, but still important theoretically.

• Monte Carlo Methods: Not assuming complete knowledge of the 
environment, they require only experience – sample sequences of states, actions, 
and rewards from online or simulated interaction with an environment. Monte 
Carlo methods are the ways of solving the reinforcement learning problem based 
on averaging sample returns. They are defined only for episodic tasks.

• Temporal-Difference Learning Methods (Combination of Monte Carlo
and Dynamic programming): Like Monte Carlo methods, TD methods can learn 
directly from raw experience without a model of the environment’s dynamics. 
Like DP, TD update estimates based on in part on other learned estimates 
without waiting for a final outcome as in MC methods.  
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