Advanced Computer System Design (Low-power system design)

Seoul National University

Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@elpl.snu.ac.kr

Course Introduction

- Graduate course that covers low-power system design
- Schedule
 - Monday and Wednesday, 4:00 PM to 5:15 PM
- Instructor
 - Prof. Naehyuck Chang
 - <u>naehyuck@elpl.snu.ac.kr</u>
 - Phone: SNU-1834
 - Office: 301-506
- TA
 - Jaehyun Park
 - jhpark@elpl.snu.ac.kr
 - Phone: SNU-1836
 - Office: 301-551

Course Introduction

- Homepage
 - http://elpl.snu.ac.kr/acd08/
 - Under construction
- Language
 - English
 - All the lecture, exam and (possible) presentation will be in English
 - Email inquiry to Instructor must written in English
- Evaluation
 - Attendance (25%) including quizzes and participation of the classes (questions, answers and comments)
 - Midterm (30%)
 - Final (30%)

Course Introduction

- Textbook
 - There is no single textbook for this course
- References
 - DVD ROM achieves from 1994 to present for the all relevant ACM/IEEE conferences
 - TA will post some books (do not expect much from them)
- Course materials
 - PDF format slides will be uploaded one by one

Announcements

- Scheduled absent classes
 - Sept. 8 (ASP-DAC TPC)
- Possible rearrangements of classes, absent classes and/or examinations
 - Nov. 5 (DATE TPC)
 - Nov. 10 and 12 (ICCAD)
- Remote lecture is considered (depending on the internet connection available)
- Student's absences of classes
 - Can be excused for conference attendance with prior notice
 - Appropriate reading assignments will be given

About the Instructor

- Has been contributing to ACM/IEEE low-power system working society since 1999
 - Over 60 technical papers
 - IEEE Transactions on CAD associate editor
 - Technical Program Committee member of
 - DAC and ASP-DAC
 - ICCAD, ISLPED, ISQED, GLSVLSI, CODES+ISSS, PATMOS, ESTIMedia, MSE, etc.
 - Committee Member of
 - SIGDA PhD Forum, ASP-DAC Student Forum, and ACM Graduate Scholarship
 - Major contributions
 - Low-power display systems including DLS
 - Cycle-accurate energy measurement and modeling
 - Practical DVS: memory, DC-DC, heterogeneous cost function, etc.
 - Fuel-cells for portable applications

What to cover

- Device modeling and source of power consumption
 - Long-channel MOSFET model
 - Short-channel effect
 - MOS capacitances
 - Dynamic power of CMOS gates
 - Static power of CMOS gates
- Power estimation
 - Circuit-level power estimation
 - Macromodeling
 - Leakage estimation
 - Power measurement techniques
 - System-level power estimation

What to cover

- Low-power techniques
 - Low-level dynamic power
 - Architectural-level dynamic power
 - Bus encodings
 - Leakage power
 - Glitch power
 - Dynamic voltage scaling (DVS)
 - Dynamic power management (DPM)
- Thermal-aware design
- Peripheral and memory power reduction
- The lecture schedule can be changed by the instructor without notice

- Why do we want to decrease power consumption?
 - The marked wants longer battery life, higher performance and smaller size for portable devices
 - Small embedded systems with a small power source that needs to have a long life time
 - Lower power consumption decreases working temperature of the device

- Higher performance and longer battery life is conflicting demands
 - Sophisticated design techniques is needed to meet both of them
- Power management is one of the most critical design issues
 - Meet the demands of the market
 - Keep the working temperature at a acceptable level

- Thermal issues
- Energy issues
- Power issues

Power delivery and dissipation will be prohibitive

Source: Borkar, De Intelâ

- Designing within limits: power & energy
 - Thermal limits (for most parts self-heating is a substantial thermal issue)
 - Package cost (4-5W limit for cheap plastic package, 100W/cm² air cooled limit, 7.5kW 19" rack)
 - Device reliability (junction temp > 125°C substantial reduction in reliability)
 - Performance (25°C to 105°C: loss of 30% of performance)
- Distribution limits
 - Substantial portion of wiring resource, area for power distribution
 - Higher current lower R, greater dI/dt needs more wire, decoupling capacitors
 - Package capable of low impedance distribution

- Energy capacity limits for portable applications
 - Limit of batteries
 - Energy cost
 - Energy for IT equipment large fraction of total cost of ownership

- High-level energy reduction
 - RTL or higher level
 - Suitable for complex systems
 - Higher energy gain
 - Based on high-level energy model.
 - High-level energy characterization.
 - Abstraction progressively degrades the quality of power estimation

- Low-level energy optimization
 - Has been contributing over dozens of years
 - Enhancement of devices and components
 - General solution that applicable to almost all kinds of use
 - City bus service example
 - Objective: more gas mileage
 - New buses, engine swap, aluminum bodies, new transmissions, etc.
 - In the semiconductor world
 - NMOS
 - CMOS
 - MTCMOS

Light-weight bus

Low-loss transmission

- System-software-level energy optimization
 - City bus service example
 - Optimal speed, engine rpm, shift position scheduling w/original hardware
 - Analysis of a target route
 - Use of component characteristics

System-level approaches give us bigger chance to minimize energy consumption!

- Level of abstraction: engine idle gas consumption
 - Model 1: linear gas consumption per speed:
 g = mv
 - Model 2: counting idle gas consumption when v=0: g = mv + I
 - Model 3: counting engine restarting cost

Proper energy characterization is a primary concern of quality highlevel power saving approach

- Applicable gas saving techniques when a vehicle is temporarily parked
 - **Technique 1**: linear gas consumption model
 - No policy when a vehicle is stopping
 - **Technique 2:** Idle gas consumption
 - Stop engine whenever a vehicle is stopped
 - **Technique 3:** Restarting cost
 - Stop engine when stopping time is more than 2 minutes for instance

- Reading assignment
 - High-level power modeling, estimation, and optimization
 - Macii, E. Pedram, M. Somenzi, F.
 - <u>Computer-Aided Design of Integrated Circuits and Systems</u>, <u>IEEE Transactions on</u>
 - Nov 1998
 Volume: 17, <u>Issue: 11</u>
 On page(s): 1061-1079

