MOSFET, NMOS and CMOS logic 4190.309 2008 Fall Semester

Seoul National University

Naehyuck Chang Dept. of EECS/CSE Seoul National University <u>naehyuck@snu.ac.kr</u>

MOSFET structure

- Source, drain and gate
- Channel length and width

N-channel enhancement MOSFET

- The enhancement-type NMOS transistor with a positive voltage applied to the gate
- An n channel is induced at the top of the substrate beneath the gate

ELPL Embedded Low-Power Laboratory

N-channel enhancement operation

- An NMOS transistor with $v_{GS} > V_t$ and with a small v_{DS} applied.
- The device acts as a resistance whose value is determined by v_{GS}
- The channel conductance is proportional to v_{GS} V_t' and thus iD is proportional to (v_{GS} – V_t) v_{DS}

Triode and saturation modes

Triode region:

MOSFET characteristics

• The $i_D - v_{DS}$ characteristics for a device with $k'_n (W/L) = 1.0 \text{ mA/V}^2$

Seoul National University

Embedded Low-Power

Laboratory

MOSFET characteristics

ELPL Embedded Low-Power Laboratory

Channel-length modulation

- Finite output resistance in saturation
 - Increasing v_{DS} beyond v_{DSsat} causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by DL).

ELPL Embedded Low-Power Laboratory

P-channel MOSFET

(d)

o D

(c)

9

Large-scale operation

• Common-source circuit

ELPL Embedded Low-Power Laboratory

MOS current mirror

11

ELPL Embedded Low-Power Laboratory

MOSFET amplifier

Depletion MOSFET

Seoul National University

Depletion MOSFET

MOS digital logics

• Pull-up and pull-down networks

MOS digital logics

- Implementation of pull-up and pull-down networks
 - Pseudo NMOS
 - Enhanced-mode NMOS
 - Depletion-mode NMOS

How the static current varies

• Static current characteristics

Enhanced-mode NMOS inverter

- Simple and old configuration
 - Relatively small logic swing
 - Small noise margin
 - High static power
 - Now virtually obsolete

ViD2

1DI

000

 Q_2

Embedded Low-Power

Laboratorv

- Initially operates like a constant-current source
 - Ideal VI characteristics
 - Quickly deviates from the constantcurrent source but a lot better than the enhanced-mode NMOS
 - Needs extra processing (ion-implanting channel)

Pseudo NMOS

- CMOS shows excellent characteristics
 - But involves significant area overhead
 - Transistor sizing
 - Talk to you later in detail
- Similar to depletion-mode NMOS
 - But slightly better

CMOS digital logic

• Structure of a CMOS

CMOS digital logic

• Principle of operation

CMOS digital logic

• VI characteristics

CMOS logic gates

• Pull-down and pull-up networks

 $Y = \overline{A(B + CD)}$

CMOS logic gates

- Transistor sizing
 - To maintain a symmetrical characteristic

CMOS logic gates

- Pseudo NMOS
 - Think about the area overhead of the pull-up network

Pass transistor logics

• Pass transistor logics

(a)

(b)

• Pass transistor switches

AO

Dynamic logic gates

- Dynamic operation
 - Precharge and evaluation
 - Requires minimum operating speed

Note: Some figures are from Microelectronic Circuits fourth edition by Sedra and Smith, Oxford.

