Introduction to
Embedded Computing

Ref:
Chap. 1 of High-Performance Embedded Computing

Definition for Embedded Systems

Embedded systems (ES) = information processing
systems embedded into a larger product

keyword: a specific function, embedded within a
larger device, heterogeneous and reactive

Examples:

Main reason for buying is not information processing
Source: P. Marwedel

Embedding a computer

Hybrid Systems
Analog+Digital

Reactive Systems
Sensors/Actuators

Characteristics of Embedded Systems

Application specific
Efficient

energy, code size, run-time, weight, cost
Dependable

Reliability, maintainability, availability, safety, security
Real-time constraints

Soft vs. hard

Reactive - connected to physical environment embedded
sensors & actuators

Hybrid empedaea
Analog and digital real-time

Distributed
Composability, scalability, dependability "

Dedicated user interfaces real-time

Designing embedded systems

No one architecture (hardware or software) can meet

the needs of all applications.

We need to be able to design a system from the

application:
Quickly and efficiently.
With reliable results.

Aspects of embedded system design

ITardware archileclures

* CPUs, co-design, multiprocessors,
networks

Sofllware archileclures

* Processes, scheduling, allocation

Modeling

Analysis and
simulation

* Performance,
power, cost

Synthesis

Verification

Applications

Charactcristics
Specifications
Reflerence designs

Architectures

Both hardware and software architectures are
important.

The structure of the system determines cost,
power, performance.

Different application requirements lead us to
different architectures.

Applications

You can’t design the best embedded systems if
you don’t know anything about your application.
You can’'t be an expert in everything.
But a little knowledge goes a long way.
Domain expertise helps you make trade-offs:
Can the requirements be relaxed?
Can one requirement be traded for another?

Methodologies

We must be able to reliably design systems:
Start from requirements/specification.

Build a system that is fast enough, doesn’t burn too
much energy, and is cheap enough.

Be able to finish it on time.
And know before we start how difficult the project will
be.

Invention lets us get around some key technical
barriers.

Methodology keeps us going.

Modeling

A key aspect of methodology is modeling.
Work with a simplified version of the object.

Modeling helps us predict the consequences of

design decisions.

Models help us work faster (once we have the

model).

We can afford to use models if we can reuse them
in several designs---methodology relies on and

enables modeling.

Disciplines in embedded computing

Core areas:
Real-time computing.
Hardware/software co-design.
Closely related areas:
Computer architecture.
Software engineering.
Low-power design.
Operating systems.
Programming languages and compilers.
Networking.
Secure and reliable computing.
Signal processing ... (applications!!)

History of embedded computing

Applicutions CLsps
(lale 1990s)
Fly-hy-wire Automotive Flash M5
(19505—1960s) Cell engine player
phones comntrol (1997}
19731 [1980) Partable
video player
[early 2000s5)
Technlques Data flow Synchromous
Hat ic 1 [—
analysis (14987} (1581}
(1973 TW/sw
RTOS Statecharts co-design
(1980) (1367) (]
ACE
[1996)
Central Muotorola
Processing GHDOO
Unils (1979) ARM PowerPC
(1983) (1931)
Whirhwind Tnrel Tnrel MIPS Trimedia
(1951) ADDA - A0ED (19a1) (icl- 19905)
(1971 (1974) AT&T
TSP-16
(1980)
1950 1960 1970 1980 1990 2000 2005

Early history

Late 1940’s: MIT Whirlwind computer was
designed for real-time operations.
Originally designed to control an aircraft simulator.

First microprocessor was Intel 4004 in early
1970’s.

Tied to advances in semiconductors

A typical chip in near future

50 square millimeters

50 million transistors

1-10 GHz, 100-1000 MOP/sg mm, 10-100 MIPS/mW
Cost is almost independent of functionality

10,000 units/wafer, 20K wafers/month

$5 per part

Processor, MEMS, Networking, Wireless, Memory

But it takes $20M to build one today, going to $50+M

So there is a strong incentive to port your application,
system, box to the “chip”

Source: RG UCSD

Trends in Embedded Systems

Increasing code size
average code size: 16-64KB in 1992, 64K-512KB in 1996
migration from hand (assembly) coding to high-level languages
Reuse of hardware and software components
processors (micro-controllers, DSPs)
software components (drivers)
Increasing integration and system complexity
integration of RF, DSP, network interfaces
32-bit processors, 10 processors

Structured design and composition methods are essential.

Source: RG UCSD

Embedded Systems: Applications

Transportation

Industrial process controllers ‘4%

Smart buildings

Medical systems m
Military

Security

Robotics

Computer/Communication products, e.g., printers, FAX machines, ...
Emerging multimedia applications & consumer electronics

e.g., cellular phones, personal digital assistants, video-conferencing
servers, interactive game boxes, TV set-top boxes, ...

Multimedia => Increasing computational demands, and
increased reliance on VLSI, HW/SW integration.

Embedded systems
and ubiquitous computing

Ubiquitous computing: Information anytime, anywhere.
Embedded systems provide fundamental technology.

Communication
Technology

Control systems
Feature extragtion
and recognitipn
Sensors/agtors
A/D—caonverters

Optical networking

Netwaork management

Distributed applications

Sehyice provision
UTMS, DECT, Hig

QAINISS
jo Arenp
Real-Time
Dependability

Pervasive/
Ubiquitous computing
Distributed systems
Embedded web systems

Source: P. Marwedel

Importance of Embedded Software

“... the New York Times has 1

estimated that the average = Most of the
American comes into contact functionality
with about 60 micro- " of embedded

processors every day....” systems

[Camposano, 1996] will be
implemented
in software!

Latest top-level BMWs
contain over 100 micro-
processors

Software complexity

» Exponential increase in software
complexity

= |n some areas code size is

doubling every 9 months [ST
Microelectronics, Medea Workshop, Fall
2003]

... > 70% of the development cost

for complex systems such as
automotive electronics and

Eindhoven Embedded Systems

Rob van Ommering, COPA Tutorial, as cited by: Gerrit Miiller:
Opportunities and challenges in embedded systems,

Institute, 2004

communication systems are due

to software development
[A. Sangiovanni-Vincentelli, 1999]

Source: Marwedel

More challenges for embedded SW

\ = Dynamic environments
= Capture the required behaviour!

= Validate specifications

= Efficient translation of specifications

into implementations! &

= How can we check that we meet real-
time constraints?

= How do we validate embedded real-
time software? (large volumes of data,
testing may be safety-critical)

Source: Marwedel

Design goals

Functional requirements: input/output relations.

Non-functional requirements: cost,
performance, power, etc.

Aspects of performance

Embedded system performance can be
measured in many ways:

Average vs. worst/best-case.

Throughput vs. latency.

Peak vs. sustained.

Energy/power

Energy consumption is important for battery life.

Power consumption is important for heat
generation or for generator-powered systems
(vehicles).

Cost

Manufacturing cost must be paid off across all
the systems.

Hardest in small-volume applications.
Manufacturing cost is incurred for each device.

Lifetime costs include software and hardware
maintenance and upgrades.

Other design attributes

Design time must be reasonable. May need to
finish by a certain date.

System must be reliable; reliability requirements
differ widely.

Quality includes reliability and other aspects:
usability, durability, etc.

Example: PDA design

Why did they design it this way?

A ‘Dragonball®' processor?
We all wanted StrongARMs

*The Dragonball used in the early Palm Pilots is a Motorola 68328 Source: MS HPL
MIPS vs. Watts MIPS/W/$
300 45
. S_ARM-110-200
e80 R— 40 @S _ARM-110-233
200 35 E'S_ARM-110-200
MIP + DT R4650 e
50 2 B ARM7
100 S < 25 WARMTIDM
= - B SH7708-100
R o 5 OIDT R4650
IO s e = I COLDFIRE
0 0.5 1 15 2 25 10 01960-JA
WATTS 5 68328

Source: MS HPL

0 | Il 1 1]
I 1 T T 1

Source: MS HPL

BW/WI/$ with hard disk
Bandwidth vs. Watt and $
: :
3 [mFlash a
£ |msRAM ,
E) |msDRaM|
H .) . % " [[WFash
2 (mFiash | z . |msRAM
g |BSRAM |) =z |msDRAM |
g |mSDRAM| Why IPOD used hard disk E |aHardDisk|
This is why PDAs use SORAM @ g
S S _ S S
Standby power Design methodology
Design methodology: a procedure for creating
an implementation from a set of requirements.
Methodology is important in embedded
" (@ Flash ing:
- i computing:
E- I;:ngmk Must design many different systems.
We may use same/similar components in many
different designs.
- Design time, results must be predictable.
Here is why cell phone battery lasts longest, PDA shorter and IPOD only a few hours

Design methodologies

1. Understanding your methodology helps you
ensure you didn’t skip anything.
Compilers, software engineering tools,
computer-aided design (CAD) tools, etc., can be
used to:
help automate methodology steps;
keep track of the methodology itself.

2. Members can work together more easily.

Embedded system design
challenges

Design space is large and irregular.

We don’t have synthesis tools for many steps.
Can’t simulate everything.

May need to build special-purpose simulators
quickly.

Often need to start software development
before hardware is finished.

Design complexity vs. designer
productivity

58% vs. 21%

Designer productivity

Logic transislors
transistors per

per chip

(thousands) / person per month
1,000,000 10,000
100,000 Design complexity =" 1000
— 100
10,000
1000 — e
100 =T 1
10 A ————— Designer productivity
j—

T T T T T
1980 1985 1990 1995 2000 2005 2010

Basic design methodologies

Figure out flow of decision-making.

Determine when bottom-up information is
generated.

Determine when top-down decisions are made.

Waterfall and spiral models

3
\ Prototype
Reguirements
\\ 2 Initial design
Specilicalion
Refined design
Archilecture

A \ Requiremenis ~3=

Cm‘lil\lg >
Maintenance . \ Architecture

Coding
Waterfall Spiral

Hardware design flow

Register transfer
specification

Hlaue assignmaent,
minimization, ele.

— Routahility maodel
Technology-independent ‘:’
C(:!] N logic synthesis [~ Timing analysis
library ~ N +
— s

L Wiring modiel

y
Technology-dependent [
logic synihesis ™ — . Timing analysis

Place
and roule

Technology

databuse

_____ Timing analysis

What is HW/SW Codesign?

Traditional Design

SW and HW partitioning is decided at an early stage, and designs
proceed separately from then onward.

CAD today addresses synthesis problems at a purely hardware level:
efficient techniques for data-path and control synthesis down to silicon.
ECS use diverse (commodity) components
uP, DSP cores, network and bus interfaces, etc.
Codesign

A flexible design strategy, wherein the HW/SW designs proceed in
parallel, with feedback and interaction occurring between the two as the
design progresses.

Final HW/SW partition/allocation is made after evaluating trade-offs and
performance of options.

2 Seek delayed (and even dynamic) partitioning capabilities.

Source: RG UCSD

Hardware/software co-design
flow

Sollwarce/hardware __ Performance, power
partitioning analysis

Sofrware
specification

Hardware
specification

Architecrre

Hardware | Hardware Software ;ut’lwam
modules implementation inplementation miodules

Tntegration
and debngging

@tem]

Platform-based design

Platform includes
hardware, supporting
software.

Two stage process:

Design the platform.

Use the platform.
Platform can be reused to
host many different
systems.

Product
iro

@

Iequirements

Platlorn
design

Platlorm
use

Platform design

Turn system requirements and software models
into detailed requirements.
Use profiling and analysis tools to measure existing
executable specifications.
Explore the design space manually or
automatically.

Optimize the system architecture based on the
results of simulation and other steps.

Develop hardware abstraction layers and other
software.

Programming platforms

Programming environment must be customized

to the platform:
Multiple CPUs.
Specialized memory.
Specialized 1/0 devices.

Libraries are often used to glue together

processors on platforms.

Debugging environments are a particular

challenge.

Standards-based design methodologies

Standards enable large markets.

Standards generally allow products to be
differentiated.

Different implementations of operations, so long as 1/0
behavior is maintained.

User interface is often not standardized.

Reference implementations

Executable program that complies with the 1/0 behavior
of the standard.
May be written in a variety of language.

In some cases, the reference implementation is the
most complete description of the standard.

Reference implementation is often not well-suited to
embedded system implementation:

Single process.

Infinite memory.

Non-real-time behavior.

Designing standards-based systems
Design and implement system components that
are not part of the standard.

Perform platform-independent optimizations.

Analyze optimized version of reference
implementation.

Design hardware platform.

Optimize system software based on platform.
Further optimize platform.

Test for conformity to standard.

H.264/AVC

Implements video coding for a wide range of
applications:

Broadcast and videoconferencing.

Cell phone-sized screens to HDTV.

Video codec reference implementation contains
120,000 lines of C code.

Design verification and validation

Testing exercises an implementation by
supplying inputs and testing outputs.
Validation compares the implementation to a
specification or requirements.

Verification may be performed at any design

stage; compares design at one level of
abstraction to another.

A methodology of methodologies

Embedded systems include both hardware and
software.

HW, SW have their own design methodologies.
Embedded system methodologies control the
overall process, HW/SW integration, etc.

Must take into account the good and bad points of
hardware and software design methodologies used.

Useful methodologies

Software performance analysis.
Architectural optimization.
Hardware/software co-design.
Network design.

Software verification.

Software tool generation.

Models of Computation

Structural models.
Finite-state machines.
Turing machines.
Petri nets.

Control flow graphs.
Data flow models.
Task graphs.

Control flow models.

