
Introduction to
Emb dd d C mp tinEmbedded Computing

Ref: Ref:
Chap. 1 of High-Performance Embedded Computing

Definition for Embedded Systems
Embedded systems (ES) = information processing
systems embedded into a larger product

keyword: a specific function, embedded within a
larger device, heterogeneous and reactiveg , g

Examples:

Main reason for buying is not information processing
Source: P. Marwedel

E b ddi tEmbedding a computer

Hybrid Systems

output l

Hybrid Systems
Analog+Digital

output analog

CPU input analog

mem
embedded
computer

Reactive Systems
Sensors/ActuatorsSensors/Actuators

Characteristics of Embedded SystemsCharacteristics of Embedded Systems

Application specific
Efficient

energy, code size, run-time, weight, costenergy, code size, run time, weight, cost

Dependable
Reliability, maintainability, availability, safety, security

Real time constraintsReal-time constraints
Soft vs. hard

Reactive - connected to physical environment embedded
sensors & actuators

Hybrid
Analog and digital

embedded
real-time

Distributed
Composability, scalability, dependability

Dedicated user interfaces real-time

real time

Dedicated user interfaces

Designing embedded systems

No one architecture (hardware or software) can meet
the needs of all applications.
We need to be able to design a system from the
application:pp

Quickly and efficiently.
With reliable results.e ab e esu s

Aspects of embedded system designAspects of embedded system design

A hit tArchitectures

Both hardware and software architectures are
importantimportant.
The structure of the system determines cost,

fpower, performance.
Different application requirements lead us to
different architectures.

A li tiApplications

You can’t design the best embedded systems if
you don’t know anything about your application.
You can’t be an expert in everything.

But a little knowledge goes a long way.g g g y

Domain expertise helps you make trade-offs:
Can the requirements be relaxed?Can the requirements be relaxed?
Can one requirement be traded for another?

M th d l iMethodologies

We must be able to reliably design systems:We must be able to reliably design systems:
Start from requirements/specification.
Build a system that is fast enough doesn’t burn tooBuild a system that is fast enough, doesn t burn too
much energy, and is cheap enough.
Be able to finish it on time.
And know before we start how difficult the project will
be.

Invention lets us get around some key technical
barriers.
Methodology keeps us going.

M d liModeling

A key aspect of methodology is modelingA key aspect of methodology is modeling.
Work with a simplified version of the object.

d l h l d h fModeling helps us predict the consequences of
design decisions.
Models help us work faster (once we have the
model).
We can afford to use models if we can reuse them
in several designs---methodology relies on and s a d s g s odo ogy s o a d
enables modeling.

Disciplines in embedded computing

Core areas:Core areas:
Real-time computing.
Hardware/software co-design.

Closely related areas:
Computer architecture.
Software engineeringSoftware engineering.
Low-power design.
Operating systems.
Programming languages and compilers.
Networking.
Secure and reliable computingSecure and reliable computing.
Signal processing … (applications!!)

Hi t f b dd d tiHistory of embedded computing

E l hi tEarly history

Late 1940’s: MIT Whirlwind computer was
designed for real time operationsdesigned for real-time operations.

Originally designed to control an aircraft simulator.

Fi t i I t l 4004 i lFirst microprocessor was Intel 4004 in early
1970’s.

Tied to advances in semiconductorsTied to advances in semiconductors
A typical chip in near future

50 square millimeters50 square millimeters
50 million transistors
1-10 GHz, 100-1000 MOP/sq mm, 10-100 MIPS/mW

Cost is almost independent of functionality
10,000 units/wafer, 20K wafers/month
$5 per part
Processor, MEMS, Networking, Wireless, Memory
⌧But it takes $20M to build one today going to $50+M⌧But it takes $20M to build one today, going to $50+M

So there is a strong incentive to port your application,
system box to the “chip”system, box to the chip

Source: RG UCSD

Trends in Embedded Systemsy

Increasing code size
average code size: 16-64KB in 1992 64K-512KB in 1996average code size: 16 64KB in 1992, 64K 512KB in 1996
migration from hand (assembly) coding to high-level languages

Reuse of hardware and software components
processors (micro-controllers, DSPs)
software components (drivers)

Increasing integration and system complexityIncreasing integration and system complexity
integration of RF, DSP, network interfaces
32-bit processors, IO processorsp , p

Structured design and composition methods are essential.

Source: RG UCSD

Embedded Systems: Applications

T iTransportation
Industrial process controllers
Smart buildingsSmart buildings
Medical systems
Military
Security
Robotics
C t /C i ti d t i t FAX hiComputer/Communication products, e.g., printers, FAX machines, ...
Emerging multimedia applications & consumer electronics

e.g., cellular phones, personal digital assistants, video-conferencinge.g., cellular phones, personal digital assistants, video conferencing
servers, interactive game boxes, TV set-top boxes, ...
Multimedia => Increasing computational demands, and
⌧increased reliance on VLSI HW/SW integration⌧increased reliance on VLSI, HW/SW integration.

Embedded systems
d bi it tiand ubiquitous computing

Ubiquitous computing: Information anytime, anywhere.
Embedded systems provide fundamental technology.

Ist.gifg

Source: P. Marwedel

Importance of Embedded SoftwareImportance of Embedded Software

“... the New York Times has
estimated that the average Most of the g
American comes into contact
with about 60 micro-

d ”

functionality
of embedded
systemsprocessors every day....”

[Camposano, 1996]
systems
will be
implemented

Latest top-level BMWs
contain over 100 micro-

p
in software!

contain over 100 micro
processors

Software complexitySoftware complexity
Exponential increase in softwareExponential increase in software
complexity
In some areas code size isIn some areas code size is
doubling every 9 months [ST
Microelectronics, Medea Workshop, Fall
2003]

Rob van Ommering, COPA Tutorial, as cited by: Gerrit Müller:

2003]

... > 70% of the development cost
for complex systems such as Opportunities and challenges in embedded systems,

Eindhoven Embedded Systems Institute, 2004
for complex systems such as
automotive electronics and
communication systems are due y
to software development
[A. Sangiovanni-Vincentelli, 1999]

Source: Marwedel

More challenges for embedded SWMore challenges for embedded SW

Dynamic environmentsy

Capture the required behaviour!

Validate specifications

Efficient translation of specificationsEfficient translation of specifications
into implementations!

H h k th t t lHow can we check that we meet real-
time constraints?

How do we validate embedded real-
time software? (large volumes of data,
t ti b f t iti l)testing may be safety-critical)

Source: Marwedel

D i lDesign goals

Functional requirements: input/output relations.
N f ti l i t tNon-functional requirements: cost,
performance, power, etc.

A t f fAspects of performance

Embedded system performance can be
measured in many ways:measured in many ways:

Average vs. worst/best-case.
Th h t l tThroughput vs. latency.
Peak vs. sustained.

E /Energy/power

Energy consumption is important for battery life.
P ti i i t t f h tPower consumption is important for heat
generation or for generator-powered systems
(hi l)(vehicles).

C tCost

Manufacturing cost must be paid off across all
the systemsthe systems.

Hardest in small-volume applications.

M f t i t i i d f h d iManufacturing cost is incurred for each device.
Lifetime costs include software and hardware
maintenance and upgrades.

Oth d i tt ib tOther design attributes

Design time must be reasonable. May need to
finish by a certain datefinish by a certain date.
System must be reliable; reliability requirements
diff id ldiffer widely.
Quality includes reliability and other aspects:
usability, durability, etc.

E l PDA d iExample: PDA design

Source: MS HPL

MIPS W ttMIPS vs. Watts

Source: MS HPL

MIPS/W/$MIPS/W/$

Source: MS HPL

B d idth W tt d $Bandwidth vs. Watt and $

This is why PDAs use SDRAM

Source: MS HPL

BW/W/$ with hard disk

Why IPOD used hard disk

Source: MS HPL

St db Standby power

Here is why cell phone battery lasts longest, PDA shorter and IPOD only a few hours

Source: MS HPL

D i th d lDesign methodology

Design methodology: a procedure for creating
an implementation from a set of requirementsan implementation from a set of requirements.
Methodology is important in embedded

ticomputing:
Must design many different systems.
We may use same/similar components in many
different designs.
D i ti lt t b di t blDesign time, results must be predictable.

D i th d l iDesign methodologies

1 Understanding your methodology helps you1. Understanding your methodology helps you
ensure you didn’t skip anything.
C il f i i lCompilers, software engineering tools,
computer-aided design (CAD) tools, etc., can be

d tused to:
help automate methodology steps;
keep track of the methodology itself.

2. Members can work together more easily.

Embedded system design
h llchallenges

Design space is large and irregular.
W d ’t h th i t l f tWe don’t have synthesis tools for many steps.
Can’t simulate everything.
May need to build special-purpose simulators
quickly.q y
Often need to start software development
before hardware is finished.before hardware is finished.

Design complexity vs. designer
productivity

58% vs. 21%

B i d i th d l iBasic design methodologies

Figure out flow of decision-making.
D t i h b tt i f ti iDetermine when bottom-up information is
generated.
Determine when top-down decisions are made.

W t f ll d i l d lWaterfall and spiral models H d d i flHardware design flow

Wh t i HW/SW C d i ?What is HW/SW Codesign?

Traditional DesignTraditional Design
SW and HW partitioning is decided at an early stage, and designs
proceed separately from then onward.

CAD today addresses synthesis problems at a purely hardware level:CAD today addresses synthesis problems at a purely hardware level:
efficient techniques for data-path and control synthesis down to silicon.

ECS use diverse (commodity) components
uP DSP cores network and bus interfaces etcuP, DSP cores, network and bus interfaces, etc.

Codesign
A flexible design strategy, wherein the HW/SW designs proceed in
parallel, with feedback and interaction occurring between the two as theparallel, with feedback and interaction occurring between the two as the
design progresses.
Final HW/SW partition/allocation is made after evaluating trade-offs and
performance of options.
S k d l d (d d i) titi i bilitiSeek delayed (and even dynamic) partitioning capabilities.

Source: RG UCSD

Hardware/software co-design
flflow

Pl tf b d d iPlatform-based design

Platform includes
hardware, supportinghardware, supporting
software.
Two stage process:g p

Design the platform.
Use the platform.

Platform can be reused to
host many different
systemssystems.

Pl tf d iPlatform design

T t i t d ft d lTurn system requirements and software models
into detailed requirements.

Use profiling and analysis tools to measure existingUse profiling and analysis tools to measure existing
executable specifications.

Explore the design space manually orExplore the design space manually or
automatically.
Optimize the system architecture based on theOptimize the system architecture based on the
results of simulation and other steps.
Develop hardware abstraction layers and otherDevelop hardware abstraction layers and other
software.

P i l tfProgramming platforms

Programming environment must be customized
to the platform:to the platform:

Multiple CPUs.
S i li dSpecialized memory.
Specialized I/O devices.

Lib i f d l hLibraries are often used to glue together
processors on platforms.
Debugging environments are a particular
challenge.

St d d b d d i th d l iStandards-based design methodologies

Standards enable large marketsStandards enable large markets.
Standards generally allow products to be
diff i ddifferentiated.

Different implementations of operations, so long as I/O
b h i i i t i dbehavior is maintained.
User interface is often not standardized.

R f i l t tiReference implementations

Executable program that complies with the I/O behavior
of the standard.

M b itt i i t f lMay be written in a variety of language.

In some cases, the reference implementation is the
most complete description of the standardmost complete description of the standard.
Reference implementation is often not well-suited to
embedded system implementation:embedded system implementation:

Single process.
Infinite memory.
Non-real-time behavior.

Designing standards-based systemsDesigning standards based systems
Design and implement system components that
are not part of the standardare not part of the standard.
Perform platform-independent optimizations.
A l ti i d i f fAnalyze optimized version of reference
implementation.
D i h d l tfDesign hardware platform.
Optimize system software based on platform.
Further optimize platform.
Test for conformity to standard.

H 264/AVCH.264/AVC

Implements video coding for a wide range of
applications:applications:

Broadcast and videoconferencing.
C ll h i d t HDTVCell phone-sized screens to HDTV.

Video codec reference implementation contains
120 000 li f C d120,000 lines of C code.

D i ifi ti d lid tiDesign verification and validation

Testing exercises an implementation by
supplying inputs and testing outputssupplying inputs and testing outputs.
Validation compares the implementation to a

ifi ti i tspecification or requirements.
Verification may be performed at any design
stage; compares design at one level of
abstraction to another.

A th d l f th d l iA methodology of methodologies

Embedded systems include both hardware and
softwaresoftware.

HW, SW have their own design methodologies.

E b dd d t th d l i t l thEmbedded system methodologies control the
overall process, HW/SW integration, etc.

Must take into account the good and bad points of
hardware and software design methodologies used.

U f l th d l iUseful methodologies

Software performance analysis.
A hit t l ti i tiArchitectural optimization.
Hardware/software co-design.
Network design.
Software verification.Software verification.
Software tool generation.

Models of Computation

Structural modelsStructural models.
Finite-state machines.
Turing machinesTuring machines.
Petri nets.
Control flow graphsControl flow graphs.
Data flow models.
Task graphsTask graphs.
Control flow models.

