Lossy Image Compression

Lossy Image Compression

- Decompression yields an imperfect reconstruction of the original image data
- Focus on the basic concepts of lossy compression adopted in practice and in standards
- Special emphasis on Discrete Cosine Transformbased compression schemes
 - DCT-based schemes form the basis of all the image and video compression standards
- · Sample-based vs. Block-based coding

2008학년도 제 2학기

Sample-Based Coding

- · Compressed on a sample-by-sample basis
 - Samples can be either in the spatial domain or in the frequency domain
- Example: Differential Pulse Code Modulation (DPCM)

Prediction Kernel for DPCM

 $P_{ij} = W_1 X_{ij-1} + W_2 X_{i-1j-1} + W_3 X_{i-1j}$

2008학년도 제 2학기

Quantization

• Quantization:

 the process of representing a large (possibly infinite) set of values with a much smaller set

2-bit encoder

• Input: scalars or vectors

2008학년도 제 2학기

Computational Complexity

• Example: Three prior samples

- P_{ii} requires 3 multiplications, 2 additions
- eij requires 1 subtraction
- q_{ij} requires 1 multiplications
- Multiplications involve small constants
 - » Look-up table methods can be used for faster encoding.

Quantization

$$q_{ij} = \operatorname{round}(\frac{e_{ij}}{\Delta})$$

- Λ : quantization step
- variance(e_{ij}) < variance(x_{ij})

 quantization will not introduce significant distortion
- Covariance function between pixels at distances longer than 8 decays rapidly
 - No benefit to using more than an eight-pixel neighborhood when forming \mathbf{P}_{ij}

2008학년도 제 2학기

Block-Based Coding

- Block-based coding schemes yield:
 - better compression ratios for the same-level of distortion or
 - less distortions for the same compression ratio.
- Spatial-domain vs. Transform-domain block
 coding

Spatial-Domain Block Coding

- Pixels are grouped into blocks.
- Blocks are compressed in the spatial domain.
- Example: Vector-Quantization method

Transform-Domain Block Coding

- · Pixels are grouped into blocks.
- Blocks are transformed to another domain.
- Why transforming X to Y?
 - Hopefully Y is a more compact representation of X
- Lossy transform-based compression:
 - First, perform transformation from X to Y
 - Second, discard the less important information in Y

2008학년도 제 2학기

Compaction Efficiency for Various Transformations

- KLT is the optimum transform:
 - It packs the most energy in the least numbe rof elements in Y.
- KLT has implementation-related deficiencies:
 - Basis functions are image dependent
- · In practice, DCT is used widely
 - Basis functions are image INDEPENDENT.
 - Compaction efficiency is close to that of the KLT.

DCT-Based Coding

- Basic tool: N x N image block from the spatial domain to the DCT domain
- What value for N?
 - N = 8 for compression standards
 - Why 8?
 - » Implementation: 8x8 is appropriate considering the memory requirements and computational complexity
 - » Compaction Efficiency: a blocksize larger than 8x8 does not offer significant improvements

Discrete Cosine Transform

Generic DCT-based Image Coding System

• Entropy coder combines a runlength coder with a Huffman coder

Benefits of DCT

- For highly correlated images, DCT compaction efficiency ~= KLT compaction efficiency
- 2-D DCT and IDCT are separable transformations
 2-D DCT can be obtained by row-wise 1-D DCTs followed by column-wise 1-D DCTs
- DCT basis is image independent.
- There exist fast algorithms that require fewer operations than those required by the definition.

2008학년도 제 2학기

a block from a low-activity region

ZigZag Scan

Fast DCT Algorithms

- Direct Computation
 - Each DCT coefficient requires 64 multiplications and 64 additions
 - For an 8x8 block, 4096 (= 64x64) multiplications and 4096 additions
- Separable Implementation
 - Eight 1-D row-wise DCTs followed by eight 1-D column-wise DCTs
 - » For each 1-D DCT coefficient, 8 Xs and 8 +s
 - » For a 1x8 block, 64 Xs and 64 +s
 - For 16 1-D DCTs, 1024 Xs and 1024 +s
- These numbers are still quite high
- · For real-time implementation, need faster algorithms

Lee's 1-D IDCT Algorithm

$$x(k) = \sum_{n=0}^{N-1} \overline{X(n)} C_{2N}^{(2k+1)n}, k = 0, 1, ..., N-1$$

where $\overline{X(n)} = e(n) X(n)$,

$$e(n) = \begin{cases} 1/\sqrt{2}, \text{ if } n = 0\\ 1, \text{ otherwise} \end{cases}$$

$$\mathbf{C}_{2N}^{(2k+1)n} = \cos(\frac{\pi(2k+1)n}{2N})$$

Lee's 1-D IDCT Algorithm

Main idea: Recursively Divide & Conquer

2008학년도 제 2학기

Lee's 1-D IDCT Algorithm

- From Figure 1 of Lee's paper
 - For N=8,

» # of multiplications = 12

» # of additions = 29

- Input sequence: in bit-reversed order
- Output sequence:
 - Start with (0, 1)
 - Add the prefix 0 to each element (00, 01)
 - Obtain the rest of elements by complementing the existing ones (00, 01) -> (00, 01, 11, 10)

2008학년도 제 2학기

Computational Complexity of DCT Algorithms

- Disadvantages of 2-D DCT methods
 - Storage for up to 128 elements is required
 - » For systems with the small number of registers, not feasible
 - Data addressing is highly irregular
 - » additional overhead for address calculations