ARM Microprocessors 2

Data transfer instructions

@ Single register load and store instructions
= Transfer unit: byte, half-word, word

@ Multiple register load and store instructions
= Multiple transfer using a single instruction

= Useful for function entries/exits & bulk memory
copy
® Single register swap instructions
= An atomic operation

= Useful when implementing semaphores and
mutual exclusion in OS

Data Transfer Instructions
(cont’d)

Single Register Transfer Register-indirect addressing

LDR rO, [r1] ro := mems,[rl]

STRrO, [r1] mems,[rl] = r0

Base+offset addressing
(offset of up to 4Kbytes)

[LDR rO, [r1, #4] | r0 := memy,[r1+4] | [LDRB rO, [r1] | rO := memg[rl]

: - - Note: r10il Mg S1S.
Auto-indexing addressing
LDR rO, [rl, #4]l | rO := mems,[rl + 4]
rli=rl+4

Post-indexed addressing

LDR rO, [r1], #4 r0 := mems,[rl]
rl:=rl+4

Data Transfer Instructions
(cont’d)

COPY: LDRrl, . TABLEl ;rlpointsto TABLE!
LDR r2, . TABLE2 :r2 points to TABLE2
LOOP: LDRrO, [r1]
STRrO, [r2]
ADD rl, rl, #4
ADD r2, r2, #4
.TABLEL: ...
TABLEZ2:... COPY: LDRrl, . TABLE!l ;rlpointsto TABLE1

LDR r2, . TABLE2 ;r2 points to TABLE2
LOOP: LDRrO, [r1], #4
STRrO, [r2], #4

TABLEL: ...
.TABLEZ2:...

Data Transfer Instructions
(cont’d)

@®Example :

m Ccode: A[8]=h + A[8]
¢ A :an array of 100 words
+ 11 : base address of the array A
*r3:h

= ARM code:
ldr r2,[rl, #32]
add r2,r3,r2
Str r2,[rl, #32]

Data Transfer Instructions
(cont’d)
@®Ccode: g = h + A[i]

= 11 : base register for A
mg hi:ir2,13,14
& ARM code:
Idr rb, [rl, r4, asl #2]
add rZ,r3,rb

Data Transfer Instructions
(cont’d)

Multiple Register data Transfers

LDMIA r1, {rO, r2, r5} rO = mems,[rl]
r2 = mems,[rl + 4]
rb = mems,[rl + 8]

Block Load/Store
IA — Increment After
IB — Increment Before

@ Block copy view

= Up or down from the base

register DA — Decrement After
= Address chagne before or DB — Decrement Before
after load/store Stack Pop/Push

FA — full ascending
EA — empty ascending
FD — full descending

ED — empty descending ,

Multiple register transfer
addressing modes

19’ —i 1018, 19’ —w-| 5 1018,
5 rl
rl r0
r9 —im 0 100c 4 19 —-| 100c 4
1000, ¢ 1000,
STMIA r9!, {rO,r1,r5} STMIB r9!, {rO,r1,r5}

1018 16 1018 16

r9 —i 5 100c 16 r9 —hm| 100c 4
rl 5
0 rl

9" —m= 1000, 19" — | r0 1000,

STMDA r9!, {rO,r1,r5} STMDB r9!, {rO,ri1,r5}

CMP
BNE

loop
LDMIA r9!, {rO-r7}
STMIA r10!, {rO-r7}

ro,

Block Memory Copy Example

ril

loop

The mapping between the
stack and block copy views

Addr Pop ==LDM Push ==STM

Mode

FA Full LDMFA | LDMDA STMFA STMIB
Ascending

FD Full LDMFD | LDMIA STMFD STMDB
Descending

EA Empty LDMEA | LDMDB STMEA STMIA
Ascending

ED Empty LDMED | LDMIB STMED STMDA
Descending

Push & Pop using LDM & STM
Full Stack (last full) vs. Empty Stack (next empty)
Ascending vs. Descending

Control flow instructions

-4 terpretation Normal uses

B Unconditional Always take this branch

BAL Always Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Res ult minus or negative

BCC Carry clear Arithmetic operation did not give carry -out

BLO Lower Unsigned comparison gave lower

BCS Carry set Arithmetic operation gave carry -out

BHS Higher or same Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred

BVS Overflow set Signed integer operation; overflow occurred

BGT Greater than Signed integer comparison gave greater than

BGE Greater or equal Signed integer comparison gave greater or
equal

BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than or
equal

BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or same

Control flow instructions

@ Example:

n C code:

» ARM code:
cmp rl,r2
bne L2
add r3,rl, r2

if (i==)) h = i+;

L2:

Control flow instructions

® Example:
s C code:
if (i1=)) h = i+j;
else h=i-j;
s ARM code:
cmp rl,r2
beq L2
add r3,rl, r2
b L3
L2:
sub r3,rl, r2
L3:

Control flow instructions

& Example:
s Ccode:
while (A[il==Kk) i=i+];
= ARM code:
-2
Idr r3, L5 ; r3 is the base register A[]
mov r4, r4, asl #2 r4d =i
Idr r3, [r3, r4] ;r3 = A[i]
cmp r3,r5 ; compare A[i] and k
beq L4
b L3 ; exit loop
L4:
Idr r4, [fp.#-16]
add r4,r4, rl
str r4, [fp#-16]
b L2
L3:
L5:

.word A

Conditional execution

@ Conditional execution can replace ‘branch’ instructions
€ Example
CMP rO, #5 :
BEQ BYPASS if (r01=5) {
ADDr1,r1, r0 ; rli=rl+r0-r2
SUBr1, rl, r2)
BYPASS: ...

With conditional execution _if ((a==b) && (c==d)) e+r;

CMP rO, #5
ADDNE rl, rl, r0 ; CMP rO, r1
SUBNETrL, rl, r2 ; CMPEQ r2, r3

ADDEQ r4, r4, #1

Note: add 2 —letter condition after the 3-letter opcode

Branch and link instructions

@ Branch to subroutine (link register == r14)

BL SUBR ; branch to SUBR
. return here

SUBR: .. : SUBR entry point
MOV pc, r14 ; return
. BL suB1
@ Nested subroutines
SUBIL: ; save work and link register
STMFD r13!, {r0-r2,r14}
BL suUB2

LDMFD r13!, {r0-r2 pc}
SUB2:

MOV pc, r14 ; copy r14 into r15

16

Software Interrupt Instruction

@ Provide a mechanism to call O/S routines

; output rO;7,
SWI SWI_WriteC

SWI SWI_Exit

; return from a user program back to monitor

SWI{<cond>} SWI_number
Ir_svc = addr. of inst following the SWI
Spsr_svc = cpsr
pc = vectors + 0x8
cpsr mode = SVC
cpsr 1 =1 (mask IRQ interrupts) 17

SWI Handler Example

-4

SW1_handler:

STMFD sp!, {rO-rl2,

Ir}

LDR r10, [Ir, #-4]
BIC ri10, r10,#0xFFO00000

; the number in rl0 used to call the service routine
BL service_routine

LDMFD sp!, {rO-rl1l2, pci®

Jump tables

@ Useful for ‘switch’ statement:

BL JTAB

JTAB: CMPrO, #0
BEQ SUBO
CMP r0, #1
BEQ SUBI
CMP r0, #2
BEQ SUB2

Note: slow when the list is long,
and all subroutines are equally
frequent

BL JTAB

JTAB: ADRrl, SUBTAB
CMP rQ, #SUBMAX ; overrun?
LDRLS pc, [r1, rO, LSL #2]
B ERROR
SUBTAB:DCD SUBO
DCD SUBL
DCD SUB2

Hello ARM World!

SWI_WriteC EQU &0

SWI_Exit EQU &1l
ENTRY

START: ADRrl, TEXT

LOOP: LDRB r0, [r1], #1
CMP r0, #0
SWINE SWI_WriteC
BNE LOOP
SWI SWI_Exit

END

AREA HelloW, CODE, READONLY ; declare code area

; output character in rO

; finish program

. code entry point

; r1<- Hello ARM World!

; get the next byte

; check for fext end

. if not end of string, print

; end of execution
TEXT ="Hello ARM World!", &0a, &0d, O

20

PSR Instruction

€ Two instructions for controlling PSR
= MRS Rd, <cpsr | spsr>
= MSR <cpsr | spsr>_<fields>, Rm
m MSR <cpsr | spsr>_<fields>, #immediate

@ Fields: byte regions of PSR
= control (c): psr[0:7]
= Extension (x): psr[8:15]
= status (s): psr[16:23]
= flags (f): psr[24:31]

MRS & MSR Example

BIC rl1, r1, #0x80

MSR cpsr_c,

MRS rl1, cpsr

clear bit 7

rl

22

Coprocessor Instruction

€ MRC: move from coprocessor register to register
€ MCR: move from register to coprocessor register

23

CP15: ARM System Control

Coprocessor
® CP15

= on-chip cache or
caches, memory
management or
protection unit, write
buffer, prefetch
buffer, branch target
cache and system
configuration

= In Supervisor mode,
MRC,MCR used to
access registers

Register Purpose

O~NOOUITWN RO

©

10
13
14
15

ID Register

Control

Translation Table Base
Domain Access Control
Fault Status

Fault Address

Cache Operations

TLB Operations

Read Buffer Operations
TLB Lockdown

Process ID Mapping
Debug Support

Test and Clock Control

4, 11-12 UNUSED

24

Loading Constant Instruction

€® Two pseudoinstructions to move a 32-bit value into
a register

" LDR Rd, =constant
+ MOV Rd, #constant

LDR 10, =0xff == MOV r0, #0xff

" ADR Rd, label
¢ Rd = 32-bit relative address (PC relative add or subtract)

25

