
Software-level 
Power-Aware Computing 

Lecture 2

Lecture Organizations
• Lecture 1: 

• Introduction to Low-power systems 

L bi di• Low-power binary encoding

• Power-aware compiler techniques

• Lectures 2 & 3ectures & 3

• Dynamic voltage scaling (DVS) techniques

– OS-level DVS: Inter-Task DVS

C il l l DVS: I t T k DVS– Compiler-level DVS: Intra-Task DVS

– Application-level DVS

• Dynamic power management

• Lecture 4

• Software power estimation & optimization

• Low power techniques for multiprocessor systems• Low-power techniques for multiprocessor systems

• Leakage reduction techniques
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Voltage, Frequency & Energy
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Basic Idea of DVS

E ∝ Ncycle · VDD
2E Ncycle VDD

(a) No

DeadlinePower

5.02
• 12 5x108 cycle(a) No 

power-down

10 25

50MHz
• 12.5x10 cycle
• 5.0V
• 31.25J

10 25

50MHz

5.02
(b) Power-down • 5x108 cycle

• 5.0V
• 12 5J

10 25
12.5J

20MHz
(c) Dynamic

voltage
• 5x108 cycle
• 2.0V

Time25
2.02

20MHz g
scaling • 2.0J
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→ Slow and Steady wins the race!



Key Issues for successful DVS
• Efficient Detection of Slack/Idle Intervals

• Efficient Voltage Scaling Policy for Slack IntervalsEfficient Voltage Scaling Policy for Slack Intervals

slack
intervalinterval

How to detect How to scale voltage

5
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Commercial DVS Processors
• Transmeta Crusoe

• AMD K2+ (PowerNow Technology)AMD K2  (PowerNow Technology)

• Intel SpeedStep

• XScaleXScale
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Voltage Scaling Processors

Commercial Academic
Transmeta AMD

Intel UC Berkely Ubicom
Processors

S li L l

Crusoe
(LongRun)

Mobile K6
(PowerNow)

Intel
PXA250

UC Berkely
(ARM8)

Ubicom
LART(StrongARM)

200~700MHz 192~588MHz 100~400MHz 5~80MHz 59~251MHz
Scaling Level

S li Ti

1.1~1.65V 0.9~2.0V 0.85~1.3V 1.2~3.8V 0.79~1.65V

1.1 ↔ 1.65V 0.9 ↔2.0V Each step 1.2 ↔ 3.8V
59↔251MHz : 140μs
0 79 1 65V 40Scaling Time

Scaling Power

< 300μs 200μs 500μs 520μs
0.79→1.65V :   40μs
0.79←1.65V : 5.5ms

?? ?? ?? 130μJ ??g μ
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DVS Support in PXA250 
• Use Two Registers in PXA250 Xscale Core

• CCCR (Core Clock Configuration Register):CCCR (Core Clock Configuration Register)

– Specify memory clock & core clock

• CCLKCFG (Core Clock Configuration) Register

– Set FCS (Frequency Change Sequence) bit toSet FCS (Frequency Change Sequence) bit to 
change the clock speed

31 1 0
CP14 register 6 : CCLKCFG

reserved

FSC TURBO

Change if FCS bit = 1

FSC                TURBO
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g



CCCR Setting 

reserved

31
0x41300000 : CCCR

N

9 8

M

7 6

L

5 4 3 2 1 0

L M
N

2 3 4 62 3 4 6

1 1 99.5 .85V 199.1 1.0V 298.6 1.1V

2 1 118.0 235.9 353.9
1 3V

1.0V

1.1V
1.3V

3 1 132.7 265.4 398.9

4 1 147.5 294.9

5 1 165 9 331 8 1 3V5 1 165.9 331.8 1.3V

1 2 199.1
298.

6
1.1V 398.1 1.3V

2 22 2 235.9

1.1V3 2 265.4

4 2 294.9
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5 2 331.9 1.3V

Example Voltage Scaling Code 
1

2

3

4

#include <machine/pmu.h>

#include <machine/cp14.h>

int thread_args[3] = {0, 1, 2};

void Main(void)

{

int i, bb, cc, j;

4

5

6

7

8

9

10

_ g [ ] { , , };

void

change_clock_speed(int speed)
{

int settings[20]={ 0, 0x121, 0x122, 0x123, 0x124, 0x125, 0x1a2, 

for ( k = 1 ; k < 13 ; k++ ) {

change_clock_speed(k);

bb = get_os_time();

for ( i = 0 ; i < 10000 ; i++ ) j = 10;

cc = get_os_time();

printf("%d  %d \n"  k  cc bb)10

11

12

13

14

15

16

0x141, 0x1a4, 0x142, 0x1a5, 0x143, 0x144, 0x145 };

int cccr_val = 0x121, clkcfg_val = 2;

cccr_val = settings[speed];

switch (speed) {

case 6  : clkcfg_val = 3; break;

printf("%d : %d \n", k, cc - bb);

}

}

16

17

18

19

20

21

case 8  : clkcfg_val = 3; break;

case 10 : clkcfg_val = 3; break;

default : clkcfg_val = 2; break;

}

memcpy(0x40000000+0x1300000, &cccr_val, 4);

CP14_WRTIE_CCLKCFG(clkcfg_val);
22

23

24

25

26

27

( g );

}

int

get_os_time()

{

int ostime;
28

29

30

31

int ostime;

memcpy(&ostime, 0x40000000+0xa00010, 4);

return(ostime);

}
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Voltage Scaling in Linux

Kernel module Kernel threadSVS

Wake_upDVS scheduler

Sleep on

setNewVoltage()
전압 조절

setScaledSpeed()

Sleep_on
setScaledSpeed()

K l h d

Wake_up

Device driver
Wake_up

2 ~ 3ms
Kernel thread

ltc1663_i2c_write_data()

Sl

ltc1663_i2c_write_data()
Write 

voltage valueDriver

Sleep_on

Regulate 
CPU V lt

LTC1663 DAC
Write voltageWake_up
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CPU VoltageLTC1663 DAC

ARM IEM DEMO
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Successful Low Power S/W Techniques 

1. Understand workload variations of your target1. Understand workload variations of your target

2 Devise efficient ways to detect them2. Devise efficient ways to detect them

3 Devise efficient ways to utilize the detected workload3. Devise efficient ways to utilize the detected workload 
variations using available H/W supports

13
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Roadmap

• DVS in Non Real-Time SystemsDVS in Non Real Time Systems

• DVS in Real-Time SystemsDVS in Real Time Systems

• Compiler-level DVS: Intra-task DVS

• OS-level DVS: Inter-task DVSOS level DVS: Inter task DVS

• Application-level DVS

–MPEG-decoder implementationMPEG decoder implementation

• Algorithm-level DVS

–Low-power convolution–Low-power convolution

14
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Non Real-Time Jobs

• Non Real-Time Jobs

N ti i t i t• No timing constraints

• No periodic executions

U k WC• Unknown WCET

It is hard to predict the future workload!!

15
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DVS for Non Real-Time Jobs

• Basic Approach:• Basic Approach: 

• Predict workload based on history information

• Usually based on some variations of interval• Usually based on some variations of interval 
scheduler

– PAST, FLAT

– LONG SHORT AGED AVERAGELONG_SHORT, AGED_AVERAGE

– CYCLE, PATTERN, PEAK

16
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Key Question

How can we predict the future workload?

• Based on long term history:
Hard to adapt quickly for the changed workload

• Based on short term history:
Too many clock/voltage changesToo many clock/voltage changes

17
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PAST
• Looking a fixed window into the past

• Assume the next window will be like the previous one

• If the past window was

• mostly busy ⇒ increase speedmostly busy ⇒ increase speed

• mostly idle   ⇒ decrease speed

18
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Example: PAST

size window
busy timenUtilizatio =

PAST FUTURE

time
low utilization low utilization ?

Decrease
speed

Decrease
speed

19
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FLAT
• Try to smooth speed to a global average

• Make the utilization of next window to be <const>

• Set speed fast enough to complete the predictedSet speed fast enough to complete the predicted 
new work being pushed into the coming window

20
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Example: FLAT

<Const>=0.7

??

time

I /D th dIncrease/Decrease the speed
the next utilization to be 0.7
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LONG-SHORT
• Look up the last 12 windows

• Short-term past : 3 most recent windowsShort term past  3 most recent windows

• Long-term past : the remaining windows

• Workload Prediction

• the utilization of next window will be a weightedthe utilization of next window will be a weighted 
average of these 12 windows’ utilizations

22
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Example: LONG-SHORT

utilization = # cycles of busy interval / window size

0 3 5 1 1 1 8 5 3 1 0 0

ti

0 .3 .5 1 1 1 .8 .5 .3 .1 0 0

time
0 1 2 3 4 5 6 7 8 9 10 11 12

276.0
)3(49

)001(.43.5.8.1115.3.0
=

+
+++++++++++ current

time
)(

max276.0 ffclk ×=
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AGED-AVERAGE
• Employs an exponential-smoothing method

• Workload Prediction

• The utilization of next window will be a weightedThe utilization of next window will be a weighted 
average of all previous windows’ utilizations

– geometrically reduce the weightg y g

24
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Example: AGED_AVERAGE

utilization = # cycles of busy interval / window size

0 3 5 1 1 1 8 5 3 1 0 0

ti

0 .3 .5 1 1 1 .8 .5 .3 .1 0 0

time
0 1 2 3 4 5 6 7 8 9 10 11 12

⋅⋅⋅++++= )3.0(
81
8)1.0(

27
40

9
20

3
1average

current
time

maxfaveragefclk ×=
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CYCLE
• Workload Prediction

• Examine the last 16 windows

– Does there exist a cyclic of length X?Does there exist a cyclic of length X?

– If so, predict by extending this cycle

– Otherwise use the FLAT algorithmOtherwise, use the FLAT algorithm

26
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Example: CYCLE

utilization = # cycles of busy interval / window size

0 4 8 1 3 5 7 0

time

0 .4 .8 .1 .3 .5 .7 .0

time
0 1 2 3 4 5 6 7 8

current
time

15.0
4

|01.||7.8.||5.4.||3.0|   measureerror =
−+−+−+−

=
4

Predict : The next utilization will be .3

28
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PATTERN
• A generalized version of CYCLE

• Workload Prediction

• Convert the n-most recent windows’ utilizationsConvert the n most recent windows utilizations 
into a pattern in alphabet {A, B, C, D}.

• Find the same pattern in the pastp p

29
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Example: PATTERN

A B C D

0 0 25 0 5 7 25 1 0

ABCDDPattern = ABCDPattern =

0 0.25 0.5 7.25 1.0

0 .3 .5 1 .1 .35 .6 .9

⋅⋅⋅⋅⋅⋅

1

time
1 2 3 4 8 9 10 11 12⋅⋅⋅⋅⋅⋅5

current
timePredict : The next utilization will be D

30
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Perspectives-based Algorithm
• Per-Task Basis Performance Predictions

dlkdlk
k

WorkWorkEstkWorkEst fseold
new

+
+×

=
1

   

WorkEst
k

IdleWorkDeadlinekDeadline fseold
new

+
++×

=
1
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Deadline
WorkEstPerf =

[Flautner, OSDI2002]

Roadmap

• DVS in Non Real-Time SystemsDVS in Non Real Time Systems

• DVS in Real-Time SystemsDVS in Real Time Systems

• Compiler-level DVS: Intra-task DVS

• OS-level DVS: Inter-task DVSOS level DVS: Inter task DVS

• Application-level DVS

–MPEG-decoder implementationMPEG decoder implementation

• Algorithm-level DVS

–Low-power convolution–Low-power convolution

32
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Two Types of DVS Algorithms
• Inter-task DVS algorithms

• Determine the supply voltage and clock speedDetermine the supply voltage and clock speed 
on task-by-task basis

• Intra-task DVS algorithms

• Determine the supply voltage and clock speed pp y g p
within a single task boundary

33
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Inter-task DVS
• Inter-Task Voltage Scheduling for Hard Real-Time 

Systems [Yao95, Hong98, Okuma99, Shin99, Lee99].
• Problem : Given a set of tasks, how to assign the 

proper speed to each task dynamically while 
guaranteeing all their deadlinesguaranteeing all their deadlines.

• Task-by-task Speed Assignment

Th l k ti d t t k d b f ll i– The slack time due to a task used by following 
tasks, not by the current one.

• Practical Limitations• Practical Limitations

– Requires OS modifications

– Cannot be applied to a single-task environment– Cannot be applied to a single-task environment

– Can be ineffective in a multi-task environment

34
Low Power SW.2 J. Kim/SNU

An Example of Ineffective Inter DVS

task T CD
A
B

8 1
8 1

4
4

C 8 48

1 1

Dominant task

B CA

1

B CA

1
slack

4 6 820
offline schedule

4 6 820
Run-time schedule

• A dominant task (C)
• Exploits small slack times from other tasks.

• Cannot use its own.
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Cannot use its own.

Earlier Version of Intra-task DVS

• Run-time voltage hopping [Lee00]
• Each task is partitioned into N timeslots.

• Frequency and voltage determined for each timeslot.

• Voltage scheduling embedded in application programs• Voltage scheduling embedded in application programs.

• Can be applied to conventional non-DVS OS.

– No systematic guideliney g

– Manual selection of scaling points

– Too much burden for average programmers

f
Task (partitioned into 4 timeslots)

deadline

36
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Overview of Intra-task DVS 

• Intra-task voltage scheduling framework based on a 
static timing analysis of RT programs.
• The clock speed is adjusted in a task by embedded codes.

F ll l it ll l k ti i f ti ti• Fully exploits all slack times coming from execution time 
variations within a single task

• No OS modification 

• Applicable to a single-task environment.

• Provides a systematic methodology for developing DVS-
aware programsaware programs

Automatic Voltage Scaler Tool

37
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Basic Idea : Inter-task DVS

task τ
(WCEC D dli ) (160 l 2 )(WCEC,Deadline) = (160 cycles, 2μsec)
32 different execution paths (p1, …,p32)

Inter-task DVS
80Mhz

The task completes 
its execution at 80Mhzits execution at

0 5

p secp2:1.5μsec
p secp3:1μsec

p secp32:0.5μsec

p secp1:2μsec
p secp2:1.5μsec

deadline

38
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WCEP
Non-WCEP : there is a slack time

Basic Idea : Optimal DVS

task τ
(WCEC D dli ) (160 l 2 )(WCEC,Deadline) = (160 cycles, 2μsec)
32 different execution paths (p1, …,p32)

p1:80Mhz p2:60Mhz p3:40Mhz p32:20Mhz

p secp1:2μsec p2:2μsec p3:2μsec p secp32:2μsec

WCEP
Non-WCEP : there is no slack time

39
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But we cannot know the execution path in advance !!

Basic Idea : Intra-task DVS

b1 WCEPE ti tE ti t
CFG

b1
10

b

WCEPExecution not 
on WCEP
Execution not 
on WCEP

b2
10

bw
h

10
Slack intervalsSlack intervals

bif
5

b3
10Speed slow downSpeed slow down

b6
5

b4
10

Speed slow-downSpeed slow-down

b7
10

b5
10

Need to know the remaining 
worst case execution cycles 
for a new speed

Need to know the remaining 
worst case execution cycles 
for a new speed

40
Low Power SW.2 J. Kim/SNU

10 10for a new speed.for a new speed.



Remaining Execution Cycle 
C iComputation

program
[160]

CRWEC(bi) : the remainingCFG
b1

S1;
if (cond1) S2;
else

[160]

[150 110 70 30]

worst case execution cycles
1

10

belse
while (cond2) {

S3;
if (cond3) S4;

[30] [150,110,70,30]b2
10

bw
h

10

if (cond3) S4;
S5;

}
if (cond4) S6;

[140,100,60]

[20] bif
5

b3
10

Maximum # 
of loopif (cond4) S6;

S7; [130,90,50]

[15]
b6
5

b4
10

of loop 
iterations = 3

[120 80 40][10] b7
10

b5
10

CEC(bi) : the # of clock 
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[120,80,40][ 0] 10 10cycles needed to execute bi

Speed Assignment Algorithm
• Branching edges are 

candidate for speed 
changes : bchanges :
• Branches : The 

execution control 
follows the shorter

b1
10

[160]

[150,110,70,30]
(150→30)

follows the shorter 
path at if-then-else
node. => B-type 
VSEs

b2
10

bw
h

10
[30]

[140 100 60]
• Loops : The execution 

control exits a loop
after it iterates by the 

bif
5

b3
10

[140,100,60]
[20]

smaller number of 
times than the 
maximum iteration 
number => L-type

b6
5

10

b4
10

[130,90,50][15]

number. => L type 
VSEs

5

b7

10

b5[10]
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7
10 10

[120,80,40]
[10]

The Effect of Intra-Task 
S h d liScheduling

bb b b
deadline

idle state

80MHz
(2.5V)

b7
b1

b

b1
b1

b2bif

0.44 μsec 2 μsec

(a) without the intra-task scheduling

b2

bw

h
b2

deadline80MHz
(2.5V)

bif

b

b3

b

b1

bif

2 μsec

16MHz 
(0.7V)

(b) i h h i k h d li

b6

b7

b4

b5

b2 bif b7

b72 μsec
(b) with the intra-task scheduling

Energy Consumption of (b) = 0 34
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Energy Consumption of (a)
= 0.34

The Change of CRWEC

For execution path : (b1,b2,bif,b7)

150

CRWEC(t) (cycles)

150

CRWEC(t) (cycles)

150

100

150

100100 80MHz 100 80MHz

50
deadline

80MHz

80MHz

50
deadline

16MHz

10.7MHz

0
2 time

(μsec)
1

execution time idle time

0
2 time

(μsec)
1

execution time
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execution time idle time execution time

(a) No intra-task scheduling (b) Intra-task scheduling



B-type VSE
• CRWEC

• 150 → 30 b150 → 30

• Speed

• S(bj) ← S(bi) x 1/5

bi
10

[160]if

S(bj) ← S(bi) x 1/5

bj
10

bk
10

[30] [150]

then else10 10

Speed update ratio

45
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L-type VSE
• When the actual loop 

iterations measured at run 
time is 2

• CRWEC

[150,110,70,30]

• 60 → 20

• Speed

bi
10while

• S(bj) ← S(bi) x 1/3
bj
10

[20]
bk
30

Maximum # of 
loop iterations = 3

Speed update ratioSpeed update ratio

The transition overhead is considered to determine a new speed.
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p

VSE Selection

Compute M and CRWEC(bi)M = Max Speed × D

Find candidate L-type VSEs

Compute the maximum
increase Cinc in the original CWCEC

N
(M-CWCEC)<Cinc

Y

No

exclude some 
candidate L-type VSEs. Re-compute CRWEC(bi)

Yes

47
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Select B-type VSEs

Code Generation for VSEs

b1b1

LoopIterNum(bwh)=0
scaling
code

SpeedUpdateRatio = SpeedTable(b1,b2)
NewSpeed = CurSpeed×SpeedUpdateRatio

b

oop te u (bwh) 0code
Change_f_V(NewSpeed)

b2

bwh

scaling
SpeedUpdateRatio 

LoopIterNum(bwh)++scaling
code= 

NewSpeed = CurSpeed×SpeedUpdateRatio

CRWEC(bif)

CRWEC(bif)+40×(3-LoopIterNum(bwh))

b3bif

p p p p

Change_f_V(NewSpeed)

48
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Automatic Voltage Scaler

User provided

Call Graph

p
Information

(ex. loop bound)

C Program
Modified
Compiler

Syntax Tree

Assembly Code Timing
Analyzer

Syntax Tree

Transformed
Program

Code
Transformer

Speed
Allocator

Timing
InformationProgram Transformer Allocator

deadline

Information

Speed
T bl
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dead e
Table

Simulation Results

0.3

MPEG4 encoder MPEG4 decoder

0.2

0.25

o
n
s
u
m

p
ti
o
n

0.1

0.15

z
e
d
 e

n
e
rg

y
 c

o

0.05n
o
rm

a
liz

L th 25% d 7% f th i i l

0

0 50 100 150 200

voltage transition time (μsec)

Less than 25% and 7% of the original program

There is a large difference between WCET and ACET of 
the MPEG 4 decoder
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the MPEG-4 decoder

Simulation Results

40000

MPEG4 encoder MPEG4 decoder

30000

a
n
s
it
io

n
s

10000

20000

#
 o

f 
v
o
lt
a
g
e
 t
r

0

0 50 100 150 200

( )

#

• How many times voltage scaling code were executed 

• When CVTO < 30μsec in MPEG-4 encoder, the number of

voltage transition time (μ sec)

When CVTO < 30μsec in MPEG 4 encoder, the number of 
voltage transitions decreases sharply, and energy consumption 
does not increase rapidly.

• How many copies of voltage scaling code ?
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How many copies of voltage scaling code ?
• 20 VSEs are inserted when CVTO > 50 μsec.

A Profile-Based Intra-Task 
V l S h d liVoltage Scheduling

• IntraVS algorithm based on average-case execution 
information

• Average case execution paths (ACEPs) are the most• Average-case execution paths (ACEPs) are the most 
frequently executed paths

• More effective than the original intraVS algorithmMore effective than the original intraVS algorithm

• The timing constraints of a hard real-time program is 
still satisfied, even if the ACEPs are used for voltage g
scaling decisions.

52
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General IntraVS Algorithm

Select a predicted reference execution path (WCEP)Select a predicted reference execution path (WCEP)

Set the initial speedSet the initial speed

prediction miss

New execution path is

prediction miss

New execution path is 
longer than the reference path

N

Speed is raised Speed is lowered

Y N
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(to meet deadline) (to save energy)

RAEP-based IntraVS
• Motivations

• To make the common case more energy-efficientTo make the common case more energy efficient

• If we use one of hot paths as a reference path for 
intraVS, the speed change graph for the hot paths 
will be a near flat curve with little changes in 
clock speed.

E f th th th t t th h t th th• Even for the paths that are not the hot paths, they 
are more energy-efficient because they can start 
with a lower clock speed that RWEP-based p
IntraVS.

• RAEP is the best representative of the hot paths.
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RAEP-based IntraVS

b1 [95]
CRAEC(bi) : the remaining

l
1

10

b

[95]

[85 55 25]

average case execution cycles

Frequently executed path

b2
10

bw
h

10
[25] [85,55,25]

[75 45]

bif
5

b3
10

# f l

[75,45]

[15]

b6
5

b4
10

average # of loop 
iterations = 2

[75,45]

[15]

b7
10

b5
10 [65 35][10]

Down-VSE
Up-VSE
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10 10 [65,35][ ]

RAEP-based IntraVS

deadline80MHz (2.5V)
b1 dead e( )

b2 bif b6 b716MHz (0.7V)

2 μsec
(a) with the RWEP-based IntraVS

deadlineb1

2 sec

47.5MHz (1.35V)
b1

b2 bif
b6 b7

• There are Up-VSEs as well as Down-VSEs at the RAEP-based 
IntraVS

2 μsec
(b) with the RAEP-based IntraVS

IntraVS.

• The RAEP-based IntraVS achieves 55% more energy reduction.

• But, the deadline can be missed.
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Reference Path Modification
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Path (b1,b3,b5) Path (b1,b3,b4)

Experimental Results

Slack Factor = (deadline-WCET)/deadline
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Slack Factor = (deadline WCET)/deadline

Conclusion
• Presented a novel intra-task DVS algorithm using 

static timing analysis on RWECs

• Provides a framework for automatic DVS-aware low-
power program generation

• The RAEP-based IntraVS algorithm exploits the fact 
that the average-case execution paths are more likely 
to be followed at run time than the WCEPto be followed at run time than the WCEP.

• Demonstrated the effectiveness of the approach 
using MPEG-4 encoder/decoder programsg / p g
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Experiments on Itsy
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Experimental Environment

• Itsy Pocket Computer V2.6

• CPU : Intel StrongARM SA1110

• Frequency scaling: 11 levels (59.0 MHz ~ 206.4 MHz)

• Voltage scaling: 30 levels (1 00 V ~ 2 00 V)• Voltage scaling: 30 levels (1.00 V  2.00 V)

• Default setting: 1.55 V/206.4 MHz

• Linux operating system (ver. 2.0.30)

Itsy
V2.6

Vin Rest ofVin

VRbatt Rbatt

Rest of
Itsy HW

Multimeter 
1

Multimeter 
2 Recoding

Computer
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Experimental Results
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Experimental Results
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Roadmap

• DVS in Non Real-Time SystemsDVS in Non Real Time Systems

• DVS in Real-Time SystemsDVS in Real Time Systems

• Compiler-level DVS: Intra-task DVS

• OS-level DVS: Inter-task DVSOS level DVS: Inter task DVS

• Application-level DVS

–MPEG-decoder implementationMPEG decoder implementation

• Algorithm-level DVS

–Low-power convolution–Low-power convolution
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Inter-task DVS Overview
• Inter-task DVS algorithms

• Determine the supply voltage and clock speedDetermine the supply voltage and clock speed 
on task-by-task basis

• Inter-task DVS

• Is similar to that of imprecise computation in p p
conventional real-time systems

– Imprecise computation
• Use the slack time to increase the values of results

• While guaranteeing the feasible schedule of tasks

–Dynamic voltage scaling–Dynamic voltage scaling
• Use the slack time to lower the voltage/clock speed

• While guaranteeing the feasible schedule of tasks
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Preliminaries
• Computing model

• Non-real-timeNon real time

– tasks have no timing constraints

• Real-TimeReal Time

–Timing constraints

–Periodic and(or) aperiodic tasksPeriodic and(or) aperiodic tasks

–Scheduling policy : EDF, RM, and etc.

• Different DVS algorithms are necessary depending 
on different computing models.on different computing models.
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Inter-Task DVS
• “Run-Calculate-Assign-Run” strategy for the supply 

voltage determination

• Running the current task

• Calculating the maximum allowable execution 
time for the next task

–WCET plus slack time 

• Assigning the supply voltage for the next task

• Running the next task
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Generic Inter-DVS Algorithms
• Consist of two parts

• Slack estimationSlack estimation

– Identify as much slack times as possible

–Slack timesSlack times
• Static slack times

– Extra times available for the next task that can be identified 
staticallystatically

• Dynamic slack times

– Ones caused from run-time variations of the task executions

• Slack distribution

–Adjust the speed so that the resultant speed 
schedule is as flat as possibleschedule is as flat as possible
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Static and Dynamic Approaches
• Off-line (Static) voltage scheduling approaches

• The execution times are assumed to be known aThe execution times are assumed to be known a 
priori

• There are several optimal solutions for EDF, RM, 
and etc.

• On-line (Dynamic) voltage scheduling approaches

• The execution times are assumed to be not 
kknown

• There cannot be an optimal solution
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Slack Estimation Methods

Voltage Scaling Methods Scaling 
Decision

(1) Path-based method
IntraDVS

(1) Path-based method

Off-line(2) Stochastic method

(3) Maximum constant speed

(4) Stretching to NTA
InterDVS

(4) Stretching to NTA

On-line(5) Priority-based slack-stealing

(6) Utilization updating
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Maximum Constant Speed
• The lowest possible clock speed that guarantees the 

feasible schedule of a task set

• EDF scheduling

– If the worst case processor utilization U of a 
given task set is lower than 1.0 under the 
maximum speed           , the task set can be 
scheduled with a new maximum speed

maxf
scheduled with a new maximum speed

maxfUfMSC ⋅=
Maximum constant speed

∑
=

=
n

i i

i

p
cU

1

• Rate Monotonic scheduling
Maximum constant speed

Cti

∑ ⎥
⎤

⎢
⎡

t

C
T

tL
j

j j
i

∑
= ⎥

⎥
⎥⎢

⎢
⎢=

1)( { }iiiMCS dtnitLff <<≤<×= 0,1|)(maxmax
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Example

Period

Length
WCET

Static slack time

timesp
ee

dLength

Task 1 2 1

1 2 3 4 5 60

maxf

d

Task 2 3 1
1 2 3 4 5 60

f

timesp
ee

d

1 2 3 4 5 60

833.0
3
1

2
1

=+=U
MCSf

d

max833.0 ffMCS ⋅=

timesp
ee

d

1 2 3 4 5 60

RM
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Deadline miss



Stretching to NTA
• Even though a given task set is scheduled with the 

maximum constant speed, since the actual execution 
times of tasks are usually much less than their 
WCETs, the tasks usually have dynamic slack times

• For the task τ which is scheduled at time t

If th t t k i l t th )(WCETt +• If the next task is later than

• We can slow down the execution of τ so that its 
execution completes exactly at this next task

)(τWCETt +

execution completes exactly at this next task 
arrival time (NTA)
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Example

NTA NTA

timecurrent time timecurrent time
NTA

NTA
timecurrent time

NTA

timecurrent time
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timecurrent time

Priority-Based Slack Stealing
• Exploits basic properties of priority-driven 

scheduling such as EDF and RM

• When a higher-priority task completes its 
execution earlier than its WCET, the following 
lower priority tasks can use the slack time fromlower-priority tasks can use the slack time from 
the completed higher-priority task

• AdvantageAdvantage

• Most task instances in a hyper-period may have 
chances to utilize dynamic slack timesy

–Because most task executions complete 
earlier than WCETs

–Therefore, many task instances can be 
scheduled with lowered voltages and speeds
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Example

d

Period

Length
WCET

timesp
ee

dLength

Task 1 2 1
1 2 3 4 5 60

Task 2 3 1

Task 3 6 1 tisp
ee

d

Task 3 6 1 time
1 2 3 4 5 60

ed

timesp
ee

1 2 3 4 5 60

timesp
ee

d
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time
1 2 3 4 5 60



Utilization Updating
• The actual processor utilization during run time is 

usually lower than the worst case processor 
utilization

• This method is to estimate the required processor 
performance at the current scheduling point

B l l ti th t d t• By recalculating the expected worst case 
processor utilization

–Using the actual execution times of completedUsing the actual execution times of completed 
task instances
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Example

isp
ee

d

Period

Length
WCET

timesLength

Task 1 2 1
1 2 3 4 5 60

U=0.833
Task 2 3 1

pe
ed

U 0.833

timesp

1 2 3 4 5 60
833.011

=+=U t=0.6 16032 633.0
3
1

2
6.0

=+=U

ed

timesp
ee

1 2 3 4 5 60
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t=1.4
t=2 766.0

3
8.0

2
1

=+=U

Slack Distribution Method
• Greedy approach

• All the slack times are given to the next activatedAll the slack times are given to the next activated 
task

• Most inter-task DVS algorithms have adopted it

• Clearly, this approach is not an optimal solution, 
but is widely used because of its simplicity
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Existing Inter-Task DVS Algorithms

Category Scheduling Policy DVS Policy Used Method

lppsEDF (3)+(4)

ccEDF (6)

Inter-task
EDF

ccEDF (6)

laEDF (6)*

DRA (3)+(4)+(5)
DVS

( ) ( ) ( )

AGR (4)*+(5)

lpSEH (3)+(4)+(5)*

RM
lppsRM (3)+(4)

ccRM (4)*

Intra task Path based method intraShin (1)Intra-task
DVS

Path-based method intraShin (1)

Stochastic method intraGruian (2)
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SimDVS: A Unified DVS Evaluation Environment

Machine specificationTask Set Generator

Slack Estimation
Module

Machine specification

Task Set Specification
Off-line
Slack

information

InterDVS ModuleInputs

Task Execution
Module

Energy Estimation
Module

Executable Program

Profile Information

information

Module Module

V lt

IntraDVS Preprocessing Module

Intra-Task * Energy
ti

CFG

DVS-aware
CFG

CFG
Generator

Voltage
Scaler

IntraDVS Module Outputs

Intra Task
Simulator consumption

* …

CFGGenerator

Stochastic Data Speed Transition
Table
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Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results (IntraDVS)

1.5tio
n

1.5tio
n

1.25

C
on

su
m

pt

1.25

C
on

su
m

pt

0 75

1

ve
 E

ne
rg

y 

a
b 0 75

1

ve
 E

ne
rg

y 

a
b

0.5

0.75

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R
el

at
i

c
d

0.5

0.75

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R
el

at
i

c
d

Slack Ratio (AvailableTime/WCET) Slack Ratio(AvailableTime/WCET)

MPEG4 Decoder MPEG4 Encoder

86
Low Power SW.2 J. Kim/SNU

MPEG4 Decoder

Performance Evaluation DVSPerformance Evaluation DVS 
Algorithms for Hard Real-Time 
Systems Using DEW

DEW - DVS Evaluation Workbench

• XScale-based DVS evaluation 
environment

• Pros

– Allows to monitor real Embedded RT ApplicationsAllows to monitor real 
system behaviors under 
DVS

• Cons

Embedded RT Applications

• Cons

– Slower than software 
simulation

DVS API
/module

VELOS
Embedded RTOS

• Because DEW runs actual 
applications

– Less flexible for Intel DBPXA250

PXA250 
DVS processor

experimental studies
• Because DEW represents a 

single machine specification

Intel DBPXA250
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Embedded RT ApplicationsApplications

JAVA
API

POSIX
API

Socket
API

Win32
API

DVS
API

JAVA Thread Protocol Window Energy

API API API API API

VELOS
Library

I t t M D i DVS

JAVA
(KVM)

Thread
manager

Protocol
stack

Window
manager

Energy
estimatorLibrary

Kernel

boot Interrupt
service Scheduler Memory

allocator
Device
drivers

DVS
module

PXA250 
DVS processor

Libraries Libraries Libraries 
Intel DBPXA250 platform
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p

Evaluation Results Using SimDVS and DEW
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SimDVS DEW

Sources of Differences
• Impacts of

• System overheadSystem overhead

– Basic : context switching overhead and tick 
scheduler overhead

– DVS : slack computation and clock/voltage 
scaling

• System timing resolution

– Simulator : continuous time model

– Real system : discrete time model

• Memory behavior

– Changes in cache and memory access behavior

– Data/Instruction fetch latency
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Example of System Overheads on 
l l fa Real Platform

Second task execution

First task execution with 50 MHz

Second task execution 
with 50 MHz

time
t (t+25) mst (t+25) ms

context switching delay

time

i k h d li
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tick scheduling



System Overhead

0.30%

0.35%

DVS H/W

DVS S/W

DVS H/W
The ratio of time delay caused by 

h
ea

d 
R

at
io

0.20%

0.25%

SYS rest the clock/voltage scaling hardware

DVS S/W

ys
te

m
 O

ve
rh

0.10%

0.15%

DVS S/W
The ratio of time delay caused by 
the slack computation in a DVS 
algorithm

Sy

0.00%

0.05%

F F F A R E F F F A R E F F F A R E F F F A R E

algorithm

SYS rest

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

2 4 6 8

Number of Tasks

The ratio of the rest of the system 
overhead such as context switching 
and timer service

93
Low Power SW.2 J. Kim/SNU

System Overhead Variations
• The system overhead increases very quickly as the 

task execution frequency increases

• In particular, DVS parts increase quickly
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Energy Efficiency Variations
• In DRA, AGR, and lpSHE, the increased system 

overhead (due to the increased execution frequency) 
significantly affect the energy efficiency

Long-period task set Medium-period task set Short-period task set

0.7

0.8

0.9

1

0.7

0.8

0.9

1

0.7

0.8

0.9

1

Long period task set Medium period task set Short period task set

0.4

0.5

0.6

0 3

0.4

0.5

0.6

0 3

0.4

0.5

0.6

0

0.1

0.2

0.3

2 4 6 8

0

0.1

0.2

0.3

2 4 6 8
0

0.1

0.2

0.3

2 4 6 8

95
Low Power SW.2 J. Kim/SNU

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

Changes in Memory System 
h i (1)Behaviors (1)

• Under a DVS-enabled RTOS, 
T k’ ti ti i

5

6

n
t

Task’s execution time increases 
due to the lowered clock speed

• Desirable for reducing 
energy consumption

4

m
pt

io
n

 C
ou

n energy consumption

• But, it can introduce 
negative side effects as well

A i i h

2

3

al
iz

ed
 P

re
em – An increase in the 

number of task 
preemptions which 
increases the number of

1

N
or

m
a increases the number of 

memory accesses

• In aggressive algorithms, the 
number of preemptions

0
2 4 6 8

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

number of preemptions 
increases more rapidly than the 
others
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Changes in Memory System 
h i (2)Behaviors (2)

• PXA250
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1.8 • Performance Monitoring Unit

• 32-way set-associative cache 
of Inst/Data cache

or
y 

A
cc

es
s 

C

1

1.2

1.4

• Each application

• 16-KB program code

al
iz

ed
 M

em
o

0.6

0.8

1

• The increases in memory accesses 
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• The increase in the number of 
preemptions

• The increase in memory
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Number of Tasks
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The increase in memory 
accesses from the algorithm 
itself
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DVS-Aware Algorithm Developmentg p
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Image Convolution

convolution

0 1 1
-1 0 1

-1 -1 0

• One of the fundamental operations of image processing.

• DVS Unfriendly!!• DVS Unfriendly!! 
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Direct Implementation:
C t t W kl d Al ithConstant-Workload Algorithm

• p2 multiplications p2

additions for each 
convolved elementconvolved element.

No Workload 
Variations!Variations!
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Low-Power Implementation

Variable workload
Kernel Analysis

&
Rearrangement

-1

-1

-1-1

-1 8

Kernel[0]
xoffset: -2
yoffset: -2

v: -1
PosPtr

-1
-2

0
0
ll

MinusOnePtr

Decomposed Kernel

Rearrangement

Modified
Convolution
C t ti

-1-1-1
Kernel[1]

v: 8

NegPtr
PosPtr

next

-1
-1

null

NegPtr next null

Execution Time
Prediction &

Voltage/Frequency
Setting

Computation

g

Variable Workload Algorithm 
Based on Kernel Characteristics
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Low-Power Implementation

Kernel Analysis-1 -1-1 K l[0]
MinusOnePtr

Decomposed Kernel

Kernel Analysis
&

Rearrangement-1-1-1

-1-1 8

Kernel[0]

Kernel[1]
v: 8

PosPtr

xoffset: -2
yoffset: -2

next

-1
-1

v: -1

NegPtr
PosPtr

-1
-2

next

0
0

null

M difi d

kernel

C l ti

Execution Time
Prediction &

NegPtr null Modified
Convolution
Computation

input

output
image

Convolution
Process

Voltage/Frequency
Setting

image

Overall processing step
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Kernel Analysis and Rearrangement

• Property 1. For most kernels, the number of distinct Property 1. For most kernels, the number of distinct
kernel elements is small.

• Property 2. 0, 1 and –1 are used frequently.

• Property 3. Many kernel elements have the same absolute 
values.

-1 -2 -10 1 1

0 0 0

1 2 1

-1 0 1

-1 -1 0 1 2 11 1 0
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Modified Convolution Algorithm: SDMK

• For 1 or –1, no multiplication. 

• For 0, no addition & no multiplication. For 0, no addition & no multiplication.

• For the same absolute values, a single multiplication.

0 1 10 1 1

-1 0 1

-1 -1 0

Direct SDMK
Number of

Operations/pixel
9 additions &

9 multiplications

6 additions &

0 multiplications
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Direct vs. SDMK

Original
Kernel

Reversed
Kernel

c b a

a b c

Reversed
Kernel

c b a

Original
Kernel

a b c

d1 d2 d3 d4 d5 d6Input
Sequence

*c *b *a+ +

*c *b *a+ +

d1 d2 d3 d4 d5 d6Input
Sequence

+ +

+ +

step i

*c

*c

*b

*b

*a

*a

+

*c *b *a+ +

*c *b *a+ +

+

+ +

+ +step i+1

step i+2

*c

step i+3

*c

*b

*

*b

*a

*b

*a

*c *b+ +p

step i+4

*c *b

step  i+5

Convolved
Sequence step i step i+1 step i+2 step i+3 step i+4 Convolved

Sequence

Direct implementation SDMK implementation
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Exec Time Prediction & Speed Setting

• By a static method

• Based on the number of required arithmetic 
operationsoperations

• By a dynamic-methody a dynamic method

• Based on actual measurements of execution times

• In the direct algorithm,  by pre-constructed speed 
table
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Experimental Environments

• Itsy Pocket Computer V2.6

• CPU : Intel StrongARM 1110• CPU : Intel StrongARM 1110

• Frequency scaling: 11 levels (59.0 MHz ~ 226.4 MHz)

• Voltage scaling: 30 levels (1.00 V ~ 2.00 V)

• Linux operating system (ver. 2.0.30)
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Results (Energy Dissipation)

• Average 67.6% energy saving in the core processor, and 
62.8% in the whole Itsy system. 
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Results (Execution Time)

• There is no performance degradation over the direct approach• There is no performance degradation over the direct approach.
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Conclusions
• Presented a low-power implementation of image 

convolution algorithm for variable voltage processors.

• The energy efficiency of the proposed implementation 
comes from:

• Smaller Ncycle

• Lower Vdd

E N  V 2
• Fewer memory references

– i.e., less energy consumed in non-CPU 
t

E ∝ Ncycle · VDD
2

components
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MPEG Decoder Implementation

• 버퍼를 활용한 DVS

• Workload-variation 슬랙 시간을 활용하는 것이 가능

• 추가적인 메모리 자원을 소모

– one-buffer-size = image width * image height * g _ g _ g
byte_per_pixel

j+1j
j+2

period

j+1 j+2
VSTj

AETj

OPj+1

Time

Deadline for sj Deadline for sj+1 Deadline for sj+2
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Measurement Results

• 버퍼 방식 DVS 기법 사용 (WCET사용)

• Bitrate of sample video : 163KbpsBitrate of sample video : 163Kbps

• Energy saving : up to 53%
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Energy saving  up to 53%

Demo (1)

• DAQ 보드로 프로파• DAQ 보드로 프로파
일링된 데이터를 실
제 동영상과 같이 표
현현

• Ideal DVS

• DVS Using 
Moving Avg.

• Buffer-Based 
DVSDVS
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현재 화면을 디코딩하는 전압



Demo (2)
• 각 DVS policy 들 사이의 총 전력 소모를 비교
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Energy Optimal Off LineEnergy-Optimal Off-Line 
Voltage Scheduling

Off-Line Volt. Sched.  Problem
• Voltage schedule (speed schedule) : S(t)

• the processor speed as a function of timep p

• The energy consumption under S(t) is given by

E(S) = ∫interval P(S(t)) dt

– P is a convex function from speed to power

• Given N jobs J1, J2, … , JN whereGiven N jobs J1, J2, … , JN where

• ri : the release time of Ji

• di : the deadline of Ji

• ci : the workload (# of execution cycles) of Ji

– assumed to be known a priori

: th i it f J• pi : the priority of Ji

compute a feasible voltage schedule S(t) that minimizes E(S)

• S(t) is feasible iff S(t) gives Ji its workload ci between ri and di
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S(t) is feasible iff S(t) gives Ji its workload ci between ri and di 
for all J1, J2, … , JN

Existing Works for the Problem
• Note that the system model covers

• Fixed-priority (RM, DM) periodic/aperiodic task set

• EDF periodic/aperiodic task set

– pi < pj iff  di < djpi pj i j

• For EDF job sets (a special case) the problem can be• For EDF job sets (a special case), the problem can be 
solved in poly. time by Yao’s algo.[FOCS’95]

• solution space = convex obj func = convexsolution space  convex , obj. func.  convex

• For general job sets, the problem becomes much 
difficult

• main source of difficulty : feasibility condition

• Quan & Hu [TCAD’03]: exhaustive optimal algo.
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p g

• Yun & Kim [TECS’03]: NP-hardness & FPTAS
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