Software—level
Power—Aware Computing

Lecture 2

Lecture Organizations

+ Lectures2 &3
Dynamic voltage scaling (DVS) technigues
— OS-level DVS: Inter-Task DVS
— Compiler—level DVS: Intra—Task DVS
— Application—level DVS
« Dynamic power management

Low Power SW.2 J. Kim/SNU
Voltage, Frequency & Energy Basic Idea of DVS
E o I\Icycle ’ VDD2
Power Deadline
5.02 (a) No 12.5x108 cycle
power-down 5.0V
> »31.25]
10 25
5.02 Ry -+ s (b) Power-down + 5x108 cycle
5.0V
> *12.5]
10 25
(c) Dynamic * 5x108 cycle
20MHz voltage 2.0V
2.02 |, .scaling «2.0J
25 Time

Low Power SW.2 J. Kim/SNU

— Slow and Steady wins the race!

4
Low Power SW.2 J. Kim/SNU

Key Issues for successful DVS

 Efficient Detection of Slack/Idle Intervals
- Efficient Voltage Scaling Policy for Slack Intervals

slack
interval

Commercial DVS Processors

+ Transmeta Crusoe

- AMD K2+ (PowerNow Technology)
* Intel SpeedStep

+ XScale

How to detect How to scale voltage
Voltage Scaling Processors DVS Support in PXA250

Commercial Academic
Transmeta AMD
Processors Crusoe Mobile K6
(LongRun) (PowerNow)

Intel UC Berkely Ubicom
PXA250 (ARMS8) LART(StrongARM)

200~700MHz ~ 192~588MHz 100~400MHz 5~80MHz 59~251MHz

Scaling Level
9 1.1~1.65V 0.9~2.0V 0.85~1.3V 1.2~3.8V 0.79~1.65V

59>251MHz : 140us
0.79->1.65V : 40us
0.79¢-1.65V : 5.5ms

1.1 165V 0.9 2.0V Eachstep 1.2+ 3.8V

Scaling Time
< 300us 200us 500us 520us

Scaling Power ?? ?? ?? 130ud ??

Low Power SW.2 J. Kim/SNU

+ Use Two Registers in PXA250 Xscale Core
+ CCCR (Core Clock Configuration Register):
— Specify memory clock & core clock

+ CCLKCFG (Core Clock Configuration) Register

— Set FCS (Frequency Change Sequence) bit to
change the clock speed

CP14 register 6 : CCLKCFG
31 10

reserved !
FSC TURBO

Change if FCS bit = 1

8
Low Power SW.2 J. Kim/SNU

CCCR Setting Example Voltage Scaling Code

0x41300000 : CCCR

31 9876543210 1 #include <machine/pmu.h> void Main(void)
2 | #include <machine/cpl4.h> {
3 int i, bb, cc, j;
reserved N M L o | int thread_argetal - 0. 1. 2 et e
5 for (k=1;k<13; ki+) {
s | void change_clock_speed(k) ;
7 i change_clock_speed(int speed) bb = get_os_time():
8 iy for (i =0; i <10000 ; i++) j = 10;
3 4 6 9 int settings[20]={ 0, Ox121, Ox122, Ox123, Ox124, Ox125, Oxla2, oc = gitfzs—“ze?: . ooy
2 10 0x141, Oxla4, Ox142, Ox1a5, Ox143, Ox144, Ox145 };) printf("%d = %d \n", k, cc - bb):
11 int cccr_val = 0x121, clkcfg_val = 2;
1] 1] 95 | .8V 199.1| 1.0V |298.6 | 1.1V -] !
13 ccer_val = settings[speed];
14 switch (speed) {
2 1 118.0 235.9 353.9 1.3V 15 case 6 : clkcfg val = 3; break;
. 15 case 8 : clkcfg_val = 3; break;
3 1 132.7 265.4| 1.1V | 398.9 17 case 10 : clkcfg_val = 3; break;
18 default : clkcfg_val = 2; break;
19
b
4 1 147.5 1.0V 294.9 zg memcpy (0x40000000+0x1300000, &ccer_val, 4);
CP14 WRTIE CCLKCFG(clkcfg val);
5] 1] 1659 331.8| 1.3V 2 iy
23
298. 24§ jne
1]12] 19.1 6 1.1V] 398.1 | 1.8V 25§ get_os_tine()
26
{
D) 2 2359 ;; int ostime;
29 memcpy (&ostime, 0x40000000+0xa00010, 4);
3 2 265.4 1.1V zg return(ostime);
3
4 2 294.9
512 339 | 1.3V
9 10
Low Power SW.2 J. Kim/SNU Low Power SW.2 J. Kim/SNU

Voltage Scaling in Linux ARM IEM DEMO

sVs Kernel module Kernel thread

setNewVoltage()

Kernel thread

Device driver

2 +3ms
Itc1663_i2c| write_data()
Itc1663_i2c_write_data() |‘/
E\;‘ voltage value
Wake_up W%e voltage LTC1663 DAC
Regulate
LTC1663 DAC EIRTIEDS
11 12

Low Power SW.2 J. Kim/SNU Low Power SW.2 J. Kim/SNU

Successful Low Power S/W Techniques

1. Understand workload variations of your target
2. Devise efficient ways to detect them

3. Devise efficient ways to utilize the detected workload
variations using available H/W supports

Low Power SW.2 J. Kim/SNU

* DVS in Non Real-Time Systems

« DVS in Real-Time Systems
+ Compiler—level DVS: Intra—task DVS
* OS-level DVS: Inter-task DVS
* Application—level DVS
—MPEG-decoder implementation
+ Algorithm-level DVS
- Low—power convolution

Low Power SW.2 J. Kim/SNU

Non Real-Time Jobs

* Non Real-Time Jobs
* No timing constraints
* No periodic executions
* Unknown WCET

It is hard to predict the future workload!!

Low Power SW.2 J. Kim/SNU

DVS for Non Real-Time Jobs

+ Basic Approach:
* Predict workload based on history information

» Usually based on some variations of interval
scheauler

- PAST, FLAT

- LONG_SHORT, AGED_AVERAGE
— CYCLE, PATTERN, PEAK

Low Power SW.2 J. Kim/SNU

Key Question

How can we predict the future workload?

» Based on long term history:
Hard to adapt quickly for the changed workload

* Based on short term history:
Too many clock/voltage changes

PAST

« Looking a fixed window into the past
« Assume the next window will be like the previous one
 If the past window was

* mostly busy = increase speed
* mostly idle = decrease speed

Low Power SW.2 J. Kim/SNU Low Power SW.2 J. Kim/SNU
Example: PAST FLAT
« Try to smooth speed to a global average
Utilization — __Pusy time * Make the utilization of next window to be <const>
window size « Set speed fast enough to complete the predicted
new work being pushed into the coming window

PAST FUTURES

: : —p /ime

low utilization l low utilization l ?
Decrease Decrease
speed speed
19
Low Power SW.2 J. Kim/SNU

Low Power SW.2 J. Kim/SNU

Example: FLAT

<Const>=0.7

= //me
Increase/Decrease the speed
the next utilization to be 0.7
Low Power SW.2 * J. Kim/SNU

LONG-SHORT

* Look up the last 12 windows
« Short-term past : 3 most recent windows
* Long-term past : the remaining windows

* Workload Prediction

« the utilization of next window will be a weighted
average of these 12 windows’ utilizations

Low Power SW.2 J. Kim/SNU

Example: LONG-SHORT

utilization = # cycles of busy interval / window size
0 3 5 1 1 1 8 5 3 1 0 0

0+.3+.5+1+1+1+.84+.5+.3+4(.1+0+0) current
20276 time
9+4(3)

fa =0.276x f

Low Power SW.2 J. Kim/SNU

AGED-AVERAGE

« Employs an exponential-smoothing method

* Workload Prediction

* The utilization of next window will be a weighted
average of all previous windows’ utilizations

— geometrically reduce the weight

Low Power SW.2 J. Kim/SNU

Example: AGED_AVERAGE

utilization = # cycles of busy interval / window size
0 3 5 1 1 1 8 5 3 1 0 0

2 current

average =10+—0+i(0.1)+§(0.3)+-~- time
3 9 27 81
f., =averagex f_..

25
Low Power SW.2 J. Kim/SNU

CYCLE

» Workload Prediction

» Examine the last 16 windows
— Does there exist a cyclic of length X?
- If so, predict by extending this cycle
— Otherwise, use the FLAT algorithm

Low Power SW.2 J. Kim/SNU

T T T T T T T T T
FUN_Parcant Qe

1k —

e
@
1

merlgf interval
o

=3

.4

- \/\/\/\/\\/\/\/\ f\\/W/\j \\f\\
) L 1 L ! ’N " 1 1 i
" 12 . Py 48 52 54 56 58 6

5
Time (seconds)

0

]

27
Low Power SW.2 J. Kim/SNU

Example: CYCLE

utilization = # cycles of busy interval / window size
,0 4 8 4,383 5 7 .0,

time
cu_rrent
time
erfor measure — |O—.3|+|.4—.5|Z|.8—.7|+|.1—0|:0_15
Predict : The next utilization will be .3

Low Power SW.2 J. Kim/SNU

PATTERN

* A generalized version of CYCLE

* Workload Prediction
« Convert the n—most recent windows’ utilizations
into a pattern in alphabet {A, B8, C, D}.

* Find the same pattern in the past

29
Low Power SW.2 J. Kim/SNU

Example: PATTERN

IAIBIC!DI

0 025 05 7.25 1.0

Pattern = ABCD

Pattern = ABCDD

current
time

Low Power SW.2 J. Kim/SNU

Perspectives—based Algorithm

Per-Task Basis Performance Predictions

Task A'S WIFAton is computed over Nis nberyal
Task &'s performance

prediclion iz sei belore il

/-5_L ERSCULING S93N
A A —l A

(]

-

SE—
Task & axicuies wnil TREE A rosamas exocation Task A & scheduked again
t = presmpied anlil # hoes up lime

k x WorkEst o +Work tse

WOorkEst new =

k+1
. k x Deadline o +Work e + Idle
Deadline new =
k+1
Perf — Workl?st
Deadline [Flautner, OSDI2002]

31
Low Power SW.2 J. Kim/SNU

* DVS in Real-Time Systems
* Compiler-level DVS: Intra—task DVS

Low Power SW.2 J. Kim/SNU

Two Types of DVS Algorithms Inter—task DVS

* Inter—task DVS algorithms - Inter-Task Voltage Scheduling for Hard Real-Time
on task-by—task basis . : Given a set of tasks, how to assign the

proper speed to each task dynamically while
- Intra—task DVS algorithms guaranteeing all their deadlines.

. » Task—by—-task Speed Assignment
« Determine the supply voltage and clock speed . .
within a single task boundary — The slack time due to a task used by following
tasks, not by the current one.

* Practical Limitations
- Requires OS modifications
- Cannot be applied to a single—task environment
— Can be ineffective in a multi-task environment

33 34

An Example of Ineffective Inter DVS Earlier Version of Intra—task DVS

task T D C Run-time voltage hopping [Lee00]
A 8 4 1 » Each task is into N timeslots.
B 8 4 1 * Frequency and voltage determined for each
<& Dominant task * Voltage scheduling in application programs.
+ Can be applied to conventional
1t 1 — No systematic
— Manual selection of scaling points
Al B » A slack ap
d — Too much burden for average programmers
0 2 . 4 6 8 0 2 4 6 8 Task (partitioned into 4 timeslots)
offline schedule Run-time schedule il
« A dominant task (C) .
+ Exploits small slack times from other tasks. deadline
+ Cannot use its own.]

35 36
Low Power SW.2 J. Kim/SNU Low Power SW.2 J. Kim/SNU

Overview of Intra—task DVS

* Intra—task voltage scheduling framework based on a
static timing analysis of RT programs.
« The clock speed is adjusted

 Fully exploits coming from execution time
variations within a single task

* No modification
* Applicable to a environment.

* Provides a for developing DVS—-
aware programs

= Automatic Voltage Scaler Tool

37

Basic ldea : Inter—task DVS

task t
(WCEC,Deadline) = (160 cycles, 2usec)

32 different execution paths (p,, -..,Ps,)

Inter-task DVS
The task completes

its execution at 80Mhz
»:1.5useq
deadline

g

—~—" _
Non-WCEE’g : there is a slack time

Basic Idea : Optimal DVS Basic |dea : Intra—task DVS
z CFG
Deadline 60 e Execution not e WCEP
onWCEP T e

~—
WCEP —~
Non-WCEP : there is slack time

But we cannot know the execution path in advance !!

| 1
[p2:60Mhz] [p3:4OMhz] © oo P3,:20Mhz
_

39
Low Power SW.2 J. Kim/SNU

i
Slack intervals a @
.
©

Speed slow-down
Need to know the remaining
worst case execution cycles
for a new speed.

40
Low Power SW.2 J. Kim/SNU

Remaining Execution Cycle

Computation

program

Cruec(b)) : the remaining
worst case execution cycles

S1;

if (condl) S2;

else

while (cond2) {

S8
if (cond3) S4;
S5;

Maximum #

of loop

iterations = 3

}
if (cond4) S6;
S7;

Cee(by) : the # of clock
cycles needed to execute b;

Low Power SW.2 J. Kim/SNU

Speed Assignment Algorithm

* Branching edges are
candidate for speed
changes :

* Branches : The
execution control
follows the shorter
path at
node. => B-type
VSEs

* Loops : The execution
control exits a
after it iterates by the
smaller number of
times than the
maximum iteration
number. => L-type
VSEs

(150->30)

42
Low Power SW.2 J. Kim/SNU

The Effect of Intra—Task

Scheduling

b, bbb
80MHz if~7
(2.5V)) deadline Q
idle state I
0.44 psec 2 psec Q R
(a) without the intra-task scheduling
gomHz | D

deadline

(2.5V)
N b, b, . OXIO.
z I
usec Q @

0.7V)
(b) with the intra-task scheduling 2

43
Low Power SW.2 J. Kim/SNU

The Change of Cgyec

For execution path : (by,b,,b;,b-)

Crwec(t) (cycles) Crwgc(t) (cycles)
150\ 150
1oor ", 80MHz 100 " 80MHz
50T | ['somHz sor
: “., deadline / “.deadline
80MHz
| N]
0 1 | 0 A LTINS “]
1 2 time 1 2 time
R e 2
(usec) o (usec)
execution time idle time execution time
(a) No intra-task scheduling ~ (b) Intra-task scheduling
Low Power SW.2 J. Kim/SNU

B-type VSE

CHWEC

* Speed if a

* S(bj) S(b|) X

] then else

45
Low Power SW.2 J. Kim/SNU

L-type VSE

* When the actual loop
iterations measured at run
time is

Chwec
° while 9
+ Speed
» S(b) < S(b) x @ @

[Maximum # of
loop iterations = 3

=The transition overhead is considered to determine a new speed.

46
Low Power SW.2 J. Kim/SNU

VSE Selection

M = Max Speed X D [Compute M and Cgryec(b;)]

[Find candidate L-type VSES]

Compute the maximum
increase C;,. in the original Cycgc

exclude some Yes
candidate L-type VSEs. Re-compute Cgyec(b;)
[Select B-type VSEs]—‘
Low Power SW.2 J. Kim/SNU

Code Generation for VSEs

NewSpeed = CurSpeedxSpeedUpdateRatio

SpeedUpdateRatio = SpeedTable(b,,b,)
Change_f_V(NewSpeed)

SpeedUpdateRatio
CWEC(by)

[LooplterNum(bwh)++]

\
()

CRWEC(b,)+40x(3-LooplterNum(b,,))
NewSpeed = CurSpeedxSpeedUpdateRatio

Change_f_V(NewSpeed)

48
Low Power SW.2 J. Kim/SNU

Automatic Voltage Scaler

User provided
Information
(ex. loop bound)

Modified Timing
9 Compiler Analyzer |

Transformed Code Speed
Program L Transformer Allocator
_- [eadine |

49
Low Power SW.2 J. Kim/SNU

Simulation Results

[—MPEG4 encoder ——MPEG4 decoder |

0.3
§o025 -
I
g /—f
2 o2
s |a
o
815
o
f=
o
3
N 0.1
©
13 —
2 0.05

0
0 50 100 150 200
voltage transition time (usec)

+ Less than 25% and 7% of the original program

+ There is a large difference between WCET and ACET of
the MPEG-4 decoder

Low Power SW.2 J. Kim/SNU

Simulation Results

[~ MPEG4 encoder —&— MPEG4 decoder |
40000 '\
30000

20000 \
10000 \ T
0

0 50 100 150 200
voltage transition time (usec)

of voltage transitions

* How many times voltage scaling code were executed

* When Cy;q < 30pusec in MPEG—-4 encoder, the number of
voltage transitions decreases sharply, and energy consumption
does not increase rapidly.

* How many copies of voltage scaling code ?

» 20 VSEs are inserted when Cy;q > 50 psec.

51
Low Power SW.2 J. Kim/SNU

A Profile—Based Intra—Task

Voltage Scheduling

« |ntraVS algorithm based on execution
information

- Average—-case execution paths (ACEPs) are the most
executed paths

« More effective than the original intraVS algorithm

< The timing constraints of a hard real—-time program is
still satisfied, even if the ACEPs are used for voltage
scaling decisions.

Low Power SW.2 J. Kim/SNU

General IntraVS Algorithm

Select a execution path (WCEP)

Set the initial speed

New execution path is
longer than the reference path

o —

RAEP-based IntraVS

« Motivations
* To make the common case more energy—efficient

* |f we use one of hot paths as a reference path for
intraVS, the speed change graph for the hot paths
will be a near flat curve with little changes in
clock speed.

« Even for the paths that are not the hot paths, they
are more energy—efficient because they can start
with a lower clock speed that RWEP-based
IntraVs.

« RAEP is the best representative of the hot paths.

Speed is Speed is
(to meet deadline) (to save energy)
Low Power SW.2 ” J. Kim/SNU Low Power SW.2 * J. Kim/SNU
RAEP-based IntraVS RAEP-based IntraVS
Cragc(b)) : the remaining 80MHz (2.5V) deadline

average case execution cycles

Frequently executed path

average # of loop
iterations = 2

® Down-VSE
O Up-VSE

Low Power SW.2 J. Kim/SNU

16MHz (0.7V)

2
(a) with the RWEP-based IntraVs neee

b, deadline
47.5MHz (1.35V)

2 usec

(b) with the RAEP-based IntraVS

There are Up—-VSEs as well as Down—-VSEs at the RAEP-based
IntraVs.

The RAEP-based IntraVS achieves 55% more energy reduction.
But, the deadline can be missed.

Low Power SW.2 J. Kim/SNU

Reference Path Modification

Experimental Results

0.3 T

T T [T
Modified RAEP-based
RWEP-based --¢--

025 . -

Normalzed Energy Consumption

1 1 1 | |
0 01 02 03 0.4 0.3 0.6 0.7 0.8 09 1.0
Slack Factor

0 1 1 1 1

RAEP RATP Slack Factor = (deadline-WCET)/deadline
Path (b,,bs,bs) Path (b,,bs,b,)

Low Power SW.2 v J. Kim/SNU Low Power SW.2 ” J. Kim/SNU
Conclusion Experiments on Itsy
* Presented a novel intra—task DVS algorithm using

static timing analysis on RWECs (wmtimrgee Yo pegedec
* Provides a framework for automatic DVS—aware low- i

power program generation ”‘j |

* The RAEP-based IntraVS algorithm exploits the fact
that the average—case execution paths are more likely
to be followed at run time than the WCEP.

+ Demonstrated the effectiveness of the approach
using MPEG-4 encoder/decoder programs

59
Low Power SW.2 J. Kim/SNU

{ Static An alyzer

v .
profiling points » profile data

Y L
= Profiler | AVS =
Y v
mpegddec-profile s mpegddec-dvas
. T . - T Power Consnmption
L B v
L amm-linex-gee) anm-linox -goc) T
\ y \ y
Digitial O
s Multimcter |
Lyl | COMPAG sy | " | gl 1 3 :I: L
60
Low Power SW.2 J. Kim/SNU

Experimental Environment

Experimental Results

* Itsy Pocket Computer V2.6
* CPU : Intel StrongARM SA1110
- Frequency scaling: 11 levels (59.0 MHz ~ 206.4 MHz)
- Voltage scaling: 30 levels (1.00 V ~ 2.00 V)
« Default setting: 1.55 V/206.4 MHz
 Linux operating system (ver. 2.0.30)

Recoding
Computer

61
Low Power SW.2 J. Kim/SNU

DVS EXPERIMENTS ON ITSY.

M MPEG-4 Decoder | MPEG-4 encoder
Factors || DVS-aware [nommal | DVSaware [normal |
Energy (ml) 0.11 0.22(0.18) (.28 0.81(0.62)

Normalized Energy 0.51(0.62) 1 0.35(0.46) 1

LExecution Tune (sec) 1.18 0.46 5.34 1.54

WCET (sec) 12 210

Selected B-VSE 2 1

VSEs L-VSE 1 2
Muanagement | Function 2 3
Code Loop 5 8
MANAGEMENT CODE OVERHEAD.
Management Code Code number in Fig. 7 | Number of assembly instruerions

Loop Enter code 1 and 2 30

Loop Header code 3 16
Loop Exn code 4 16

Funerion Enter code 5 14

Function Return code 6 11

B-type VSE code B A2 200

L-type VSE code L. 7= 200

62
Low Power SW.2 J. Kim/SNU

MPEG Decoder DVEmaaac MPEGH Encode: OVS-sraware
o DVSaware o DVS-gware

0k | s

s

o [a0

ws [N .

\

F aw 5 0w

[+ { =0 {
Foxw ES e | £ oax

au — . -

[.
an | beay on fh
—
LT o ¥ on T
am | aeo |
o a a a a as LT [} [[1] o s Ll
Thse (soces T
63

Low Power SW.2 J. Kim/SNU

Roadmap

* DVS in Real-Time Systems

+ OS-level DVS: Inter—task DVS

Low Power SW.2 J. Kim/SNU

Inter—task DVS Overview

* Inter—task DVS algorithms

« Determine the supply voltage and clock speed
on task-by—task basis

* Inter-task DVS

* |s similar to that of imprecise computation in
conventional real-time systems

—Imprecise computation
» Use the slack time to increase the values of results
* While guaranteeing the feasible schedule of tasks

—Dynamic voltage scaling
«» Use the slack time to lower the voltage/clock speed
* While guaranteeing the feasible schedule of tasks

65
Low Power SW.2 J. Kim/SNU

Preliminaries

« Computing model
* Non-real-time
—tasks have no timing constraints
* Real-Time
—Timing constraints
—Periodic and(or) aperiodic tasks
—Scheduling policy : EDF, RM, and etc.

- Different DVS algorithms are necessary depending
on different computing models.

Low Power SW.2 J. Kim/SNU

Inter—-Task DVS

« “Run—Calculate—Assign—Run” strategy for the supply
voltage determination

* Running the current task

« Calculating the maximum allowable execution
time for the next task

—WCET plus slack time
« Assigning the supply voltage for the next task
* Running the next task

67
Low Power SW.2 J. Kim/SNU

Generic Inter—DVS Algorithms

« Consist of two parts
« Slack estimation
—|dentify as much slack times as possible

—Slack times

« Static slack times

— Extra times available for the next task that can be identified
statically

* Dynamic slack times
- Ones caused from run—time variations of the task executions

« Slack distribution

—Adjust the speed so that the resultant speed
schedule is as flat as possible

Low Power SW.2 J. Kim/SNU

Static and Dynamic Approaches

- Off-line (Static) voltage scheduling approaches
« The execution times are assumed to be known a
priori
* There are several optimal solutions for EDF, RM,
and etc.

+ On-line (Dynamic) voltage scheduling approaches

« The execution times are assumed to be not
known

« There cannot be an optimal solution

69
Low Power SW.2 J. Kim/SNU

Slack Estimation Methods

- Scaling
Voltage Scaling Methods Decision
(1) Path-based method
IntraDVS
(2) Stochastic method Off-line
(3) Maximum constant speed
(4) Stretching to NTA
InterDVS
(5) Priority-based slack-stealing On-line
(6) Utilization updating
70
Low Power SW.2 J. Kim/SNU

Maximum Constant Speed

* The lowest possible clock speed that guarantees the
feasible schedule of a task set

« EDF scheduling

—|f the worst case processor utilization U of a
given task set is lower than 1.0 under the
maximum speed f... , the task set can be
scheduled with a new maximum speed

u :i& fMSC =U- fmax
i=1 pi .
. . Maximum constant speed
« Rate Monotonic scheduling

vt

S|t
C
L.(t)=J1L—j‘l : fMCS = fmaxxm.aX{Li(t)|1<iSn10<t<di}
i t i

71
Low Power SW.2 J. Kim/SNU

Static slack time

Period
Length WCET
2 1
3 1
11

Deadline miss

Low Power SW.2 J. Kim/SNU

Stretching to NTA

* Even though a given task set is scheduled with the
maximum constant speed, since the actual execution
times of tasks are usually much less than their
WCETs, the tasks usually have dynamic slack times

* For the task t which is scheduled at time t
« If the next task is later than t+WCET (7)
* We can slow down the execution of t so that its

execution completes exactly at this next task
arrival time (NTA)

73
Low Power SW.2 J. Kim/SNU

current time time ™ current time Ume

NTA 4_

™ current time time

™ current time time

bN

Low Power SW.2 J. Kim/SNU

Priority—Based Slack Stealing

« Exploits basic properties of priority—driven
scheduling such as EDF and RM
« When a higher—priority task completes its
execution earlier than its WCET, the following
lower—priority tasks can use the slack time from
the completed higher—priority task
« Advantage
* Most task instances in a hyper—period may have
chances to utilize dynamic slack times
—Because most task executions complete
earlier than WCETs

—Therefore, many task instances can be
scheduled with lowered voltages and speeds

75
Low Power SW.2 J. Kim/SNU

Period
Length

2 1

3 1

Task 3 6 1

J. Kim/SNU

Low Power SW.2

Utilization Updating

* The actual processor utilization during run time is
usually lower than the worst case processor
utilization

* This method is to estimate the required processor
performance at the current scheduling point

« By recalculating the expected worst case
processor utilization

—Using the actual execution times of completed
task instances

77

Low Power SW.2 J. Kim/SNU

Period
Length

WCET

2

Low Power SW.2

time

time

time

J. Kim/SNU

Slack Distribution Method

* Greedy approach

« All the slack times are given to the next activated
task

« Most inter—task DVS algorithms have adopted it

« Clearly, this approach is not an optimal solution,
but is widely used because of its simplicity

79

Low Power SW.2 J. Kim/SNU

Existing Inter—Task DVS Algorithms

Category Scheduling Policy DVS Policy Used Method
IppsEDF 3)+4)
ccEDF (6)
laEDF 6)*
EDF
Inter-task DRA B)+(A)+(5)
DVS AGR (A)*+(5)
IpSEH R3)+4)+(B)*
IppsRM 3)+(4
RM pp 3+
ccRM a)*
Intra-task | Path-based method intraShin (€D
DVS Stochastic method intraGruian 2)

Low Power SW.2

J. Kim/SNU

SimDVS: A Unified DVS Evaluation Environment

Task Set Generator

InterDVS Module u Machine specification

Off-line —
Task Set Specification Slack Slack Estimation
) . Module
information
Executable Program -
Profile Information Task Execution Energy Estimation
KL Module Module
I IntraDVS Preprocessing Module | Z
D B3 !
|IntraDVS Modulel |Outputs|
CFG DVS-aware -
Energy
Generator CFG Intra-Task I consumption
_________________________________ Simulator -
Stochastic Data Speed Transition
Table
81

Low Power SW.2 J. Kim/SNU

Normalized Energy Consumption

=}
©

=}
@

=}
~

=}
@

=}
12

=}

=}
w

o
ra

=}

Experimental Results

0.8 |
> 0.7
0.6

0.5

0.4
Lower Bound

0.3

T T
=
=
=
= | ‘
|
|
[
Normalized Energy Consumption

2 4 5 8 10 12 14 18
Number of Tasks

OlppsEDF MccEDF OJaEDF ODRA MAGR BIpSHE

(a) DVS for EDF

Low Power SW.2

I - e
aretical Lower Bou

-
The

4 6 8 10 12 14 16
Number of Tasks
OlppsRM BccRM

(b) DVS for RM

J. Kim/SNU

Experimental Results

Normalized Energy Consumption
Normalized Energy Consumption
o
b
I
Il
I
Il
I
Il

01 02 03 04 05 06 07 08 09 1 100 50 20 10 5 4 3 °
Worst Case Pracessor Utilization
OlppsEDCF WccEDF OlcEDF ODRA MAGR OIpSHE

(a) WCPU

Number of Scaling Levels
BlppsEDF M ccEDF OlaEDF ODRA MAGR BIpSHE

(b) Machine Specification

83

Low Power SW.2 J. Kim/SNU

nergy Consumption

Normalized

(a) WCPU=1.0 & ACPU=0.55

09

08

0.7

0.6

Normalized Energy Consumption

04 02 03 04 05 06 07 0.8 09 0.1
Speed Bound Factor (of)

~#-|ppsEDF -M-ccEDF - IaEDF
=&DRA #=AGR —8=|pSHE

Low Power SW.2

02 03 04 05 06 07 08 00

Speed Bound Factor (o)

—4—|ppsEDF M-ccEDF —#&|aEDF
—>-DRA -¥-AGR ——|pSHE

(b) WCPU=0.6 & ACPU=0.33

J. Kim/SNU

Experimental Results

Speed Bound Factor

Speed Bound Factar

(a) laEDF (b) ccEDF

85
Low Power SW.2 J. Kim/SNU

Experimental Results (IntraDVS)

c c
2 st 2 15
(=% [=%
£ £
=} =}
2 125 2 125
[= o
o o
> >
j=2] j=2)
z ! c !
c =
fm} A u
[[
Z 075 e b =
© —o—¢ ©
© ©
@ —k—d o

0.5 — 0.5

1 12 14 16 1.8 2 22 24 26 28 3 1 12 14 16 1.8 2 22 24 26 28 3
Slack Ratio (AvailableTime/WCET) Slack Ratio(AvailableTime/WCET)
MPEG4 Decoder MPEG4 Encoder
86
Low Power SW.2 J. Kim/SNU

Performance Evaluation DVS
Algorithms for Hard Real-Time
Systems Using DEW

DEW - DVS Evaluation Workbench

* XScale—-based DVS evaluation
environment

* Pros
— Allows to monitor real Embedded RT Applications
system behaviors under
DVS
» Cons VELOS
— Slower than software Embedded RTOS
simulation
* Because DEW runs actual
applications - I
- Less flexible for
experimental studies Intel DBPXA250

» Because DEW represents a
single machine specification

Low Power SW.2 J. Kim/SNU

Embedded RT Applications

+ JAVA Socket = Win32
API API API

} JAVA Thread Protocol | Window
(KVM) manager stack | manager

Interrupt Memory = Device
+ boct service szl allocator | drivers

Evaluation Results Using SimDVS and DEW

Normalized Energy Consumption

)
@

o
3

o
®

o o o o
v » R o
Normalized Energy Consumption
o
o

1)
IS

|| L.] = L. L. L.] L

o
[

Intel DBPXA250 platform DIWSEDF.c;;:a;;:memsm DIWSEDFICOEDF[D)IED\F/\D,DH“AGRDIDSHE
Sources of Differences Example of System Overheads on
+ Impacts of a Real Platform

« System overhead

— Basic : context switching overhead and tick
scheduler overhead

- DVS : slack computation and clock/voltage
scaling

« System timing resolution
— Simulator : continuous time model
— Real system : discrete time model
« Memory behavior
— Changes in cache and memory access behavior
— Data/Instruction fetch latency

91
Low Power SW.2 J. Kim/SNU

time
t (t+25) ms

context switching delay
v N
[l 0 ol
I

tick scheduling

92
Low Power SW.2 J. Kim/SNU

+ The system overhead increases very quickly as the
task execution frequency increases
= DVSH/W * In particular, DVS parts increase quickly
0.30% - 5332 :;vv: ————————————————————————————————————— The ratio of time delay caused by
o TSYS rest the clock/voltage scaling hardware
g 0.25%
go = DVSS/W v v |
g 015% The ratio of time delay caused by vooe|moveol aaox |- oo LAV]
£ _ the slack computation in a DVS . M . = N DR s
(‘%“ A I — e —— H % algorithm A -) o
0005 [l = SYSrest , L B .
525@5@ 5%5@5—3% E%B@g:@ E%%@ggi The ratio of the rest of the system
e T T T overhead such as context switching
Number of Tasks and timer service
Low Power SW.2 ” J. Kim/SNU Low Power SW.2 * J. Kim/SNU
* In DRA, AGR, and IpSHE, the increased system BehaVIOI'S (1)
overhead (due to the increased execution frequency) " Under a DVS-enabled RTOS,
i Aifi] . ask’s execution time increases
significantly affect the energy efficiency dus to the lowered Glock Speed
sl » Desirable for reducing
5 energy consumption
=l | + But, it can introduce
g negative side effects as well
o — " - § . = Anincrease in the
oo lom- W w o m - ~ & number of task
0 0 08 3 preemptions which
o7 or or 1 é 2 increases the number of
00 " 00 5 memory accesses
0 = In aggressive algorithms, the
03 0s number of preemptions
02 0 ; L increases more rapidly than the
o o o1 : Nomber of Tasks. ° others
0" . . o - rbor of Te (T ;um:f . - - 0 IppsEDF B coEDF O 1aEDF 0 DRA M AGR B IpSHE
Low Power SW.2 * J. Kim/SNU Low Power SW.2 * J. Kim/SNU

Changes in Memory System

Behaviors (2)

PXA250
18 « Performance Monitoring Unit
« 32-way set—associative cache
Hd I T - of Inst/Data cache

Each application
16—-KB program code

The increases in memory accesses
can be attributed to two sources

* The increase in the number of
preemptions
* The increase in memory

L accesses from the algorithm

2 ¢ g 8 itself
Number of Tasks

@ IppsEDF B ccEDF U laEDF U DRA B AGR I IpSHE

Normalized Memory Access Count
o
> -

97
Low Power SW.2 J. Kim/SNU

References

* Transmeta Corporation. Crusoe Processor.
http://www.transmeta.com, June 2000.

* AMD Corporation. PowerNow! Technology.
http://www.amd.com, December 2000.

* Intel Corporation. Intel XScale Technology.
http://developer.intel.com/ design/ intelxscale/, November 2001.

1. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis
Techniques for Low—Power Hard Real-Time Systems on
Variable Voltage Processor. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 178-187, December 1998.

* Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-
Time Embedded Systems on Variable Speed Processors. In
Proceedings of the International Conference on Computer—
Aided Design, pages 365—-368, November 2000.

* H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic
and Aggressive Scheduling Techniques for Power—Aware Real—
Time Systems. In Proceedings of IEEE Real-Time Systems
Symposium, December 2001.

Low Power SW.2 J. Kim/SNU

References

« P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for
Low—Power Embedded Operating Systems. In Proceedings of
18th ACM Symposium on Operating Systems Principles
(SOSP'01), October 2001.

< D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for
Low—-Energy Hard Real-Time Applications. |IEEE Design and
Test of Computers, 18(2):20-30, March 2001.

F. Gruian. Hard Real-Time Scheduling Using Stochastic Data
and DVS Processors. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 46—
51, August 2001.

« W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling
Algorithm for Dynamic—Priority Hard Real-Time Systems Using
Slack Time Analysis. To appear in Proceedings of Design,
Automation and Test in Europe (DATE'02), March 2002.

99
Low Power SW.2 J. Kim/SNU

References

« D. Grunwald, P. Levis, and K. |. Farkas. Policies for Dynamic
Clock Scheduling. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation, pages 73-86,
October 2000.

* S. Lee and T. Sakurai. Run—time Voltage Hopping for Low—
power Real-Time Systems. In Proceedings of the 37th Design
Automation Conference, pages 806—809, June 2000.

« T. Burd and R. Brodersen. Design Issues for Dynamic voltage
scaling . In Proceedings of the International Symposium on Low
Power Electronics and Design, pages 9-14, July 2000.

* D. Burger and T. M. Austin. The SimpleScalar Tool Set, version
2.0. Technical Report 1342, University of Wisconsin—Madison,
CS Department, June 1997.

* F.Yao, A. Demers, and A. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proceedings of the IEEE Foundations
of Computer Science, pages 374-382, 1995.

100
Low Power SW.2 J. Kim/SNU

DVS-Aware Algorithm Development

101

Image Convolution

* One of the fundamental operations of image processing.
« DVS Uniriendly!!

102

Low Power SW.2 J. Kim/SNU Low Power SW.2 J. Kim/SNU
Direct Implementation: Low—-Power Implementation
Constant—Workload Algorithm
pxo (__ pecomposedkenel) Variable workload
cmel LN [Kemel Analysi
200 TN eatonen B
7—/— : 1fa]a Tl
s > - p? multiplications p? = -
y additions for each J Comvolution
convolved element. L __ j Computation
Execution Time
Prediction &
» Voltage/Frequency

No Workload

g i o Variations!
'r;‘j / o * 5 |povvors
7 7 SUMMER

103
Low Power SW.2 J. Kim/SNU

Setting

Variable Workload Algorithm
Based on Kernel Characteristics

104
Low Power SW.2 J. Kim/SNU

OW—Powe plementatic Kernel Analysis and Rearrangement
« Property 1. For most kernels, the number of distinct
kernel elements is small.
n (Decomposed Kernel | * Property 2. 0, 1 and —1 are used frequently.
A TIE: - | Er—— ... i * Property 3. Many kernel elements have the same absolute
N T il T values.
—r=]
1 G0 0 0 e
Low Power SW.2 o J. Kim/SNU
Modified Convolution Algorithm: SDMK Direct vs. SDMK
* For 1 or -1, no multiplication.
* For 0, no addition & no multiplication.
+ For the same absolute values, a single multiplication. Orginal origina
gm0 oo (D
e L T @ T @ T @ T ®T &1 vt 0T o 1w @1 &1 %]

'BERE
ERIEE
-1]-1]0
Direct SDMK
Number of 6 additions &
Operations/pixel 0 multiplications

107
Low Power SW.2 J. Kim/SNU

Convolved

| Convolved [
Sequence

| Step 1 [step i+1 | step i+2 [slepi+3 [step i+4] Sequence | I I | |]

Direct implementation SDMK implementation

108
Low Power SW.2 J. Kim/SNU

Exec Time Prediction & Speed Setting

- By a static method

+ Based on the number of required arithmetic
operations

* By a dynamic—method
* Based on actual measurements of execution times

. Int;[lhe direct algorithm, by pre—constructed speed
table

109
Low Power SW.2 J. Kim/SNU

Experimental Environments

ltsy Pocket Computer V2.6
* CPU : Intel StrongARM 1110
« Frequency scaling: 11 levels (59.0 MHz ~ 226.4 MHz)
 Voltage scaling: 30 levels (1.00 V ~ 2.00 V)
+ Linux operating system (ver. 2.0.30)

g . | - "‘.!q "‘ | o [
g a
2

: I
' J]
! Multimeter hultimeter _".;m}
|
|
|

Rest of Recoding
W Computer

=
5

1 2

0 s
i { I \"Rmu} Rbatt
4 Lo

110
Low Power SW.2 J. Kim/SNU

Results (Energy Dissipation)

Energy dissipation in core with 3x 3 kernels Energy dissipation in the whole Itsy system with 3x 3 kernels

1400 200.0
180.0
1200
160.0
100.0 140.0
- 2 1200
Z 800 :
% 7 1000
60.0 H
E 80.0
400 60.0
200 oo
200
L “g 00
kernell kernel2 kernel3 kerneld kernel5 Kernell Kernel2 Kernel3 Kerneld Kernel§
0 direct B SDMKustic O SDMKdymmic 0 direct B SDMKsaiic O SDMKiymamic
Average in the core processor, and
in the whole ltsy system.
111
Low Power SW.2 J. Kim/SNU

Results (Execution Time)

Execution times with 3X 3 kernels

300000
250000 |-
200000

g
= 5150000

3 100000 |
50000 |
o L ‘ ‘ ‘ ‘ L]
kernell kernel2 kernel3 kerneld kernel 15
[O direct B SDMKistatic O SDMKdyanmic]
* Thereis over the direct approach.
112

Low Power SW.2 J. Kim/SNU

Conclusions

* Presented a low—power implementation of image
convolution algorithm for variable voltage processors.

* The energy efficiency of the proposed implementation

MPEG Decoder Implementation

HHE &88t DVS
Workload-variation &2 Al2t2 &256l= 20| Jts

=II&O0| As A
comes from: FHRE Mocl HeEE 22 .
- one-buffer-size = image_width * image_height *
» Smaller Ncycle byte_per_pixel
+ Lower Vyy
. 2
- Fewer memory references | E € Neyee © Vi period
- i.e., less energy consumed in non—CPU j i+1 -
components i+2 _
AT, ALU Time
OPy1
Deadline for s, Deadline for s, Deadline for s,
Low Power SW.2 " J. Kim/SNU Low Power SW.2 . J. Kim/SNU
Measurement Results Demo (1)
HIH %A DVS J|& AH2 (WCETAHE)
+ Bitrate of sample video : 163Kbps DAQ EC2 map o =
- 2E & HOoIHE & _
TEEL E T
] =
; » ldeal DVS ¥
. + DVS Using
- % % Moving Avg.
= ,." e iy & . Buffer—Based DVS Using Maving Awr, (Mo-Bufering)
=Il 4] ‘.31‘“.& f‘-ﬁ‘i ; |'Fi”' :
7 151 2'26- 301 451325 sa:rr s?e 51 s?slgza mgmsu 1126 1201 1275 1351 1426 DVS 1.3

« Energy saving : up to 53%

115
Low Power SW.2 J. Kim/SNU

NEVEEELER
Low Power SW.2 J. Kim/SNU

Demo (2)

2t DVS policy & AI0|Q & &3 ALZE H|w

wen |deal Feedback
= Ful lor-Based

Low Power SW.2 J. Kim/SNU

Energy—Optimal Off-Line
Voltage Scheduling

Off-Line Volt. Sched. Problem

Voltage schedule (speed schedule) : S(t)
the processor speed as a function of time
The energy consumption under S(t) is given by
E(S) = [inenal P(S(1)) dt
- P is a convex function from speed to power

Given N jobs J;, Js, ... , Jy Where
r; : the release time of J;
d; : the deadline of J,
c; : the workload (# of execution cycles) of J;
—assumed to be known a priori
p; : the priority of J,
compute a feasible voltage schedule S(t) that minimizes E(S)

S(t) is feasible iff S(t) gives J; its workload c; between r;and d;
forall J;, Jd, ... , Jy

119
Low Power SW.2 J. Kim/SNU

Existing Works for the Problem

* Note that the system model covers
* Fixed-priority (RM, DM) periodic/aperiodic task set
+ EDF periodic/aperiodic task set
- p;<p iff d;<d,

« For EDF job sets (a special case), the problem can be
solved in poly. time by Yao’s algo.[FOCS’'95]

« solution space = convex , obj. func. = convex

* For general job sets, the problem becomes much
difficult

* main source of difficulty : feasibility condition
« Quan & Hu [TCAD’'03]: exhaustive optimal algo.
* Yun & Kim [TECS'03]: NP—-hardness & FPTAS

120
Low Power SW.2 J. Kim/SNU

References

* Optimal algorithm for EDF job sets
* F.Yao, A. Demers, S. Shenker, “A Scheduling Model for

Reduced CPU Energy”, In Proc. Foundations of Computer
Sciences (FOCS'95), 1995

Heuristic for FP job sets

* G. Quan and X. Hu, “Energy Efficient Scheduling for Real—
Time Systems On Variable Voltage Processor”, In Proc.
Design Automation Conference (DAC'01), 2001.

« Exhaustive optimal algorithm for FP job sets
* @G. Quan and X. Hu, “Minimum Energy Fixed Priority
Scheduling for Variable Voltage Processors”, |IEEE
;&r&sactions on Computer Aided Design and Systems,
* NP-hardness proof & FPTAS for FP job sets
* H.=S. Yun and J. Kim, “On Energy—Optimal Voltage
Scheduling for Fixed—Priority Hard Real-Time Systems”,

ég(l)\g Transactions on Embedded Computing Systems,

Low Power SW.2 J. Kim/SNU

