
Software-level
Power-Aware Computing

Lecture 2

Lecture Organizations
• Lecture 1:

• Introduction to Low-power systems

L bi di• Low-power binary encoding

• Power-aware compiler techniques

• Lectures 2 & 3ectures & 3

• Dynamic voltage scaling (DVS) techniques

– OS-level DVS: Inter-Task DVS

C il l l DVS: I t T k DVS– Compiler-level DVS: Intra-Task DVS

– Application-level DVS

• Dynamic power management

• Lecture 4

• Software power estimation & optimization

• Low power techniques for multiprocessor systems• Low-power techniques for multiprocessor systems

• Leakage reduction techniques

2
Low Power SW.2 J. Kim/SNU

Voltage, Frequency & Energy

7.000

5.000

6.000

3.000

4.000

Clock speedEnergy

0 000

1.000

2.000

1 3
1.5

1.7
1.9

2.1
2.3

2.5
0.000

0.5
0.7

0.9
1.1

1.3
Voltage

3
Low Power SW.2 J. Kim/SNU

Basic Idea of DVS

E ∝ Ncycle · VDD
2E Ncycle VDD

(a) No

DeadlinePower

5.02
• 12 5x108 cycle(a) No

power-down

10 25

50MHz
• 12.5x10 cycle
• 5.0V
• 31.25J

10 25

50MHz

5.02
(b) Power-down • 5x108 cycle

• 5.0V
• 12 5J

10 25
12.5J

20MHz
(c) Dynamic

voltage
• 5x108 cycle
• 2.0V

Time25
2.02

20MHz g
scaling • 2.0J

4
Low Power SW.2 J. Kim/SNU

→ Slow and Steady wins the race!

Key Issues for successful DVS
• Efficient Detection of Slack/Idle Intervals

• Efficient Voltage Scaling Policy for Slack IntervalsEfficient Voltage Scaling Policy for Slack Intervals

slack
intervalinterval

How to detect How to scale voltage

5
Low Power SW.2 J. Kim/SNU

Commercial DVS Processors
• Transmeta Crusoe

• AMD K2+ (PowerNow Technology)AMD K2 (PowerNow Technology)

• Intel SpeedStep

• XScaleXScale

6
Low Power SW.2 J. Kim/SNU

Voltage Scaling Processors

Commercial Academic
Transmeta AMD

Intel UC Berkely Ubicom
Processors

S li L l

Crusoe
(LongRun)

Mobile K6
(PowerNow)

Intel
PXA250

UC Berkely
(ARM8)

Ubicom
LART(StrongARM)

200~700MHz 192~588MHz 100~400MHz 5~80MHz 59~251MHz
Scaling Level

S li Ti

1.1~1.65V 0.9~2.0V 0.85~1.3V 1.2~3.8V 0.79~1.65V

1.1 ↔ 1.65V 0.9 ↔2.0V Each step 1.2 ↔ 3.8V
59↔251MHz : 140μs
0 79 1 65V 40Scaling Time

Scaling Power

< 300μs 200μs 500μs 520μs
0.79→1.65V : 40μs
0.79←1.65V : 5.5ms

?? ?? ?? 130μJ ??g μ

7
Low Power SW.2 J. Kim/SNU

DVS Support in PXA250
• Use Two Registers in PXA250 Xscale Core

• CCCR (Core Clock Configuration Register):CCCR (Core Clock Configuration Register)

– Specify memory clock & core clock

• CCLKCFG (Core Clock Configuration) Register

– Set FCS (Frequency Change Sequence) bit toSet FCS (Frequency Change Sequence) bit to
change the clock speed

31 1 0
CP14 register 6 : CCLKCFG

reserved

FSC TURBO

Change if FCS bit = 1

FSC TURBO

8
Low Power SW.2 J. Kim/SNU

g

CCCR Setting

reserved

31
0x41300000 : CCCR

N

9 8

M

7 6

L

5 4 3 2 1 0

L M
N

2 3 4 62 3 4 6

1 1 99.5 .85V 199.1 1.0V 298.6 1.1V

2 1 118.0 235.9 353.9
1 3V

1.0V

1.1V
1.3V

3 1 132.7 265.4 398.9

4 1 147.5 294.9

5 1 165 9 331 8 1 3V5 1 165.9 331.8 1.3V

1 2 199.1
298.

6
1.1V 398.1 1.3V

2 22 2 235.9

1.1V3 2 265.4

4 2 294.9

9
Low Power SW.2 J. Kim/SNU

5 2 331.9 1.3V

Example Voltage Scaling Code
1

2

3

4

#include <machine/pmu.h>

#include <machine/cp14.h>

int thread_args[3] = {0, 1, 2};

void Main(void)

{

int i, bb, cc, j;

4

5

6

7

8

9

10

_ g [] { , , };

void

change_clock_speed(int speed)
{

int settings[20]={ 0, 0x121, 0x122, 0x123, 0x124, 0x125, 0x1a2,

for (k = 1 ; k < 13 ; k++) {

change_clock_speed(k);

bb = get_os_time();

for (i = 0 ; i < 10000 ; i++) j = 10;

cc = get_os_time();

printf("%d %d \n" k cc bb)10

11

12

13

14

15

16

0x141, 0x1a4, 0x142, 0x1a5, 0x143, 0x144, 0x145 };

int cccr_val = 0x121, clkcfg_val = 2;

cccr_val = settings[speed];

switch (speed) {

case 6 : clkcfg_val = 3; break;

printf("%d : %d \n", k, cc - bb);

}

}

16

17

18

19

20

21

case 8 : clkcfg_val = 3; break;

case 10 : clkcfg_val = 3; break;

default : clkcfg_val = 2; break;

}

memcpy(0x40000000+0x1300000, &cccr_val, 4);

CP14_WRTIE_CCLKCFG(clkcfg_val);
22

23

24

25

26

27

(g);

}

int

get_os_time()

{

int ostime;
28

29

30

31

int ostime;

memcpy(&ostime, 0x40000000+0xa00010, 4);

return(ostime);

}

10
Low Power SW.2 J. Kim/SNU

Voltage Scaling in Linux

Kernel module Kernel threadSVS

Wake_upDVS scheduler

Sleep on

setNewVoltage()
전압 조절

setScaledSpeed()

Sleep_on
setScaledSpeed()

K l h d

Wake_up

Device driver
Wake_up

2 ~ 3ms
Kernel thread

ltc1663_i2c_write_data()

Sl

ltc1663_i2c_write_data()
Write

voltage valueDriver

Sleep_on

Regulate
CPU V lt

LTC1663 DAC
Write voltageWake_up

11
Low Power SW.2 J. Kim/SNU

CPU VoltageLTC1663 DAC

ARM IEM DEMO

12
Low Power SW.2 J. Kim/SNU

Successful Low Power S/W Techniques

1. Understand workload variations of your target1. Understand workload variations of your target

2 Devise efficient ways to detect them2. Devise efficient ways to detect them

3 Devise efficient ways to utilize the detected workload3. Devise efficient ways to utilize the detected workload
variations using available H/W supports

13
Low Power SW.2 J. Kim/SNU

Roadmap

• DVS in Non Real-Time SystemsDVS in Non Real Time Systems

• DVS in Real-Time SystemsDVS in Real Time Systems

• Compiler-level DVS: Intra-task DVS

• OS-level DVS: Inter-task DVSOS level DVS: Inter task DVS

• Application-level DVS

–MPEG-decoder implementationMPEG decoder implementation

• Algorithm-level DVS

–Low-power convolution–Low-power convolution

14
Low Power SW.2 J. Kim/SNU

Non Real-Time Jobs

• Non Real-Time Jobs

N ti i t i t• No timing constraints

• No periodic executions

U k WC• Unknown WCET

It is hard to predict the future workload!!

15
Low Power SW.2 J. Kim/SNU

DVS for Non Real-Time Jobs

• Basic Approach:• Basic Approach:

• Predict workload based on history information

• Usually based on some variations of interval• Usually based on some variations of interval
scheduler

– PAST, FLAT

– LONG SHORT AGED AVERAGELONG_SHORT, AGED_AVERAGE

– CYCLE, PATTERN, PEAK

16
Low Power SW.2 J. Kim/SNU

Key Question

How can we predict the future workload?

• Based on long term history:
Hard to adapt quickly for the changed workload

• Based on short term history:
Too many clock/voltage changesToo many clock/voltage changes

17
Low Power SW.2 J. Kim/SNU

PAST
• Looking a fixed window into the past

• Assume the next window will be like the previous one

• If the past window was

• mostly busy ⇒ increase speedmostly busy ⇒ increase speed

• mostly idle ⇒ decrease speed

18
Low Power SW.2 J. Kim/SNU

Example: PAST

size window
busy timenUtilizatio =

PAST FUTURE

time
low utilization low utilization ?

Decrease
speed

Decrease
speed

19
Low Power SW.2 J. Kim/SNU

FLAT
• Try to smooth speed to a global average

• Make the utilization of next window to be <const>

• Set speed fast enough to complete the predictedSet speed fast enough to complete the predicted
new work being pushed into the coming window

20
Low Power SW.2 J. Kim/SNU

Example: FLAT

<Const>=0.7

??

time

I /D th dIncrease/Decrease the speed
the next utilization to be 0.7

21
Low Power SW.2 J. Kim/SNU

LONG-SHORT
• Look up the last 12 windows

• Short-term past : 3 most recent windowsShort term past 3 most recent windows

• Long-term past : the remaining windows

• Workload Prediction

• the utilization of next window will be a weightedthe utilization of next window will be a weighted
average of these 12 windows’ utilizations

22
Low Power SW.2 J. Kim/SNU

Example: LONG-SHORT

utilization = # cycles of busy interval / window size

0 3 5 1 1 1 8 5 3 1 0 0

ti

0 .3 .5 1 1 1 .8 .5 .3 .1 0 0

time
0 1 2 3 4 5 6 7 8 9 10 11 12

276.0
)3(49

)001(.43.5.8.1115.3.0
=

+
+++++++++++ current

time
)(

max276.0 ffclk ×=

23
Low Power SW.2 J. Kim/SNU

AGED-AVERAGE
• Employs an exponential-smoothing method

• Workload Prediction

• The utilization of next window will be a weightedThe utilization of next window will be a weighted
average of all previous windows’ utilizations

– geometrically reduce the weightg y g

24
Low Power SW.2 J. Kim/SNU

Example: AGED_AVERAGE

utilization = # cycles of busy interval / window size

0 3 5 1 1 1 8 5 3 1 0 0

ti

0 .3 .5 1 1 1 .8 .5 .3 .1 0 0

time
0 1 2 3 4 5 6 7 8 9 10 11 12

⋅⋅⋅++++=)3.0(
81
8)1.0(

27
40

9
20

3
1average

current
time

maxfaveragefclk ×=

25
Low Power SW.2 J. Kim/SNU

CYCLE
• Workload Prediction

• Examine the last 16 windows

– Does there exist a cyclic of length X?Does there exist a cyclic of length X?

– If so, predict by extending this cycle

– Otherwise use the FLAT algorithmOtherwise, use the FLAT algorithm

26
Low Power SW.2 J. Kim/SNU

27
Low Power SW.2 J. Kim/SNU

Example: CYCLE

utilization = # cycles of busy interval / window size

0 4 8 1 3 5 7 0

time

0 .4 .8 .1 .3 .5 .7 .0

time
0 1 2 3 4 5 6 7 8

current
time

15.0
4

|01.||7.8.||5.4.||3.0| measureerror =
−+−+−+−

=
4

Predict : The next utilization will be .3

28
Low Power SW.2 J. Kim/SNU

PATTERN
• A generalized version of CYCLE

• Workload Prediction

• Convert the n-most recent windows’ utilizationsConvert the n most recent windows utilizations
into a pattern in alphabet {A, B, C, D}.

• Find the same pattern in the pastp p

29
Low Power SW.2 J. Kim/SNU

Example: PATTERN

A B C D

0 0 25 0 5 7 25 1 0

ABCDDPattern = ABCDPattern =

0 0.25 0.5 7.25 1.0

0 .3 .5 1 .1 .35 .6 .9

⋅⋅⋅⋅⋅⋅

1

time
1 2 3 4 8 9 10 11 12⋅⋅⋅⋅⋅⋅5

current
timePredict : The next utilization will be D

30
Low Power SW.2 J. Kim/SNU

Perspectives-based Algorithm
• Per-Task Basis Performance Predictions

dlkdlk
k

WorkWorkEstkWorkEst fseold
new

+
+×

=
1

WorkEst
k

IdleWorkDeadlinekDeadline fseold
new

+
++×

=
1

31
Low Power SW.2 J. Kim/SNU

Deadline
WorkEstPerf =

[Flautner, OSDI2002]

Roadmap

• DVS in Non Real-Time SystemsDVS in Non Real Time Systems

• DVS in Real-Time SystemsDVS in Real Time Systems

• Compiler-level DVS: Intra-task DVS

• OS-level DVS: Inter-task DVSOS level DVS: Inter task DVS

• Application-level DVS

–MPEG-decoder implementationMPEG decoder implementation

• Algorithm-level DVS

–Low-power convolution–Low-power convolution

32
Low Power SW.2 J. Kim/SNU

Two Types of DVS Algorithms
• Inter-task DVS algorithms

• Determine the supply voltage and clock speedDetermine the supply voltage and clock speed
on task-by-task basis

• Intra-task DVS algorithms

• Determine the supply voltage and clock speed pp y g p
within a single task boundary

33
Low Power SW.2 J. Kim/SNU

Inter-task DVS
• Inter-Task Voltage Scheduling for Hard Real-Time

Systems [Yao95, Hong98, Okuma99, Shin99, Lee99].
• Problem : Given a set of tasks, how to assign the

proper speed to each task dynamically while
guaranteeing all their deadlinesguaranteeing all their deadlines.

• Task-by-task Speed Assignment

Th l k ti d t t k d b f ll i– The slack time due to a task used by following
tasks, not by the current one.

• Practical Limitations• Practical Limitations

– Requires OS modifications

– Cannot be applied to a single-task environment– Cannot be applied to a single-task environment

– Can be ineffective in a multi-task environment

34
Low Power SW.2 J. Kim/SNU

An Example of Ineffective Inter DVS

task T CD
A
B

8 1
8 1

4
4

C 8 48

1 1

Dominant task

B CA

1

B CA

1
slack

4 6 820
offline schedule

4 6 820
Run-time schedule

• A dominant task (C)
• Exploits small slack times from other tasks.

• Cannot use its own.

35
Low Power SW.2 J. Kim/SNU

Cannot use its own.

Earlier Version of Intra-task DVS

• Run-time voltage hopping [Lee00]
• Each task is partitioned into N timeslots.

• Frequency and voltage determined for each timeslot.

• Voltage scheduling embedded in application programs• Voltage scheduling embedded in application programs.

• Can be applied to conventional non-DVS OS.

– No systematic guideliney g

– Manual selection of scaling points

– Too much burden for average programmers

f
Task (partitioned into 4 timeslots)

deadline

36
Low Power SW.2 J. Kim/SNU

t

Overview of Intra-task DVS

• Intra-task voltage scheduling framework based on a
static timing analysis of RT programs.
• The clock speed is adjusted in a task by embedded codes.

F ll l it ll l k ti i f ti ti• Fully exploits all slack times coming from execution time
variations within a single task

• No OS modification

• Applicable to a single-task environment.

• Provides a systematic methodology for developing DVS-
aware programsaware programs

Automatic Voltage Scaler Tool

37
Low Power SW.2 J. Kim/SNU

Basic Idea : Inter-task DVS

task τ
(WCEC D dli) (160 l 2)(WCEC,Deadline) = (160 cycles, 2μsec)
32 different execution paths (p1, …,p32)

Inter-task DVS
80Mhz

The task completes
its execution at 80Mhzits execution at

0 5

p secp2:1.5μsec
p secp3:1μsec

p secp32:0.5μsec

p secp1:2μsec
p secp2:1.5μsec

deadline

38
Low Power SW.2 J. Kim/SNU

WCEP
Non-WCEP : there is a slack time

Basic Idea : Optimal DVS

task τ
(WCEC D dli) (160 l 2)(WCEC,Deadline) = (160 cycles, 2μsec)
32 different execution paths (p1, …,p32)

p1:80Mhz p2:60Mhz p3:40Mhz p32:20Mhz

p secp1:2μsec p2:2μsec p3:2μsec p secp32:2μsec

WCEP
Non-WCEP : there is no slack time

39
Low Power SW.2 J. Kim/SNU

But we cannot know the execution path in advance !!

Basic Idea : Intra-task DVS

b1 WCEPE ti tE ti t
CFG

b1
10

b

WCEPExecution not
on WCEP
Execution not
on WCEP

b2
10

bw
h

10
Slack intervalsSlack intervals

bif
5

b3
10Speed slow downSpeed slow down

b6
5

b4
10

Speed slow-downSpeed slow-down

b7
10

b5
10

Need to know the remaining
worst case execution cycles
for a new speed

Need to know the remaining
worst case execution cycles
for a new speed

40
Low Power SW.2 J. Kim/SNU

10 10for a new speed.for a new speed.

Remaining Execution Cycle
C iComputation

program
[160]

CRWEC(bi) : the remainingCFG
b1

S1;
if (cond1) S2;
else

[160]

[150 110 70 30]

worst case execution cycles
1

10

belse
while (cond2) {

S3;
if (cond3) S4;

[30] [150,110,70,30]b2
10

bw
h

10

if (cond3) S4;
S5;

}
if (cond4) S6;

[140,100,60]

[20] bif
5

b3
10

Maximum #
of loopif (cond4) S6;

S7; [130,90,50]

[15]
b6
5

b4
10

of loop
iterations = 3

[120 80 40][10] b7
10

b5
10

CEC(bi) : the # of clock

41
Low Power SW.2 J. Kim/SNU

[120,80,40][0] 10 10cycles needed to execute bi

Speed Assignment Algorithm
• Branching edges are

candidate for speed
changes : bchanges :
• Branches : The

execution control
follows the shorter

b1
10

[160]

[150,110,70,30]
(150→30)

follows the shorter
path at if-then-else
node. => B-type
VSEs

b2
10

bw
h

10
[30]

[140 100 60]
• Loops : The execution

control exits a loop
after it iterates by the

bif
5

b3
10

[140,100,60]
[20]

smaller number of
times than the
maximum iteration
number => L-type

b6
5

10

b4
10

[130,90,50][15]

number. => L type
VSEs

5

b7

10

b5[10]

42
Low Power SW.2 J. Kim/SNU

7
10 10

[120,80,40]
[10]

The Effect of Intra-Task
S h d liScheduling

bb b b
deadline

idle state

80MHz
(2.5V)

b7
b1

b

b1
b1

b2bif

0.44 μsec 2 μsec

(a) without the intra-task scheduling

b2

bw

h
b2

deadline80MHz
(2.5V)

bif

b

b3

b

b1

bif

2 μsec

16MHz
(0.7V)

(b) i h h i k h d li

b6

b7

b4

b5

b2 bif b7

b72 μsec
(b) with the intra-task scheduling

Energy Consumption of (b) = 0 34

43
Low Power SW.2 J. Kim/SNU

Energy Consumption of (a)
= 0.34

The Change of CRWEC

For execution path : (b1,b2,bif,b7)

150

CRWEC(t) (cycles)

150

CRWEC(t) (cycles)

150

100

150

100100 80MHz 100 80MHz

50
deadline

80MHz

80MHz

50
deadline

16MHz

10.7MHz

0
2 time

(μsec)
1

execution time idle time

0
2 time

(μsec)
1

execution time

44
Low Power SW.2 J. Kim/SNU

execution time idle time execution time

(a) No intra-task scheduling (b) Intra-task scheduling

B-type VSE
• CRWEC

• 150 → 30 b150 → 30

• Speed

• S(bj) ← S(bi) x 1/5

bi
10

[160]if

S(bj) ← S(bi) x 1/5

bj
10

bk
10

[30] [150]

then else10 10

Speed update ratio

45
Low Power SW.2 J. Kim/SNU

L-type VSE
• When the actual loop

iterations measured at run
time is 2

• CRWEC

[150,110,70,30]

• 60 → 20

• Speed

bi
10while

• S(bj) ← S(bi) x 1/3
bj
10

[20]
bk
30

Maximum # of
loop iterations = 3

Speed update ratioSpeed update ratio

The transition overhead is considered to determine a new speed.

46
Low Power SW.2 J. Kim/SNU

p

VSE Selection

Compute M and CRWEC(bi)M = Max Speed × D

Find candidate L-type VSEs

Compute the maximum
increase Cinc in the original CWCEC

N
(M-CWCEC)<Cinc

Y

No

exclude some
candidate L-type VSEs. Re-compute CRWEC(bi)

Yes

47
Low Power SW.2 J. Kim/SNU

Select B-type VSEs

Code Generation for VSEs

b1b1

LoopIterNum(bwh)=0
scaling
code

SpeedUpdateRatio = SpeedTable(b1,b2)
NewSpeed = CurSpeed×SpeedUpdateRatio

b

oop te u (bwh) 0code
Change_f_V(NewSpeed)

b2

bwh

scaling
SpeedUpdateRatio

LoopIterNum(bwh)++scaling
code=

NewSpeed = CurSpeed×SpeedUpdateRatio

CRWEC(bif)

CRWEC(bif)+40×(3-LoopIterNum(bwh))

b3bif

p p p p

Change_f_V(NewSpeed)

48
Low Power SW.2 J. Kim/SNU

Automatic Voltage Scaler

User provided

Call Graph

p
Information

(ex. loop bound)

C Program
Modified
Compiler

Syntax Tree

Assembly Code Timing
Analyzer

Syntax Tree

Transformed
Program

Code
Transformer

Speed
Allocator

Timing
InformationProgram Transformer Allocator

deadline

Information

Speed
T bl

49
Low Power SW.2 J. Kim/SNU

dead e
Table

Simulation Results

0.3

MPEG4 encoder MPEG4 decoder

0.2

0.25

o
n
s
u
m

p
ti
o
n

0.1

0.15

z
e
d
 e

n
e
rg

y
 c

o

0.05n
o
rm

a
liz

L th 25% d 7% f th i i l

0

0 50 100 150 200

voltage transition time (μsec)

Less than 25% and 7% of the original program

There is a large difference between WCET and ACET of
the MPEG 4 decoder

50
Low Power SW.2 J. Kim/SNU

the MPEG-4 decoder

Simulation Results

40000

MPEG4 encoder MPEG4 decoder

30000

a
n
s
it
io

n
s

10000

20000

#
 o

f
v
o
lt
a
g
e
 t
r

0

0 50 100 150 200

()

#

• How many times voltage scaling code were executed

• When CVTO < 30μsec in MPEG-4 encoder, the number of

voltage transition time (μ sec)

When CVTO < 30μsec in MPEG 4 encoder, the number of
voltage transitions decreases sharply, and energy consumption
does not increase rapidly.

• How many copies of voltage scaling code ?

51
Low Power SW.2 J. Kim/SNU

How many copies of voltage scaling code ?
• 20 VSEs are inserted when CVTO > 50 μsec.

A Profile-Based Intra-Task
V l S h d liVoltage Scheduling

• IntraVS algorithm based on average-case execution
information

• Average case execution paths (ACEPs) are the most• Average-case execution paths (ACEPs) are the most
frequently executed paths

• More effective than the original intraVS algorithmMore effective than the original intraVS algorithm

• The timing constraints of a hard real-time program is
still satisfied, even if the ACEPs are used for voltage g
scaling decisions.

52
Low Power SW.2 J. Kim/SNU

General IntraVS Algorithm

Select a predicted reference execution path (WCEP)Select a predicted reference execution path (WCEP)

Set the initial speedSet the initial speed

prediction miss

New execution path is

prediction miss

New execution path is
longer than the reference path

N

Speed is raised Speed is lowered

Y N

53
Low Power SW.2 J. Kim/SNU

(to meet deadline) (to save energy)

RAEP-based IntraVS
• Motivations

• To make the common case more energy-efficientTo make the common case more energy efficient

• If we use one of hot paths as a reference path for
intraVS, the speed change graph for the hot paths
will be a near flat curve with little changes in
clock speed.

E f th th th t t th h t th th• Even for the paths that are not the hot paths, they
are more energy-efficient because they can start
with a lower clock speed that RWEP-based p
IntraVS.

• RAEP is the best representative of the hot paths.

54
Low Power SW.2 J. Kim/SNU

RAEP-based IntraVS

b1 [95]
CRAEC(bi) : the remaining

l
1

10

b

[95]

[85 55 25]

average case execution cycles

Frequently executed path

b2
10

bw
h

10
[25] [85,55,25]

[75 45]

bif
5

b3
10

f l

[75,45]

[15]

b6
5

b4
10

average # of loop
iterations = 2

[75,45]

[15]

b7
10

b5
10 [65 35][10]

Down-VSE
Up-VSE

55
Low Power SW.2 J. Kim/SNU

10 10 [65,35][]

RAEP-based IntraVS

deadline80MHz (2.5V)
b1 dead e()

b2 bif b6 b716MHz (0.7V)

2 μsec
(a) with the RWEP-based IntraVS

deadlineb1

2 sec

47.5MHz (1.35V)
b1

b2 bif
b6 b7

• There are Up-VSEs as well as Down-VSEs at the RAEP-based
IntraVS

2 μsec
(b) with the RAEP-based IntraVS

IntraVS.

• The RAEP-based IntraVS achieves 55% more energy reduction.

• But, the deadline can be missed.

56
Low Power SW.2 J. Kim/SNU

Reference Path Modification

b1
10

[30]
r=0 5

b1
10

[34]
r=0 4110

b2
10

b3
10

[10]
[20]

r=0.5 10

b2
10

b3
10

[10]
[24]

r=0.41

10 10

b4
10

b5
20

[10] [10]

r=2 r=1.4310 10

b4
4 b5

20

[14] [10][14]
10 20

Deadline : 0.5μsec

20

b4
10[10] r=0.71

100Mhz

deadline
100Mhz

deadlineM-RAEP RWEP

M-RAEP

RWEP
RAEP RAEP

M RAEP

57
Low Power SW.2 J. Kim/SNU

Path (b1,b3,b5) Path (b1,b3,b4)

Experimental Results

Slack Factor = (deadline-WCET)/deadline

58
Low Power SW.2 J. Kim/SNU

Slack Factor = (deadline WCET)/deadline

Conclusion
• Presented a novel intra-task DVS algorithm using

static timing analysis on RWECs

• Provides a framework for automatic DVS-aware low-
power program generation

• The RAEP-based IntraVS algorithm exploits the fact
that the average-case execution paths are more likely
to be followed at run time than the WCEPto be followed at run time than the WCEP.

• Demonstrated the effectiveness of the approach
using MPEG-4 encoder/decoder programsg / p g

59
Low Power SW.2 J. Kim/SNU

Experiments on Itsy

60
Low Power SW.2 J. Kim/SNU

Experimental Environment

• Itsy Pocket Computer V2.6

• CPU : Intel StrongARM SA1110

• Frequency scaling: 11 levels (59.0 MHz ~ 206.4 MHz)

• Voltage scaling: 30 levels (1 00 V ~ 2 00 V)• Voltage scaling: 30 levels (1.00 V 2.00 V)

• Default setting: 1.55 V/206.4 MHz

• Linux operating system (ver. 2.0.30)

Itsy
V2.6

Vin Rest ofVin

VRbatt Rbatt

Rest of
Itsy HW

Multimeter
1

Multimeter
2 Recoding

Computer

61
Low Power SW.2 J. Kim/SNU

Experimental Results

62
Low Power SW.2 J. Kim/SNU

Experimental Results

63
Low Power SW.2 J. Kim/SNU

Roadmap

• DVS in Non Real-Time SystemsDVS in Non Real Time Systems

• DVS in Real-Time SystemsDVS in Real Time Systems

• Compiler-level DVS: Intra-task DVS

• OS-level DVS: Inter-task DVSOS level DVS: Inter task DVS

• Application-level DVS

–MPEG-decoder implementationMPEG decoder implementation

• Algorithm-level DVS

–Low-power convolution–Low-power convolution

64
Low Power SW.2 J. Kim/SNU

Inter-task DVS Overview
• Inter-task DVS algorithms

• Determine the supply voltage and clock speedDetermine the supply voltage and clock speed
on task-by-task basis

• Inter-task DVS

• Is similar to that of imprecise computation in p p
conventional real-time systems

– Imprecise computation
• Use the slack time to increase the values of results

• While guaranteeing the feasible schedule of tasks

–Dynamic voltage scaling–Dynamic voltage scaling
• Use the slack time to lower the voltage/clock speed

• While guaranteeing the feasible schedule of tasks

65
Low Power SW.2 J. Kim/SNU

Preliminaries
• Computing model

• Non-real-timeNon real time

– tasks have no timing constraints

• Real-TimeReal Time

–Timing constraints

–Periodic and(or) aperiodic tasksPeriodic and(or) aperiodic tasks

–Scheduling policy : EDF, RM, and etc.

• Different DVS algorithms are necessary depending
on different computing models.on different computing models.

66
Low Power SW.2 J. Kim/SNU

Inter-Task DVS
• “Run-Calculate-Assign-Run” strategy for the supply

voltage determination

• Running the current task

• Calculating the maximum allowable execution
time for the next task

–WCET plus slack time

• Assigning the supply voltage for the next task

• Running the next task

67
Low Power SW.2 J. Kim/SNU

Generic Inter-DVS Algorithms
• Consist of two parts

• Slack estimationSlack estimation

– Identify as much slack times as possible

–Slack timesSlack times
• Static slack times

– Extra times available for the next task that can be identified
staticallystatically

• Dynamic slack times

– Ones caused from run-time variations of the task executions

• Slack distribution

–Adjust the speed so that the resultant speed
schedule is as flat as possibleschedule is as flat as possible

68
Low Power SW.2 J. Kim/SNU

Static and Dynamic Approaches
• Off-line (Static) voltage scheduling approaches

• The execution times are assumed to be known aThe execution times are assumed to be known a
priori

• There are several optimal solutions for EDF, RM,
and etc.

• On-line (Dynamic) voltage scheduling approaches

• The execution times are assumed to be not
kknown

• There cannot be an optimal solution

69
Low Power SW.2 J. Kim/SNU

Slack Estimation Methods

Voltage Scaling Methods Scaling
Decision

(1) Path-based method
IntraDVS

(1) Path-based method

Off-line(2) Stochastic method

(3) Maximum constant speed

(4) Stretching to NTA
InterDVS

(4) Stretching to NTA

On-line(5) Priority-based slack-stealing

(6) Utilization updating

70
Low Power SW.2 J. Kim/SNU

Maximum Constant Speed
• The lowest possible clock speed that guarantees the

feasible schedule of a task set

• EDF scheduling

– If the worst case processor utilization U of a
given task set is lower than 1.0 under the
maximum speed , the task set can be
scheduled with a new maximum speed

maxf
scheduled with a new maximum speed

maxfUfMSC ⋅=
Maximum constant speed

∑
=

=
n

i i

i

p
cU

1

• Rate Monotonic scheduling
Maximum constant speed

Cti

∑ ⎥
⎤

⎢
⎡

t

C
T

tL
j

j j
i

∑
= ⎥

⎥
⎥⎢

⎢
⎢=

1)({ }iiiMCS dtnitLff <<≤<×= 0,1|)(maxmax

71
Low Power SW.2 J. Kim/SNU

Example

Period

Length
WCET

Static slack time

timesp
ee

dLength

Task 1 2 1

1 2 3 4 5 60

maxf

d

Task 2 3 1
1 2 3 4 5 60

f

timesp
ee

d

1 2 3 4 5 60

833.0
3
1

2
1

=+=U
MCSf

d

max833.0 ffMCS ⋅=

timesp
ee

d

1 2 3 4 5 60

RM

72
Low Power SW.2 J. Kim/SNU

Deadline miss

Stretching to NTA
• Even though a given task set is scheduled with the

maximum constant speed, since the actual execution
times of tasks are usually much less than their
WCETs, the tasks usually have dynamic slack times

• For the task τ which is scheduled at time t

If th t t k i l t th)(WCETt +• If the next task is later than

• We can slow down the execution of τ so that its
execution completes exactly at this next task

)(τWCETt +

execution completes exactly at this next task
arrival time (NTA)

73
Low Power SW.2 J. Kim/SNU

Example

NTA NTA

timecurrent time timecurrent time
NTA

NTA
timecurrent time

NTA

timecurrent time

74
Low Power SW.2 J. Kim/SNU

timecurrent time

Priority-Based Slack Stealing
• Exploits basic properties of priority-driven

scheduling such as EDF and RM

• When a higher-priority task completes its
execution earlier than its WCET, the following
lower priority tasks can use the slack time fromlower-priority tasks can use the slack time from
the completed higher-priority task

• AdvantageAdvantage

• Most task instances in a hyper-period may have
chances to utilize dynamic slack timesy

–Because most task executions complete
earlier than WCETs

–Therefore, many task instances can be
scheduled with lowered voltages and speeds

75
Low Power SW.2 J. Kim/SNU

Example

d

Period

Length
WCET

timesp
ee

dLength

Task 1 2 1
1 2 3 4 5 60

Task 2 3 1

Task 3 6 1 tisp
ee

d

Task 3 6 1 time
1 2 3 4 5 60

ed

timesp
ee

1 2 3 4 5 60

timesp
ee

d

76
Low Power SW.2 J. Kim/SNU

time
1 2 3 4 5 60

Utilization Updating
• The actual processor utilization during run time is

usually lower than the worst case processor
utilization

• This method is to estimate the required processor
performance at the current scheduling point

B l l ti th t d t• By recalculating the expected worst case
processor utilization

–Using the actual execution times of completedUsing the actual execution times of completed
task instances

77
Low Power SW.2 J. Kim/SNU

Example

isp
ee

d

Period

Length
WCET

timesLength

Task 1 2 1
1 2 3 4 5 60

U=0.833
Task 2 3 1

pe
ed

U 0.833

timesp

1 2 3 4 5 60
833.011

=+=U t=0.6 16032 633.0
3
1

2
6.0

=+=U

ed

timesp
ee

1 2 3 4 5 60

78
Low Power SW.2 J. Kim/SNU

t=1.4
t=2 766.0

3
8.0

2
1

=+=U

Slack Distribution Method
• Greedy approach

• All the slack times are given to the next activatedAll the slack times are given to the next activated
task

• Most inter-task DVS algorithms have adopted it

• Clearly, this approach is not an optimal solution,
but is widely used because of its simplicity

79
Low Power SW.2 J. Kim/SNU

Existing Inter-Task DVS Algorithms

Category Scheduling Policy DVS Policy Used Method

lppsEDF (3)+(4)

ccEDF (6)

Inter-task
EDF

ccEDF (6)

laEDF (6)*

DRA (3)+(4)+(5)
DVS

() () ()

AGR (4)*+(5)

lpSEH (3)+(4)+(5)*

RM
lppsRM (3)+(4)

ccRM (4)*

Intra task Path based method intraShin (1)Intra-task
DVS

Path-based method intraShin (1)

Stochastic method intraGruian (2)

80
Low Power SW.2 J. Kim/SNU

SimDVS: A Unified DVS Evaluation Environment

Machine specificationTask Set Generator

Slack Estimation
Module

Machine specification

Task Set Specification
Off-line
Slack

information

InterDVS ModuleInputs

Task Execution
Module

Energy Estimation
Module

Executable Program

Profile Information

information

Module Module

V lt

IntraDVS Preprocessing Module

Intra-Task * Energy
ti

CFG

DVS-aware
CFG

CFG
Generator

Voltage
Scaler

IntraDVS Module Outputs

Intra Task
Simulator consumption

* …

CFGGenerator

Stochastic Data Speed Transition
Table

81
Low Power SW.2 J. Kim/SNU

Experimental Results

82
Low Power SW.2 J. Kim/SNU

Experimental Results

83
Low Power SW.2 J. Kim/SNU

Experimental Results

84
Low Power SW.2 J. Kim/SNU

Experimental Results

85
Low Power SW.2 J. Kim/SNU

Experimental Results (IntraDVS)

1.5tio
n

1.5tio
n

1.25

C
on

su
m

pt

1.25

C
on

su
m

pt

0 75

1

ve
 E

ne
rg

y

a
b 0 75

1

ve
 E

ne
rg

y

a
b

0.5

0.75

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R
el

at
i

c
d

0.5

0.75

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R
el

at
i

c
d

Slack Ratio (AvailableTime/WCET) Slack Ratio(AvailableTime/WCET)

MPEG4 Decoder MPEG4 Encoder

86
Low Power SW.2 J. Kim/SNU

MPEG4 Decoder

Performance Evaluation DVSPerformance Evaluation DVS
Algorithms for Hard Real-Time
Systems Using DEW

DEW - DVS Evaluation Workbench

• XScale-based DVS evaluation
environment

• Pros

– Allows to monitor real Embedded RT ApplicationsAllows to monitor real
system behaviors under
DVS

• Cons

Embedded RT Applications

• Cons

– Slower than software
simulation

DVS API
/module

VELOS
Embedded RTOS

• Because DEW runs actual
applications

– Less flexible for Intel DBPXA250

PXA250
DVS processor

experimental studies
• Because DEW represents a

single machine specification

Intel DBPXA250

88
Low Power SW.2 J. Kim/SNU

Embedded RT ApplicationsApplications

JAVA
API

POSIX
API

Socket
API

Win32
API

DVS
API

JAVA Thread Protocol Window Energy

API API API API API

VELOS
Library

I t t M D i DVS

JAVA
(KVM)

Thread
manager

Protocol
stack

Window
manager

Energy
estimatorLibrary

Kernel

boot Interrupt
service Scheduler Memory

allocator
Device
drivers

DVS
module

PXA250
DVS processor

Libraries Libraries Libraries
Intel DBPXA250 platform

89
Low Power SW.2 J. Kim/SNU

p

Evaluation Results Using SimDVS and DEW

1

0.8

0.9

1

0.8

0.9

1

on on

0 5

0.6

0.7

0 5

0.6

0.7

gy
 C

on
su

m
pt

io

gy
 C

on
su

m
pt

io

0.3

0.4

0.5

0.3

0.4

0.5

m
al

iz
ed

 E
n

er
g

m
al

iz
ed

 E
n

er
g

0

0.1

0.2

0

0.1

0.2N
or

m

N
or

m

2 4 6 8

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

0
2 4 6 8

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

SimDVS DEW

90
Low Power SW.2 J. Kim/SNU

SimDVS DEW

Sources of Differences
• Impacts of

• System overheadSystem overhead

– Basic : context switching overhead and tick
scheduler overhead

– DVS : slack computation and clock/voltage
scaling

• System timing resolution

– Simulator : continuous time model

– Real system : discrete time model

• Memory behavior

– Changes in cache and memory access behavior

– Data/Instruction fetch latency

91
Low Power SW.2 J. Kim/SNU

Example of System Overheads on
l l fa Real Platform

Second task execution

First task execution with 50 MHz

Second task execution
with 50 MHz

time
t (t+25) mst (t+25) ms

context switching delay

time

i k h d li

92
Low Power SW.2 J. Kim/SNU

tick scheduling

System Overhead

0.30%

0.35%

DVS H/W

DVS S/W

DVS H/W
The ratio of time delay caused by

h
ea

d
R

at
io

0.20%

0.25%

SYS rest the clock/voltage scaling hardware

DVS S/W

ys
te

m
 O

ve
rh

0.10%

0.15%

DVS S/W
The ratio of time delay caused by
the slack computation in a DVS
algorithm

Sy

0.00%

0.05%

F F F A R E F F F A R E F F F A R E F F F A R E

algorithm

SYS rest

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

2 4 6 8

Number of Tasks

The ratio of the rest of the system
overhead such as context switching
and timer service

93
Low Power SW.2 J. Kim/SNU

System Overhead Variations
• The system overhead increases very quickly as the

task execution frequency increases

• In particular, DVS parts increase quickly

Long-period task set Medium-period task set Short-period task set

2.50%

3.00%

3.50%

DVS H/W

DVS S/W

SYS rest

0.25%

0.30%

0.35%

DVS H/W

DVS S/W

SYS rest

0.25%

0.30%

0.35%

DVS H/W

DVS S/W

SYS rest

g p p p

1.00%

1.50%

2.00%

0.10%

0.15%

0.20%

0.10%

0.15%

0.20%

0.00%

0.50%

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

lp
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E0.00%

0.05%

P
M

p
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

p
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

p
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

p
p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E0.00%

0.05%

P
M

p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

P
M

p
sE

D
F

c
c
E
D

F
la

E
D

F
D

R
A

A
G

R
lp

S
H

E

94
Low Power SW.2 J. Kim/SNU

l l l l

2 4 6 8

Number of Tasks

lp lp lp lp

2 4 6 8

Number of Tasks

lp
p c

lp
p c

lp
p c

lp
p c

2 4 6 8

Number of Tasks

Energy Efficiency Variations
• In DRA, AGR, and lpSHE, the increased system

overhead (due to the increased execution frequency)
significantly affect the energy efficiency

Long-period task set Medium-period task set Short-period task set

0.7

0.8

0.9

1

0.7

0.8

0.9

1

0.7

0.8

0.9

1

Long period task set Medium period task set Short period task set

0.4

0.5

0.6

0 3

0.4

0.5

0.6

0 3

0.4

0.5

0.6

0

0.1

0.2

0.3

2 4 6 8

0

0.1

0.2

0.3

2 4 6 8
0

0.1

0.2

0.3

2 4 6 8

95
Low Power SW.2 J. Kim/SNU

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

Changes in Memory System
h i (1)Behaviors (1)

• Under a DVS-enabled RTOS,
T k’ ti ti i

5

6

n
t

Task’s execution time increases
due to the lowered clock speed

• Desirable for reducing
energy consumption

4

m
pt

io
n

 C
ou

n energy consumption

• But, it can introduce
negative side effects as well

A i i h

2

3

al
iz

ed
 P

re
em – An increase in the

number of task
preemptions which
increases the number of

1

N
or

m
a increases the number of

memory accesses

• In aggressive algorithms, the
number of preemptions

0
2 4 6 8

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

number of preemptions
increases more rapidly than the
others

96
Low Power SW.2 J. Kim/SNU

lppsEDF ccEDF laEDF DRA AGR lpSHE

Changes in Memory System
h i (2)Behaviors (2)

• PXA250

C
ou

n
t

1.6

1.8 • Performance Monitoring Unit

• 32-way set-associative cache
of Inst/Data cache

or
y

A
cc

es
s

C

1

1.2

1.4

• Each application

• 16-KB program code

al
iz

ed
 M

em
o

0.6

0.8

1

• The increases in memory accesses
can be attributed to two sources

N
or

m
a

0.2

0.4

can be attributed to two sources

• The increase in the number of
preemptions

• The increase in memory
0

2 4 6 8

Number of Tasks

lppsEDF ccEDF laEDF DRA AGR lpSHE

The increase in memory
accesses from the algorithm
itself

97
Low Power SW.2 J. Kim/SNU

lppsEDF ccEDF laEDF DRA AGR lpSHE

References
• Transmeta Corporation. Crusoe Processor.

http://www.transmeta.com, June 2000.

• AMD Corporation PowerNow! Technology• AMD Corporation. PowerNow! Technology.
http://www.amd.com, December 2000.

• Intel Corporation. Intel XScale Technology.
http://developer intel com/ design/ intelxscale/ November 2001http://developer.intel.com/ design/ intelxscale/, November 2001.

• I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis
Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processor In Proceedings of the IEEE Real-Variable Voltage Processor. In Proceedings of the IEEE Real
Time Systems Symposium, pages 178-187, December 1998.

• Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-
Time Embedded Systems on Variable Speed Processors. In y p
Proceedings of the International Conference on Computer-
Aided Design, pages 365-368, November 2000.

• H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic
and Aggressive Scheduling Techniques for Power-Aware Real-
Time Systems. In Proceedings of IEEE Real-Time Systems
Symposium, December 2001.

98
Low Power SW.2 J. Kim/SNU

References
• P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for

Low-Power Embedded Operating Systems. In Proceedings of
18th ACM Symposium on Operating Systems Principles18th ACM Symposium on Operating Systems Principles
(SOSP'01), October 2001.

• D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for
L E H d R l Ti A li ti IEEE D i dLow-Energy Hard Real-Time Applications. IEEE Design and
Test of Computers, 18(2):20-30, March 2001.

• F. Gruian. Hard Real-Time Scheduling Using Stochastic Data
and DVS Processors. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 46-
51, August 2001.

• W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling
Algorithm for Dynamic-Priority Hard Real-Time Systems Using
Slack Time Analysis. To appear in Proceedings of Design,
Automation and Test in Europe (DATE'02), March 2002.

99
Low Power SW.2 J. Kim/SNU

References
• D. Grunwald, P. Levis, and K. I. Farkas. Policies for Dynamic

Clock Scheduling. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation pages 73-86Operating Systems Design and Implementation, pages 73-86,
October 2000.

• S. Lee and T. Sakurai. Run-time Voltage Hopping for Low-
R l Ti S t I P di f th 37th D ipower Real-Time Systems. In Proceedings of the 37th Design

Automation Conference, pages 806-809, June 2000.

• T. Burd and R. Brodersen. Design Issues for Dynamic voltage
scaling . In Proceedings of the International Symposium on Low
Power Electronics and Design, pages 9-14, July 2000.

• D. Burger and T. M. Austin. The SimpleScalar Tool Set, version g p ,
2.0. Technical Report 1342, University of Wisconsin-Madison,
CS Department, June 1997.

• F Yao A Demers and A Shenker A Scheduling Model forF. Yao, A. Demers, and A. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proceedings of the IEEE Foundations
of Computer Science, pages 374-382, 1995.

100
Low Power SW.2 J. Kim/SNU

DVS-Aware Algorithm Developmentg p

101
Low Power SW.2 J. Kim/SNU

Image Convolution

convolution

0 1 1
-1 0 1

-1 -1 0

• One of the fundamental operations of image processing.

• DVS Unfriendly!!• DVS Unfriendly!!

102
Low Power SW.2 J. Kim/SNU

Direct Implementation:
C t t W kl d Al ithConstant-Workload Algorithm

• p2 multiplications p2

additions for each
convolved elementconvolved element.

No Workload
Variations!Variations!

103
Low Power SW.2 J. Kim/SNU

Low-Power Implementation

Variable workload
Kernel Analysis

&
Rearrangement

-1

-1

-1-1

-1 8

Kernel[0]
xoffset: -2
yoffset: -2

v: -1
PosPtr

-1
-2

0
0
ll

MinusOnePtr

Decomposed Kernel

Rearrangement

Modified
Convolution
C t ti

-1-1-1
Kernel[1]

v: 8

NegPtr
PosPtr

next

-1
-1

null

NegPtr next null

Execution Time
Prediction &

Voltage/Frequency
Setting

Computation

g

Variable Workload Algorithm
Based on Kernel Characteristics

104
Low Power SW.2 J. Kim/SNU

Low-Power Implementation

Kernel Analysis-1 -1-1 K l[0]
MinusOnePtr

Decomposed Kernel

Kernel Analysis
&

Rearrangement-1-1-1

-1-1 8

Kernel[0]

Kernel[1]
v: 8

PosPtr

xoffset: -2
yoffset: -2

next

-1
-1

v: -1

NegPtr
PosPtr

-1
-2

next

0
0

null

M difi d

kernel

C l ti

Execution Time
Prediction &

NegPtr null Modified
Convolution
Computation

input

output
image

Convolution
Process

Voltage/Frequency
Setting

image

Overall processing step

105
Low Power SW.2 J. Kim/SNU

Kernel Analysis and Rearrangement

• Property 1. For most kernels, the number of distinct Property 1. For most kernels, the number of distinct
kernel elements is small.

• Property 2. 0, 1 and –1 are used frequently.

• Property 3. Many kernel elements have the same absolute
values.

-1 -2 -10 1 1

0 0 0

1 2 1

-1 0 1

-1 -1 0 1 2 11 1 0

106
Low Power SW.2 J. Kim/SNU

Modified Convolution Algorithm: SDMK

• For 1 or –1, no multiplication.

• For 0, no addition & no multiplication. For 0, no addition & no multiplication.

• For the same absolute values, a single multiplication.

0 1 10 1 1

-1 0 1

-1 -1 0

Direct SDMK
Number of

Operations/pixel
9 additions &

9 multiplications

6 additions &

0 multiplications

107
Low Power SW.2 J. Kim/SNU

Direct vs. SDMK

Original
Kernel

Reversed
Kernel

c b a

a b c

Reversed
Kernel

c b a

Original
Kernel

a b c

d1 d2 d3 d4 d5 d6Input
Sequence

*c *b *a+ +

*c *b *a+ +

d1 d2 d3 d4 d5 d6Input
Sequence

+ +

+ +

step i

*c

*c

*b

*b

*a

*a

+

*c *b *a+ +

*c *b *a+ +

+

+ +

+ +step i+1

step i+2

*c

step i+3

*c

*b

*

*b

*a

*b

*a

*c *b+ +p

step i+4

*c *b

step i+5

Convolved
Sequence step i step i+1 step i+2 step i+3 step i+4 Convolved

Sequence

Direct implementation SDMK implementation

108
Low Power SW.2 J. Kim/SNU

Exec Time Prediction & Speed Setting

• By a static method

• Based on the number of required arithmetic
operationsoperations

• By a dynamic-methody a dynamic method

• Based on actual measurements of execution times

• In the direct algorithm, by pre-constructed speed
table

109
Low Power SW.2 J. Kim/SNU

Experimental Environments

• Itsy Pocket Computer V2.6

• CPU : Intel StrongARM 1110• CPU : Intel StrongARM 1110

• Frequency scaling: 11 levels (59.0 MHz ~ 226.4 MHz)

• Voltage scaling: 30 levels (1.00 V ~ 2.00 V)

• Linux operating system (ver. 2.0.30)

110
Low Power SW.2 J. Kim/SNU

Results (Energy Dissipation)

• Average 67.6% energy saving in the core processor, and
62.8% in the whole Itsy system.

111
Low Power SW.2 J. Kim/SNU

Results (Execution Time)

• There is no performance degradation over the direct approach• There is no performance degradation over the direct approach.

112
Low Power SW.2 J. Kim/SNU

Conclusions
• Presented a low-power implementation of image

convolution algorithm for variable voltage processors.

• The energy efficiency of the proposed implementation
comes from:

• Smaller Ncycle

• Lower Vdd

E N V 2
• Fewer memory references

– i.e., less energy consumed in non-CPU
t

E ∝ Ncycle · VDD
2

components

113
Low Power SW.2 J. Kim/SNU

MPEG Decoder Implementation

• 버퍼를 활용한 DVS

• Workload-variation 슬랙 시간을 활용하는 것이 가능

• 추가적인 메모리 자원을 소모

– one-buffer-size = image width * image height * g _ g _ g
byte_per_pixel

j+1j
j+2

period

j+1 j+2
VSTj

AETj

OPj+1

Time

Deadline for sj Deadline for sj+1 Deadline for sj+2

114
Low Power SW.2 J. Kim/SNU

Measurement Results

• 버퍼 방식 DVS 기법 사용 (WCET사용)

• Bitrate of sample video : 163KbpsBitrate of sample video : 163Kbps

• Energy saving : up to 53%

115
Low Power SW.2 J. Kim/SNU

Energy saving up to 53%

Demo (1)

• DAQ 보드로 프로파• DAQ 보드로 프로파
일링된 데이터를 실
제 동영상과 같이 표
현현

• Ideal DVS

• DVS Using
Moving Avg.

• Buffer-Based
DVSDVS

116
Low Power SW.2 J. Kim/SNU

현재 화면을 디코딩하는 전압

Demo (2)
• 각 DVS policy 들 사이의 총 전력 소모를 비교

117
Low Power SW.2 J. Kim/SNU

Energy Optimal Off LineEnergy-Optimal Off-Line
Voltage Scheduling

Off-Line Volt. Sched. Problem
• Voltage schedule (speed schedule) : S(t)

• the processor speed as a function of timep p

• The energy consumption under S(t) is given by

E(S) = ∫interval P(S(t)) dt

– P is a convex function from speed to power

• Given N jobs J1, J2, … , JN whereGiven N jobs J1, J2, … , JN where

• ri : the release time of Ji

• di : the deadline of Ji

• ci : the workload (# of execution cycles) of Ji

– assumed to be known a priori

: th i it f J• pi : the priority of Ji

compute a feasible voltage schedule S(t) that minimizes E(S)

• S(t) is feasible iff S(t) gives Ji its workload ci between ri and di

119
Low Power SW.2 J. Kim/SNU

S(t) is feasible iff S(t) gives Ji its workload ci between ri and di
for all J1, J2, … , JN

Existing Works for the Problem
• Note that the system model covers

• Fixed-priority (RM, DM) periodic/aperiodic task set

• EDF periodic/aperiodic task set

– pi < pj iff di < djpi pj i j

• For EDF job sets (a special case) the problem can be• For EDF job sets (a special case), the problem can be
solved in poly. time by Yao’s algo.[FOCS’95]

• solution space = convex obj func = convexsolution space convex , obj. func. convex

• For general job sets, the problem becomes much
difficult

• main source of difficulty : feasibility condition

• Quan & Hu [TCAD’03]: exhaustive optimal algo.

120
Low Power SW.2 J. Kim/SNU

p g

• Yun & Kim [TECS’03]: NP-hardness & FPTAS

References
• Optimal algorithm for EDF job sets

• F. Yao, A. Demers, S. Shenker, “A Scheduling Model for
Reduced CPU Energy” In Proc Foundations of ComputerReduced CPU Energy , In Proc. Foundations of Computer
Sciences (FOCS’95), 1995

H i ti f FP j b t• Heuristic for FP job sets

• G. Quan and X. Hu, “Energy Efficient Scheduling for Real-
Time Systems On Variable Voltage Processor”, In Proc.
Design Automation Conference (DAC’01) 2001Design Automation Conference (DAC 01), 2001.

• Exhaustive optimal algorithm for FP job sets

• G. Quan and X. Hu, “Minimum Energy Fixed Priority
S h d li f V i bl V lt P ” IEEEScheduling for Variable Voltage Processors”, IEEE
Transactions on Computer Aided Design and Systems,
2003.

NP h d f & FPTAS f FP j b t• NP-hardness proof & FPTAS for FP job sets

• H.-S. Yun and J. Kim, “On Energy-Optimal Voltage
Scheduling for Fixed-Priority Hard Real-Time Systems”,
ACM Transactions on Embedded Computing Systems

121
Low Power SW.2 J. Kim/SNU

ACM Transactions on Embedded Computing Systems,
2003.

