		Lecture Organizations
Software-level Power-Aware Computing Lecture 3		 Lecture 1: Introduction to Low-power systems Low-power binary encoding Power-aware compiler techniques Lectures 2 & 3 Dynamic voltage scaling (DVS) techniques OS-level DVS: Inter-Task DVS Compiler-level DVS: Intra-Task DVS Application-level DVS Dynamic power management Lecture 4 Software power estimation & optimization Low-power techniques for multiprocessor systems Leakage reduction techniques
1 Low Power SW.3	J. Kim/SNU	2 J. Kim/SNU

Dynamic Power Management

- System-level power management
 - Saves power of subsystems (devices)
- Device is:
 - Busy if there are requests
 - Idle otherwise
- Changing power states incur some overhead

3

- Tsd => shutdown delay
- T_{wu} => wake-up delay

Power State & Transitions

Assumption

• Only one device & only one stream of requests

4

HDD Organization

HDD Power States

[Harris et al. 1995]

Form-Factor	3.5-in	2.5-in	1.8-in	1.3-in
Key Parameters				
Capacity (MB)	720	340	85	40
Weight (g)	500	180	75	28
Height (mm)	20	12.7	10.5	10.5
Disk Diameter (mm)	95	65	48	34
Number of Disks	2	2	2	2
RPM	4500	3800	4500	5400
Power Requirements				
Start-Up (W)	8.0	4.7	3.0	2.2
Seek (W)	4.5	2.0	1.5	1.7
Read/Write (W)	4.2	2.8	1.725	1.6
Idle (W)	2.5	1.35	0.75	1.0
Standby (W)	0.8	0.4	0.035	0.5
Sleep (W)	0.1	0.2	0.02	0.015

Trade-off between recovery time (to read/write) and energy saving

Low Power SW.3

J. Kim/SNU

Idle Mode Power Consumption

Operation Modes

- **Startup**: Spindle accelerated from rest to rated speed.
- Seek: VCM is actively moved to a new position.
- **Read/Write**: Data is transferred between media and head while on a track.
- Idle: Spindle and actuator are under normal control. No read/write of data. Only PES information is read by the demodulation circuit.
- **Standby**: Spindle is at rest, heads are parked, and interface can receive commands from host.
- **Sleep**: In addition to "Standby" condition the interface is powered off and a single logic line is active to sense a reset signal from host.

8

PES = Position Error Signal VCM = Voice Coil Motor

Power Management Policies

- Policy classification
 - Time-out
 - -TO (Time-Out)
 - -ATO (Adaptive Time-Out)
 - -DDT (Device-Dependent Time-out)
 - Predictive
 - -L-shape
 - -LT (adaptive Learning Tree)
 - -EA (Exponential Average)
 - Stochastic

Low Power SW.3

-DM (Discrete-time Markov process)

11

Oracle Power Manager

- Perfect information about future request
 - Shut down the device immediately after the device becomes idle
 - Lower bound of power consumption
- Does not exist in practice
- Reference point for comparison

Low Power SW.3

J. Kim/SNU

Time Out Policies

- τ => time-out value
 - Fixed τ
 - Adjustable τ
 - Tbe => break-even time

Break-Even Time: Tbe

• Tbe makes the energy consumption in both cases equal

10

J. Kim/SNU

12

Adaptive Time-Out

- Time-out value adjusted at run time
 - by the spin-up delay / the previous idle period
 - If the ratio is too small
 - –Decrease time–out value τ
 - Wasting less energy waiting for time-out
 - If the ratio is too large (i.e., a bump occurs)

15

- –Increase time–out value τ
 - Reducing inappropriate spin-down's

L-shape Predictive

- Based on an L-shape pattern bet. busy and idle periods:
 - Short busy period -> long idle period
 - Long busy period -> short idle period
- Shut down if busy for a short period!

DRPM

[Gurumurthi et al. ISCA03]

- Dynamic Rotations Per Minute
 - Dynamically modulate the speed at which the disk spins
 - Quadratic power savings by decreasing the spinning speed

DRPM over Traditional PM

- Adapt better for short idle intervals
 - · Less delay for a spin up
 - · Less energy for short idle intervals
- Better power-performance tradeoff
 - Continuous vs. Discrete (i.e., 0 & MAX)

Low Power SW.3

J. Kim/SNU

Energy Saving by DRPM

DRAM Energy Management [Delaluz et al. HPCA01]

18

Similar to HDD Management Problem **Operating Modes:** Active • Standby • Napping • .000 Power-down disabled napping Disabled 0.83 -1 0.32 nJ 0.005 nJ 0.00 m . Each mode differs in: Energy consumption • Resynchronization time The lower the energy consumption, the higher the resynchronization time

Memory System Architecture

System Support for Mode Setting

- Self–Monitored Approach
 - Self-Monitoring and Prediction Hardware block
 Monitors ongoing memory transactions
 - -Estimate the time until the next access to a memory bank
- Software-Directed Approach
 - Configuration Registers in the memory controller
 - Memory-mapped I/O
 - Storing predefined values to these registers initiates mode changes
 - Should be O/S's job unless a single program environment

22

Self-Monitored Approach

- Adaptive Threshold Predictor
 - High hardware costs (in DRAM setting)
- Constant Threshold Predictor
- History-based Predictor
 - Overcome:
 - the problem of gradual mode changes
 - the problem of resynchronization cost
 - Estimate the inter-access times

ACPI

Low Power SW.3

- Advanced Configuration and Power Interface
 - Promoted by Intel, Microsoft, Toshiba
 - Interface Spec. between H/W and S/W for OSdirected system-level power management.

23

ACPI Interface & PC Platform

ACPI Components

- ACPI DOES NOT specify how to implement hardware devices or the power management policy in OS.
- ACPI Tables
 - Interface to hardware
- ACPI BIOS
 - Portion of firmware compatible with ACPI
- ACPI Registers
 - Constrained part of the hardware interface

27

ACPI States Definitions

Figure 6.7. State definitions for ACPI

ACPI State Definitions

Device Power Management

- · Identification of device power capabilities
- Setting device power states
- Getting device power states
- Enabling device-controlled wakeup

Example: Integrated Modem

• D0

Low Power SW.3

- D1: MC & phone interface in low-power mode
- D2:
- D3: MC is off, phone interface powered by phone line or off

31

Battery Management

 Must confirm either Smart Battery subsystem interface or a control method battery (CMBatt) interface

30

CMBatt reports

Low Power SW.3

- The designed capacity
- The latest full-charged capacity
- The current remaining capacity
- Warning, Low & Critical status messages

J. Kim/SNU

Thermal Management

- Based on thermal zones
 - Using temperature events
- Two types of cooling
 - Active cooling
 - -Exploits cooling devices (e.g., fans)
 - -Increases power to reduce heat
 - Passive cooling
 - -Reduces the power-consuming activities
 - -Reduces power to decrease temperature

Example: Thermal Zones

System-level Power Breakdowns [Shim 06]

33

Power consumption for running a streaming video application (W)

Display Power Management

- Idle-based display off
- Brightness control based on user request
- Active mode power management
 - Zone-based on & off control
 - Dynamic Luminance Scaling (DLS)

Low Power SW.3

Liquid Crystal Displays

[Shim 06]

J. Kim/SNU

Overview of DLS

- Principle of DLS (Dynamic Luminance Scaling)
 - Backlight dimming for power saving $-\mathcal{L}(v) \rightarrow \mathcal{L}(v')$ such that $\mathcal{L}(v') < \mathcal{L}(v)$
 - Restoring brightness/contrast by appropriate image compensations
 - $-C \rightarrow C'$ to maintain the same intensity perceived by human eyes

One Implementation

Experimental Results

 MPEG-4 decoder (application)

Power reduction/Relative backlight luminance

Low Power SW.3

Original

DLS (D_i=0.03)

[Shim 06]

What is Low Power Communication?

- Recently, mobile communication device are ubiquitous
 - Mobile phone, PDA....
- Mobile devices are operated by battery
- Low power communication
 - Reduce power consumption in communications
 - Longer communication time is possible with limited battery
 - It includes

Low Power SW.3

- Make low power communication devices
- Make more efficient dynamic power management scheme

41

- Make power aware routing protocols

Dynamic Power Management of Mobile device

- Motivation
 - Wireless interface cards consumes energy continuously

 10 to 50% of energy budget for mobile device
- Different level of power state
 - When idle, enter lower power state
- If a state is in a suspend state
 - · Cannot know if some other host has data to send to it
 - · External events need to wake up
- The key of balancing power saving & delay
 - Knowing when to suspend & wake up
 - Role for application specific information for guidance
- Example
 - Power Management Techniques for Mobile Communication [Kravets & Krishnan, '98]

42

```
Low Power SW.3
```

J. Kim/SNU

Kravets & Krishnan '98

- A transport level protocol for managing the suspend/resume cycle of the mobile host's communication device
- Idle communication periods are detected by

43

- Timeout periods
- Application Signalling

Protocol State Diagram: Base Station

- Mobile Host: Master
- Base Station: Slave

Protocol State Diagram: Mobile Host

Experimental Results

Saving for the three types of machines

Marking	Power Rec Idle w/o WaveLAN	nivementa Idla w/ WaveLAN
NEC Vena 6320	14W	15.5W
Toshiba Librato 60	7W	8.5W
HP Palmtop PC 320LX	1.2W	2.7W

46

Low Power SW.3

J. Kim/SNU

47

Ad Hoc Network

- What is wireless Ad Hoc Networks?
 - Infrastructure–less networks (no fixed routers)
 - All nodes capable of movement
 - Links appear and disappear dynamically
 - Special constraints:
 - -Limited bandwidth
 - -Limited power: need power awareness
 - -High error rates
 - · Protocol needed to create and maintain routes
 - · Conventional routing protocols not applicable

Power-Aware Ad Hoc Network

- Power-Aware Ad Hoc Networks
 - Most mobile hosts of ad hoc network are based on batteries.
 - Power-aware ad hoc network increases the battery life time and system life time.
- Power reduction can be obtained in several layers:
 - Physical layer
 - Adjust transmission power [Ramanathan et al. '00]
 - Data link laver - Sleep mode operation [Singh et al, CCR'98]
 - Network layer
 - Maximize system life time [Singh et al, MobiCom'98] [Toh, '01]
 - Transport layer
 - Reduce protocol processing and software overhead [Agrawa] *et al.* '01]

Low Power SW.3

J. Kim/SNU

Metrics in Ad Hoc Routing Protocols

Shortest-hop

Some nodes die relatively early

- E.g., the middle node (node 6)

Message/time overhead

- Routing protocol message overhead
- Misguided in the long-term Control packet: 5 ~ 10 % Data packet: 90 ~ 95%
 - Amdahl's Law

Link quality and/or location stability

- Stability \rightarrow less table update
- Orthogonal to the goal of power-awareness - Can be used in conjunction

Low Power SW.3

J. Kim/SNU

Power-Aware Metrics [Singh et al, MobiCom'98]

- Minimize energy consumed / packet
 - Under the light loads, similar to shortest hop
 - Under the heavy contentions, avoid congested areas
- Maximize time to network partition
 - Load balancing among nodes
- Minimize variance in node power levels
- Minimize cost / packet
 - Node cost == node's reluctance to forward packets

51

Node 6 case avoided

Online Max-Min Routing [Li et al., 2001]

- Max Min Path
 - The path with the maximal minimal fraction of remaining power after the message is transmitted
 - (-) Poor performance (i.e., delay increases)
 - (-) Large power consumption

- Minimizing the end-to-end delay
- Maximizing the minimal residual power

52

Max-Min zP_{min} Path

Zone-Based Routing Very expensive to implement Max-Min zPmin Two extreme solutions Solution: Zone-based routing A path with minimal power consumption P_{min} Group together all the nodes that are in geographic proximity as a zone, treat the zone as an entity in the A path that the maximizes the minimal residual network power in the network Require 3 subtasks Max-Min zP_{min} path Zone Power Estimation Relax the minimal power consumption to z x P_{min} - Global Path Selection Local Path Selection 53 54 Low Power SW.3 J. Kim/SNU J. Kim/SNU Low Power SW.3

Coordination in Power Saving [Chen et al. '01]

- In ad-hoc networks, not all nodes participate in routing
- By using some nodes as a coordinator
 - Extend life time
 - Reduce overall energy-consumption
 - Preserve network capacity

Low Power SW.3

Low Power SW.3

References

2000

56

R. Kravets, and P. Krishnan, "Power Management Techniques for Mobile Commnunication", Proc of MobiCom, 1998

R. Ramanathan, and R. Rosales-Hain, "Topology control of multihop wireless networks using transmit power adjustment", Proc of INFOCOM,

S. Shingh, and C.S. Raghavendra, "PAMAS-Power aware multi-access protocol with signaling for ad hoc networks", ACM CCR, 1998

S. Shingh, M. Woo, and C.S. Raghavendra, "Power-aware routing in mobile ad hoc networks", Proc of MobiCom, 1998

C.-K. Toh, "Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc networks", IEEE Communication Magazine, 2001

Q. Li, J. Aslam, and D. Rus, "Online Power-aware Routing in Wireless Ad-hoc Networks", Proc of SIGMOBILE, 2001 J. Chang, and L. Tassiulas, "Energy conserving routing in wireless ad-hoc networks", Proc of INFOCOM, 2000 K. Scott, and N. Bambos, "Routing and Channel Assignment for Low Power Transmission in PCS", Proc of ICUPC, 1996 Y. Xu, J. Heidemann, and D. Estrin, "Geography-informed Energy Conservation for Ad hoc Routing", Proc of MobiCom, 2001

B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "SPAN:An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks", Proc of SIGMOBILE, 2001

J. Kim/SNL

References

 Y. Lu and G. D. Micheli, "Comparing System-level Power Management Policies", IEEE Design and Test, Mar./Apr. 2001

57

Low Power SW.3