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Lecture Organizations
• Lecture 1: 

• Introduction to Low-power systems 

L bi di• Low-power binary encoding

• Power-aware compiler techniques

• Lectures 2 & 3ectures & 3

• Dynamic voltage scaling (DVS) techniques

– OS-level DVS: Inter-Task DVS

C il l l DVS: I t T k DVS– Compiler-level DVS: Intra-Task DVS

– Application-level DVS

• Dynamic power management

• Lecture 4

• Software power estimation & optimization

• Low power techniques for multiprocessor systems• Low-power techniques for multiprocessor systems

• Leakage reduction techniques
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Dynamic Power Management
• System-level power management

• Saves power of subsystems (devices)Saves power of subsystems (devices)

• Device is:

• Busy if there are requestsBusy if there are requests

• Idle otherwise

• Changing power states incur some overheadChanging power states incur some overhead

• Tsd => shutdown delay

• Twu => wake-up delay• Twu => wake up delay
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Power State & Transitions

• Assumption

• Only one device & only one stream of requests• Only one device & only one stream of requests
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HDD Organization
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HDD Power States         [Harris et al. 1995]

Trade-off between recovery time (to read/write) and energy saving
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Trade-off between recovery time (to read/write) and energy saving

Idle Mode Power Consumption

A 2.5-in HDD
With 2 disks
At 3600 RPM
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Operation Modes

• Startup: Spindle accelerated from rest to rated speed.Startup  Spindle accelerated from rest to rated speed.

• Seek: VCM is actively moved to a new position.

• Read/Write: Data is transferred between media and
head while on a track.

• Idle: Spindle and actuator are under normal control.
No read/write of data. Only PES information is readNo read/write of data. Only PES information is read
by the demodulation circuit.

• Standby: Spindle is at rest, heads are parked, and
interface can receive commands from hostinterface can receive commands from host.

• Sleep: In addition to “Standby” condition the interface
is powered off and a single logic line is active to sense
a reset signal from host.
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PES = Position Error Signal
VCM = Voice Coil Motor



Power Management Policies
• Policy classification

• Time-outTime out

–TO (Time-Out)

–ATO (Adaptive Time-Out)ATO (Adaptive Time Out)

–DDT (Device-Dependent Time-out)

• PredictivePredictive

–L-shape

–LT (adaptive Learning Tree)LT (adaptive Learning Tree)

–EA (Exponential Average)

• Stochastic• Stochastic

–DM (Discrete-time Markov process)
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Oracle Power Manager

• Perfect information about future requestq

• Shut down the device immediately after the 
device becomes idle

• Lower bound of power consumption

• Does not exist in practice

• Reference point for comparison
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Time Out Policies

• => time-out value

• Fixed 

• Adjustable

• Tbe => break-even timeTbe > break even time
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Break-Even Time: Tbe

• Tbe makes the energy consumption  in both 
cases equal

To = Tsd + Twu 

Eo = Esd + Ewu 

Transition time

Transition energy
Tms = Tbe – To Minimum sleeping time
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Tbe & Tms

Pw x Tbe Eo + Ps x (Tbe – To)
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Time-Out Policy

• Assumption

–After a device is idle for    , it will remain idle 
for at least Tbe

• Theorem:

– If    = Tbe, energy consumption of the policy 
will be at most twice the energy of an idealwill be at most twice the energy of an ideal 
oracle policy

• 2-competitive algorithmp g
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Adaptive Time-Out

• Time-out value adjusted at run time 

• by the spin-up delay / the previous idle periodby  the spin up delay / the previous idle period

• If the ratio is too smallIf the ratio is too small

–Decrease time-out value 
• Wasting less energy waiting for time-outg gy g

• If the ratio is too large (i.e., a bump occurs)

– Increase time-out valueInc ease time out value
• Reducing inappropriate spin-down’s
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L-shape Predictive
• Based on an L-shape pattern bet. busy and idle periods:

• Short busy period -> long idle period

• Long busy period -> short idle period

• Shut down if busy for a short period!

Handled by prediction
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Not handled by prediction



DRPM                    [Gurumurthi et al. ISCA03]

• Dynamic Rotations Per Minute

• Dynamically modulate the speed at which the disk 
ispins

- Quadratic power savings by decreasing the    
spinning speedspinning speed

Server
Workload
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DRPM over Traditional PM
• Adapt better for short idle intervals

• Less delay for a spin upLess delay for a spin up

• Less energy for short idle intervals

• Better power-performance tradeoffBetter power performance tradeoff

• Continuous vs. Discrete (i.e., 0 & MAX)
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Energy Saving by DRPM

Bursty requestsy q

TPMperf & DRPMperf: based on an idle time prediction oracle
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TPMperf & DRPMperf: based on an idle time prediction oracle
Combined = Choose TPM or DRPM using an oracle

DRAM Energy Management [Delaluz et al. HPCA01]

• Similar to HDD Management Problem

• Operating Modes:

• Active

S b• Standby

• Napping

P d• Power-down

• Disabled

• Each mode differs in:• Each mode differs in:

• Energy consumption

• Resynchronization timeResynchronization time

• The lower the energy consumption, the higher the 
resynchronization time
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Memory System Architecture
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System Support for Mode Setting
• Self-Monitored Approach

• Self-Monitoring and Prediction Hardware block

–Monitors ongoing memory transactions

–Estimate the time until the next access to a 
b kmemory bank

• Software Directed Approach• Software-Directed Approach

• Configuration Registers in the memory controller

- Memory-mapped I/OMemory mapped I/O

- Storing predefined values to these registers 
initiates mode changes

• Should be O/S’s job unless a single program 
environment
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Self-Monitored Approach
• Adaptive Threshold Predictor

• High hardware costs (in DRAM setting)High hardware costs (in DRAM setting)

• Constant Threshold Predictor

• History-based PredictorHistory based Predictor

• Overcome:

– the problem of gradual mode changesthe problem of gradual mode changes

– the problem of resynchronization cost

• Estimate the inter-access times• Estimate the inter access times
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ACPI

• Advanced Configuration and Power InterfaceAdvanced Configuration and Power Interface

• Promoted by Intel, Microsoft, Toshiba

• Interface Spec between H/W and S/W for OS-Interface Spec. between H/W and S/W for OS
directed system-level power management.
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ACPI Interface & PC Platform
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ACPI Components
• ACPI DOES NOT specify how to implement hardware 

devices or the power management policy in OS.

• ACPI Tables

• Interface to hardware

• ACPI BIOS

• Portion of firmware compatible with ACPI

• ACPI Registersg

• Constrained part of the hardware interface
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ACPI States Definitions
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ACPI State Definitions
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Device Power Management

• Identification of device power capabilitiesIdentification of device power capabilities

• Setting device power states

• Getting device power statesGetting device power states

• Enabling device-controlled wakeup
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Example: Integrated Modem

• D0D0

• D1: MC & phone interface in low-power mode

• D2:D2:

• D3: MC is off, phone interface powered by phone 
line or off
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Battery Management
• Must confirm either Smart Battery subsystem 

interface or a control method battery (CMBatt) 
interface 

• CMBatt reports

• The designed capacity

• The latest full-charged capacity

• The current remaining capacity

• Warning, Low & Critical status messages
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Thermal Management
• Based on thermal zones

• Using temperature eventsUsing temperature events

• Two types of cooling

• Active coolingActive cooling

–Exploits cooling devices (e.g., fans)

– Increases power to reduce heatIncreases power to reduce heat

• Passive cooling

–Reduces the power-consuming activitiesReduces the power consuming activities

–Reduces power to decrease temperature
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Example: Thermal Zones

To = 50oC 
passive cooling activated
CPU clock slowed down by 2CPU clock slowed down by 2

T1 = 70oC
active cooling activated g
fan is started

T = 60oC, fan is started
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System-level Power Breakdowns [Shim 06]
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Power consumption for running a streaming video application (W)

Display Power Management
• Idle-based display off

• Brightness control based on user requestBrightness control based on user request

• Active mode power management

• Zone-based on & off controlZone based on & off control

• Dynamic Luminance Scaling (DLS)
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Liquid Crystal Displays        [Shim 06]

• TFT LCD panel [TFT96]

Pixel data input

Polarization direction changes in 
response to an electrical voltage

Pixel data input
Pixel data input
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Diffuser

TFT-array substrates (CST: a storage capacitor and 
CLC: an equivalent capacitor for a liquid crystal cell)
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v
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Structure of a transmissive LCD panel
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CLC: equ v e c p c o o qu d c ys ce ) Structure of a transmissive LCD panel

Overview of DLS                 [Shim 06]

• Principle of DLS (Dynamic Luminance Scaling)

• Backlight dimming for power savingBacklight dimming for power saving

–L(v) L(v’) such that L(v’) < L(v)

• Restoring brightness/contrast by appropriateRestoring brightness/contrast by appropriate 
image compensations

–C C’ to maintain the same intensity 
perceived by human eyes

PolarizerColor FilterTFT arrayBacklight PolarizerColor FilterTFT arrayBacklightyg
R

G

B
Y(C,v)

C

PolarizerColor FilterTFT arrayBacklight
R

G

Y(C',v')
C'

Polarizer BM (Black Matrix)Liquid crystalL(v)

B

Polarizer BM (Black Matrix)Liquid crystalL(v')

B
Y(C ,v )
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Original Backlight dimming with appropriate 
image compensation

One Implementation

A li i

Conventional

Drawing Frame LCDSweep

Application program
or windows system Device driver Hardware

Drawing
objects

Frame
buffer

Backlight
inverter

Backlight
luminance

LCD
controller

LCD
panel

Sweep

p

Application embedded or windows system embedded

RGB Image

Drawing
objects

Frame
buffer

Backlight

Modified
objects

LCD
controller

LCD

Sweep

Histrogram
g

processing

Adjusted
luminance

g
inverter panel

Image
quality

PID
controller

Measured
luminance
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Reference
luminance

Experimental Results

(a) 147mW/87.5%

• MPEG-4 decoder 
(application) (b) 147mW/87.5%(application)

(c) 188mW/82.0%

(d) 703mW/42.1%

(e) 805mW/35.9%

P d ti /R l ti b kli ht l i

(f) 278mW/75.0%

Power reduction/Relative backlight luminance
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Original DLS (Di=0.03)



What is Low Power Communication?

• Recently, mobile communication device are ubiquitous

• Mobile phone, PDA….

• Mobile devices are operated by battery

L i ti• Low power communication

• Reduce power consumption in communications

• Longer communication time is possible with limited batteryLonger communication time is possible with limited battery

• It includes

– Make low power communication devices

– Make more efficient dynamic power management 
scheme

– Make power aware routing protocolsMake power aware routing protocols
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Dynamic Power Management of Mobile device

• Motivation

• Wireless interface cards consumes energy continuously

– 10 to 50% of energy budget for mobile device 

• Different level of power state

Wh idl t l t t• When idle, enter lower power state

• If a state is in a suspend state

• Cannot know if some other host has data to send to itCannot know if some other host has data to send to it

• External events need to wake up

• The key of balancing power saving & delay 

• Knowing when to suspend & wake up

– Role for application specific information for guidance

E l• Example 

• Power Management Techniques for Mobile Communication  
[Kravets & Krishnan, ’98]
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Kravets & Krishnan ‘98

• A transport level protocol for managing theA transport level protocol for managing the 
suspend/resume cycle of the mobile host’s 
communication device

• Idle communication periods are detected by

• Timeout periods

• Application Signalling
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Protocol State Diagram: Base Station

• Mobile Host: Master

• Base Station: Slave
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Protocol State Diagram: Mobile Host
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Experimental Results

• Saving for the three types of machines

46
Low Power SW.3 J. Kim/SNU

47
Low Power SW.3 J. Kim/SNU

Ad Hoc Network
• What is wireless Ad Hoc Networks?

• Infrastructure-less networks (no fixed routers)Infrastructure less networks (no fixed routers)

• All nodes capable of movement

• Links appear and disappear dynamicallyLinks appear and disappear dynamically

• Special constraints:

–Limited bandwidthLimited bandwidth

–Limited power: need power awareness

–High error ratesHigh error rates

• Protocol needed to create and maintain routes

• Conventional routing protocols not applicable• Conventional routing protocols not applicable
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Power-Aware Ad Hoc Network
• Power-Aware Ad Hoc Networks

• Most mobile hosts of ad hoc network are based on batteries.

P d h t k i th b tt lif ti d• Power-aware ad hoc network increases the battery life time and 
system life time.

• Power reduction can be obtained in several layers:

• Physical layer

– Adjust transmission power [Ramanathan et al, ’00]

• Data link layerData link layer

– Sleep mode operation [Singh et al, CCR’98]

• Network layer

[– Maximize system life time [Singh et al, 
MobiCom’98][Toh, ’01]

• Transport layer

– Reduce protocol processing and software overhead [Agrawal 
et al, ’01]
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Metrics in Ad Hoc Routing Protocols

• Shortest-hop 

• Some nodes die relatively early

– E g the middle node (node 6)E.g., the middle node (node 6)

• Message/time overhead

• Routing protocol message overhead

• Misguided in the long-term
• Control packet: 5 ~ 10 %

• Data packet: 90 ~ 95%Data packet: 90  95%
– Amdahl’s Law

• Link quality and/or location stability

St bilit l t bl d t• Stability less table update

• Orthogonal to the goal of power-awareness

– Can be used in conjunction
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Can be used in conjunction

Power-Aware Metrics [Singh et al, MobiCom’98]

• Minimize energy consumed / packet 

• Under the light loads, similar to shortest hop

• Under the heavy contentions, avoid congested areas

• Maximize time to network partition

L d b l i d• Load balancing among nodes

• Minimize variance in node power levels

• Minimize cost / packetMinimize cost / packet

• Node cost == node’s reluctance to forward packets

• Node 6 case avoided
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Online Max-Min Routing [Li et al., 2001]

• Max Min Path
• The path with the maximal minimal fraction of remaining powerThe path with the maximal minimal fraction of remaining power 

after the message is transmitted
(-) Poor performance (i.e., delay increases)
(-) Large power consumption

• Trade off between
– Minimizing the end-to-end delay
– Maximizing the minimal residual power
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Maximizing the minimal residual power



Max-Min zPmin Path

• Two extreme solutions

• A path with minimal power consumption Pmin

• A path that the maximizes the minimal residual 
power in the networkpower in the network

• Max-Min zPmin path

• Relax the minimal power consumption to z x Pmin
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Zone-Based Routing 

• Very expensive to implement Max-Min zPmin

• Solution: Zone-based routing

• Group together all the nodes that are in geographic 
proximity as a zone, treat the zone as an entity in the 
network

• Require  3 subtasks

– Zone Power Estimation

– Global Path Selection

– Local Path Selection
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Coordination in Power Saving [Chen et al. ’01]

• In ad-hoc networks, not all nodes participate in routing

• By using some nodes as a coordinator

• Extend life time 

R d ll ti• Reduce overall energy-consumption

• Preserve network capacity
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