Software—level
Power—Aware Computing

Lecture 4

Lecture Organizations

Lecture 4
« Software power estimation & optimization
« Low-power techniques for multiprocessor systems
« Leakage reduction techniques
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Software Power Estimation & Optimization

*  Modeling—-based Approaches
+ Instruction-level power modeling (V. Tiwari)
— Employs of each instruction
— Instruction—level analysis and optimization
» Component-based power modeling
— Wattch, SimPower

Measurement—based Approaches
» SES : SNU Energy Scanner
— Cycle-level power measurement on the target board
+ PowerScope (J. Flinn)
— Function—level analysis w/ DMM
» ePRO : energy PRofiler and Optimizer
- Function-level analysis and optimization w/ DAQ
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Instruction—level Power Estimation (1)

« Base energy cost

same instructions repeatedly executed
mov bx, [dx]
mov bx, [dx]
mov bx, [dx]

mov bx, [dx]

current measured by ammeter
— average value calculated

* For variations in base energy costs due to
operands and addresses, average base cost
values are employed
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Instruction—level Power Estimation (2)

* Inter—Instruction Effects
« Effects of circuit state : switching activity in a circuit

— Avg. overhead through extensive experiments between
pairs of instructions

+ Effect of resource constraints : pipeline stall and write
buffer stalls

— Avg. energy cost of each stall experimentally determined
» Effect of cache misses
- Avg. energy penalty of cache miss cycles

‘ Ep:Z‘,i(Bi><’\‘i)+z4i,j(oi,jXNi,J)”LZ:kEk

E,: average energy cost for a program O, ;: the circuit state overhead
B; : the base cost of each instruction N ;: the no. of times the pair is executed

N;: the number of times executed E. : other instruction effects
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Instruction—level Power Estimation (3)

« Energy estimation framework for a program
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Instruction—level Power Optimization

* Instruction Reordering
« A technique to reduce the circuit state overhead

» Instructions are scheduled in order to minimize the
estimated switching in the control path

- For , energy saving only up to , but for a
up to

«  Energy cost driven code generation

» Instructions with memory operands have much higher
currents than those with register operands

+ Better utilization like optimal global register allocation of
temporaries and frequently used variables

ResuLts of ENERGY OPTiMization ofF SorT aND CIRCLE

Program hlcc.asm | hhtlasm | hht2 asm | hht3.asm
Avg. Current (mA) 525.7 534.2 307.6 486.6
Execution Time (psec) 11.02 9.37 8.73 7.07
Energy (10-5J) [19.12 16.52 1462 | 1136 ]
Program clce,uem | chtl.asm | cht2.asm | cht3.asm
Avg. Current (mA) 530.2 521.9 516.3 514.8
Execution Time {psec) 7.18 5.88 5.08 4.93
Energy (10-5J) L1258 10.24 B8.65 8.37 |
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SES : SNU Energy Scanner (1)

* Overall Structure

f' User Interface
User Interface Control Program
nput Loager Execution and Energy Information

Iy

Energy Analysis Module
Energy Analysis Profile Matching Module }4
Module
CPU Energy Analayzer
A
[ HW/SW PCI Interface | |

Energy i Energy Measurement Board i isiti
@# Controller | | Memory Q)EARMWDMI) P"""':A’:;ﬂ:‘e's""’”

¢ Summary
* On-board, cycle-level power measurement
« Source code related energy analysis

Memory Energy
Estimator

8
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SES : SNU Energy Scanner (2)

Energy Measurement H/W Module

» - profile
program ARMTTDMI ARMTTDMI measurement .
controller cors ircuis acquisition
module

memory

PCl profile acqusition
controller Memory

controller

Low Power SW.4

J. Kim/SNU

SES : SNU Energy Scanner (3)

=

« Energy Analyzer GUI
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SES : SNU Energy Scanner (4)

*  Pros

No additional measurement device (like DMM or DAQ)
necessary
Cycle—-level accuracy and timeliness
Source code related energy analysis
— C program function or instruction level

« Cons

* No portability
— For each processor, new hardware and program are

necessary
- time, cost, and effort!!
No exact performance—energy correlation

- Performance is not measured
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PowerScope (1)
*  Overall Structure

Frofiling ' Data
Computer Collection
Computer
Apps Digital P
Multimeter Profiline
dogee—— —— Lk, | Energy Com JLIE“I’
Source = 00T BUs Monitor -ompute
el Symbol Bbi
MOnltO[ 2YMODO! Blies
Trigger PC / PID Samples | ENETGY Energy Pofile
Analyzer
Comelated
PC /7 PID Conelated Current Bvels
samples Current kvels
(a) Data Collection (b) Off-Line Analysis
«  Summary
+ Power measurement w/ external device (DMM)
+ Source code related energy analysis
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Powerscope (2)

*  Pros
* Portability
— Employs Linux LKM (Loadable Kernel Module) and DMM
* Moderate accuracy but fast measurement
» Source code related energy analysis
— C program function level

«  Cons
* QOverhead
— Sampling trigger feedback between target b’d and DMM
- varying interrupt handling time
- Long profile function path
» No performance—energy correlation
— Performance is not measured

Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (1)

e Overall Structure

Collection & Analysis

Target System System (Windows XP)

Embedded S/W CPU e power Eclipse Platform
RAM o samples _ -
oo 1t »| Collection Symbol
1] > 5
Kernel > - PC/PID »| Monitor Table
—‘._ samples
ext. trigger 1 DAQ ‘L
)
SN et Energy Performance || Code Size
Analyzer Analyzer Analyzer
performance profiles ‘ Energy,
Per&cz):]n;[ir:ce L Gul Ll Performance,
> Code Size
Profiles

*  Summary
« Power measurement w/ external device (DAQ)
+ Source code related energy, performance, and code size analysis
» Automatic compiler—level optimization

14
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ePRO : energy PRofiler and Optimizer (2)

¢ Overview

+ Automatized tool which analyzes and optimizes software
energy and performance based on measurement

+  Function details
+ Performance Analysis
— Function-level performance indices
* Energy Analysis
— Function-level energy consumption
— Device-level energy consumption
+ Energy Optimization
- Energy—optimal compiler option selection
« Integrated Development Environment (IDE)
- Plug—in of Eclipse

Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (3)

+  Performance Analysis
+ Using XScale processor's PMU
« CPI (Cycles Per Instruction) I-cache/D—cache efficiency
* Instruction fetch latency
- Data/bus request buffer : D—cache buffer stall
- Stall/writeback statistics
- |-TLB/D-TLB efficiency

[Funciion | Source | Code.., | Energy Consu,.. | Energy Ravof_ | Execution Tim,.. | -Cache Miss . | D-Cache hiss .
0 =] .0 2 5 5

0. 154
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ePRO : energy PRofiler and Optimizer (4)

*  Function—level Energy Consumption Analysis

Sroblems | Console
Funcian

« Device-level Energy Consumption Analysis
+ CPU, RAM, FLASH, HDD, etc

PRI w
Device hame
AL 676.5¢ [ 100,00
12390 |l 1825
4360 | 54
a10.03 [ £0.40
101,31 | 14,52
17
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ePRO : energy PRofiler and Optimizer (5)

« Energy Optimization

CL-OSE (Compiler-Level Optimal Space
Exploration) : Selects the energy—optimal options
time—efficiently for the target program among the

all the available compiler options

“roblems | Console BNy EERT eFRO DeviceView

Source [ OPT OPTION O (mJy | OPT OPTION 02 (mJ) [ OPTOPTION 03 tmu)|| BZST OPTION (-02) tmJ) |
_TOTALZ 238.421,90 66,683,565 65,565, 36 B6,653.36
amph frnft, c {604 0.00 0.00 0, 00§ 0.0
bracket fnft,c 615 156,05 9332 103, 42} 9332
dindrx frft, 2717 n.nn n.nn n.nnj nan
dmatrix nrutil,ci72 0.00 0.00 0.00) 0.0
dsort frift, c {689 0.00 0.00 0,00 0.0
dvector nrutil, c:60 0,00 0.00 0, 00f 0.0
frft frft,c:59 182,843, 75 12.408.76 1180727} 12,408,786
fourt frnft, c 1466 £.455,51 £.739.21 £.595, 43 £.739.21
free_dmatrix nrutil,c:132 0,00 0.00 0, 00f 0.0
free_dvector nrutil.c:123 0.00 0.00 0,00) 0.0
free_ivector nrutil, c:95 0.00 0.00 0, 00§ 0.0
free_lvector nrutll,c: 106 0.00 0.00 0, 00 0.0
free_vectar nrutil.ci114 0.00 0.00 0,00 0,10
golden frnft, c :565 3113 373 207,27 EINE]
iuartar el -9 nnn nnn n nn non

<
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* Integrated Development Environment
« Employs Eclipse’s plug—in function

Low Power SW.4 J. Kim/SNU

Portability

— Employs Linux LKM and DAQ assembly

Program function—level energy, performance, and code

size analysis

Automatized compiler—level energy optimization

- Cons

Overhead
— System behavior sampling overhead

Limited to a processor with PMU (Performance Monitoring

Unit) : e.g. XScale
No support for multiple processes till now

Low Power SW.4
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3D Graphics Pipeline

+ 3D Graphics Pipeline
+ Geometry Calculation
—Calculation of geometric data of objects
 Rasterization
—Converting an object on a screen

c S E’ o S I
8 g = & = k7 a - c
< 3 =) kS S @ ) = c o
= = = a = &) > o =]
sle ez s e S 2L ES
o (o= S a £ I=) & o > o
n < 5 o c = T o
c 8 = o IS c = r O
< = = = I =
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/ /

Geometry Calculation Rasterization
<3D Graphics Pipeline>
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Power Breakdown of 3D Graphics

«  Power Consumption of 3D Graphics Application
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A Low-Power Texture Mapping (1)

*  Previous Work
«  “A Low-Power Content-Adaptive Texture Mapping
Architecture for Real-Time 3D Graphics”, Jeongseon Euh
et al, PACS’02.
— Adaptive texture mapping
* based on a model of human visual perception (HVP)
— DVS is applied to the interpolation block

« “Trading Efficiency for Energy in a Texture Cache
Architecture”, losif Antochi et al, MPCS’02

— Mobile devices cannot afford large texture cache
* Due to gate count limitation and low power consumption

— 128~512 bytes texture cache between the graphics
accelerator and texture memory

Low Power SW.4 J. Kim/SNU




A Low-Power Texture Mapping (2)

* A Low-Power Texture Mapping Technique for Mobile 3D
Graphics

« A small texture cache can increase the miss ratio
* The technigue to preserve performance is needed
—Prefetching
—Victim cache

30%

25%

1KDM 2KDM 4KDM 8KDM 16KDM
Cache Size

25
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A Low—-Power Texture Mapping (3)

« Prefetch techniques
* Technique 1: Prediction of next texels

—Division is required due to “ perspective
correction”

* Technique 2: Prediction of next blocks
—Assuming that derivatives are not changed
—Division is eliminated

* Technique 3: Prediction of next blocks based on
direction of texture map access

—-Simple, but less exact than technique 2

- A small fully associative prefetch buffer is used

26
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Technique 2
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A Low-Power Texture Mapping (4)

« Using victim cache

+ Sizes of texture images are powers of two
+ Conflict misses can occur between blocks
—Especially in the small texture cache

—Blocks are reused in processing of next

spanline

* Victim cache can reduce conflict misses
—Prefetch buffer performs as the victim cache
—Evicted blocks are moved into the prefetch

buffer

Low Power SW.4
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A Low-Power Texture Mapping (5)

+ Experimental Results
- Area Reduction
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A Low-Power Texture Mapping (6)

» Miss Ratio and Power Consumption
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Researches on 3D Graphics (1)

- “An Effective Pixel Rasterization Pipeline Architecture
for 3D Rendering Processors”, Woo—Chan Park et al,
IEEE Transactions on Computers ‘03

« Avoid unnecessary texture mapping for obscured
fragments

* Reduce the miss penalties of the pixel cache by
prefetching scheme

« “Design and Implementation of Low—Power 3D
Graphics SoC for Mobile Multimedia Applications”,
Ramchan Woo, PHD thesis, KAIST ‘04

Implementing full-3D pipeline with texture
mapping and special effects

33
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Researches on 3D Graphics (2)

- “GraalBench: A 3D Graphics Benchmark Suite for
Mobile Phones”, losif Antochi et al. LCTES 04

« A set of 3D graphics workloads representative for
mobile devices

«  “Power—Aware 3D Computer Graphics Rendering”,
Jeongseon Euh, Journal of VLSI Signal Processing'05

* Low power system based on Approximate
Graphics Rendering (AGR)

* Power savings are examined for stages
-Shading
—Texture mapping

Low Power SW.4 J. Kim/SNU

Low—Power Techniques for

Multiprocessors

DVS techniques for Multiprocessors

Power—Aware Parallelism Optimization

Local Memory Management

35
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Slack Reclamation (1)

Problem definition
» Greedy slack reclamation

—Any slack is used to reduce the speed of next
task on same processor

—|t cannot guarantee deadline
* Example: 6 tasks in 2 processors

- ={T,(WCET,AET)|T,(5,2), T,(4,4), T5(3,3),
T4(2,2), T5(2,2), TG( ,2)}, Deadline=

- T3 uses up its time, Tg misses the deadline

Queue
N T Lo G5 0 Lo G4 5

T i '
[ r) ;
LT T T T
N ;
(p)| 1 I E R
R i - I R -

0 9 Time o 9 Time
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Slack Reclamation (2)

+  Shared slack reclamation [Zhu03]
« Share the slack with other processors
—Split slack into multiple parts
« Slack sharing example (see figure (b))

—Slack1: Two time units before T,’s finish time
(based on T,'s WCET)

—Slack2: One time units after T,’'s finish time
-> Share slack? with P,
+ All tasks meet deadlines

eue
o | T | 5 | T |T-I-|TS|T6| T | T | T |T-I|T."-|Tf~|
— . i .
(e )it N It ~ I
S 1 [ 1 1 T, ) |6
N ¥ i r |
R/ | & I ! Bl (s
: — R SR
0 ) Time 0 ) Tim
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Condition—Aware Scheduling (1)

Task scheduling for conditional task graph
« Conditional Task Graph (CTG)

—Various task sequences depending on the
conditions

—Require power—aware scheduling technigue
considering conditions

[Task] PE [WCET|Deadiine |
To| PED

T To T
- - - m - -
T1 T2 T T2 T T2
LAY v L L] L]
T3 P T3 Ty (T3 s
X : i
! 1 L L s
Yo v - 1 T ) T
Ty [s
o node | |
(a) Example conditional task graph G (b) g¢, () ge, (d) g,

38
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Condition—Aware Scheduling (2)

+ Condition—Aware scheduling [Shin03]
Step 1: Task ordering

—Use the schedule table: <start time, clock
speed>

—D,ePendin the condition value, each task has
different start time and clock speed

"~ conditior]

39
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Condition—Aware Scheduling (3)

Condition—-Aware scheduling [Shin03]
» Step 2: Task stretching

—Use probabilities of conditions from profile
information

—Minimize X E (t) Prob()
*Optimize for high probability conditions

> G, G
. Y
spead 13,1 0.5 T71 04 |
043 : T332 o8 T72 o3 |
PEO [Tmg | T T33 0= 73 053
053 dlity)
FE1 01 043 Tg *
—i— T4
0.53
PE2 [ s |

0 10 20 30 40 0 60 70 80 %0 100 110 120 time

40
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DVFS in MPSoC (1)

* Local-DVFS

« Decide the frequency of the each processor only
using the local information.

—Do not use the information of the other
processors.

« Higher frequency as more tasks in the task
queue.

« Limitations of the local-DVFS

» |f a processor is executed with lower frequency,
it can hurt the performance of the other
processor because of the dependency.

41
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DVFS in MPSoC (2)

+ dist-DVFS [Juang05]

« Decide the frequency of the each processor using
the global information.

» Operation steps
—Estimate the future task queue occupancy

—|dentify the critical-path—tasks
(with the highest queue occupancy)

—Decide the frequency of the each processor not
hurting the performance of the critical-path—
tasks

42
Low Power SW.4 J. Kim/SNU

Optimizing Parallelism (2)

«  The number of processors that generate the best
execution time for each loop nest

Benchmark Name | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9
[ 3step-log 1 5 ]
di 3
[Caps i

1
ull -search

| n-real-updates |
parallel hics
tomcat
[$:34

1

5

1

1

1

d

1 3 3 2 1 5
i 3

T

1

= [ ] ] ] ] =] 3] ]

« Using only a small subset of processors out of 8
processors

« This is a strong motivation for shutting down unused
processors.

43
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Optimizing Parallelism (3)

- Designing an effective parallelization strategy for an
on—chip multiprocessor

* Mechanism
—Dynamic approach

The number of processors for each loop
nest is decided at run time.

—Static approach

*The number of processors for each loop
nest is decided at compile time.

* Policy
—Criterion to decide the number of processors
*Execution time, energy and so on.

Low Power SW.4 J. Kim/SNU




Optimizing Parallelism (4)

*  Procedure

- Determine the number of processors from
mechanism and policy

+ Insert activation / deactivation call in the code
« Optimize the code

*  Optimization

« Current active/idle status of processors is
maintained as much as possible

—To minimize overhead from on/off

« We have to pre—activate the processors,
—|f the processor will be used in next loop
—Not to hurt the performance

45
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Runtime Code Parallelization (1)

« A run-time strategy for determining the best number
of processors to use [Kandemir03]

* Dynamic mechanism
* To minimize energy and execution time
+ Need some help from H/W and compiler.

46
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Run—time Code Parallelization (2)

« Parallelization based on training

« Each dot represents an iteration

— —

I r-r
(Training (Using the Bcst
Periody Mumber of Processors)

« Training period
—Find the optimal number of processors
« Using the number of processors determined

* Extra Optimization
< Minimize training iteration based on history.

—Utilize the past history, avoid redundant
training.

Low Power SW.4 J. Kim/SNU

Local Memory Management (1)
« Latency of memory access

CPU cPU CPU cPU

—[— —-r' _T_ | local memory <

Local Local Loscal local memory of other CPU
Hemrv Memory hl rrf'! Mcm ory

j << off=chip memory

Off-Chip Memary

Target MPSoC architecture

* Frequent off-chip memory access can be very costly
from both performance and energy perspectives

* Propose local memory management scheme for low
cost [Chen05]

48
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Local Memory Management (2)

*Access pattern of the data block is analyzed by
compiler

+ Software—-managed memory is used

*  When a data block is stored in the local memory of
the processor,

« Even though the data block is predicted not to be
used any more by the processor,

 |f the data block is predicted to be used by
another processor, keep the data block in the
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° |sub ~ e(—Vt/Va) (‘l —_ e(—V/Va))
where Va is the thermal voltage

*  How to reduce lsub
* Turn off the supply voltage
(<) loss of state
* Increase the threshold voltage
(-) loss of performance
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Leakage Power Reduction

+ State—Destructive vs State—Preserving
« Application—Sensitive vs. Application—Insensitive

53

Dynamic Resizing of Instruction Cache

address: [ tag + index [ offset |
- minimum
resizing range $_ size-bound ‘:m—(

size mask: 0" -111
S— ‘
masked index »lv tag data block

DRI I-CACHE

‘—‘
upsize

resizing range

—
downsize

upsize downsize
miss count > miss-bound? 4= | miss count < miss-bound?
mask shift le mask shift right v -
- - miss o
miss-bound —( compare miss miss counter hit/miss?
count

¥es end of interval?

FIGURE 1: A DRI i-cache’s anatomy.

[Powell, ISLPEDOO]
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Gated-Vdd Drowsy Cache [Flautner, 2002]
__ \ .-" o drowsy bit voltage controller

bltllne dd bl‘tllne / ] -.—_|_drowsy{segl
— —™
_Q'| |3_ ™ ™ ‘L_(:;LI_—F drowsy —®  power line
2 T s 4* H
P § —|_ _T_ VDD (1V)
] LT z kS SRAMs
g g 1 VDDLow (0.3V) ::::]7
T 1T NS LT 1T
W | wordline 23] f{:; — N p—
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gated-Vyy e
control 1 ~ L : N
word line
G nd wordline gate
dmws's:'gnal

- State Destructive, Application Insensitive
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Compiler—Directed Approach

[Zhang, MICRO-35]
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Two special instructions for power state changes
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