
Software-level 
Power-Aware Computing 

Lecture 4

Lecture Organizations
• Lecture 1: 

• Introduction to Low-power systems 

L bi di• Low-power binary encoding

• Power-aware compiler techniques

• Lectures 2 & 3ectures & 3

• Dynamic voltage scaling (DVS) techniques

– OS-level DVS: Inter-Task DVS

C il l l DVS: I t T k DVS– Compiler-level DVS: Intra-Task DVS

– Application-level DVS

• Dynamic power management

• Lecture 4

• Software power estimation & optimization

• Low power techniques for multiprocessor systems• Low-power techniques for multiprocessor systems

• Leakage reduction techniques
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Software Power Estimation & Optimization

• Modeling-based Approaches

• Instruction-level power modeling (V. Tiwari)

l b f h i i– Employs base energy cost of each instruction

– Instruction-level analysis and optimization

• Component-based power modelingComponent based power modeling

– Wattch, SimPower

M t b d A h• Measurement-based Approaches

• SES : SNU Energy Scanner

– Cycle-level power measurement on the target board

• PowerScope (J. Flinn)

– Function-level analysis w/ DMM

• ePRO : energy PRofiler and Optimizer• ePRO : energy PRofiler and Optimizer

– Function-level analysis and optimization w/ DAQ
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Instruction-level Power Estimation (1)

• Base energy cost

mov bx, [dx]
b [d ]

mov bx, [dx]
b [d ]

same instructions repeatedly executed

mov bx, [dx]
mov bx, [dx]

.

.

mov bx, [dx]
mov bx, [dx]

.

.

Target
Processor

Target
Processor

.
mov bx, [dx]

.
mov bx, [dx] current measured by ammeter

→ average value calculated

• For variations in base energy costs due to

g

• For variations in base energy costs due to 
operands and addresses, average base cost 
values are employed
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Instruction-level Power Estimation (2)

• Inter-Instruction Effects

• Effects of circuit state : switching activity in a circuit

A h d h h i i b– Avg. overhead through extensive experiments between 
pairs of instructions

• Effect of resource constraints : pipeline stall and write 
b ff t llbuffer stalls

– Avg. energy cost of each stall experimentally determined 

• Effect of cache misses

– Avg. energy penalty of cache miss cycles

∑∑∑ +×+×=
k kji jijii iip ENONBE

, ,, )()(

pE

iB jiN ,

jiO ,: average energy cost for a program

: the base cost of each instruction

: the circuit state overhead

: the no. of times the pair is executed
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iN kE: the number of times executed : other instruction effects

Instruction-level Power Estimation (3)

• Energy estimation framework for a program
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Instruction-level Power Optimization
• Instruction Reordering

• A technique to reduce the circuit state overhead
• Instructions are scheduled in order to minimize the• Instructions are scheduled in order to minimize the 

estimated switching in the control path
– For 486DX, energy saving only up to 2%, but for a DSP

up to 33.1%p

• Energy cost driven code generation
• Instructions with memory operands have much higherInstructions with memory operands have much higher 

currents than those with register operands
• Better utilization like optimal global register allocation of 

temporaries and frequently used variables
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SES : SNU Energy Scanner (1)

• Overall Structure

Host PC
Host PCCompilerC Program

User Interface

Execution and Energy InformationProgram
Loader

Control
Input

User Interface

Energy Analysis Module

CPU Energy Analayzer
Memory Energy

Estimator

Profile Matching ModuleEnergy Analysis
Module

HW/SW PCI Interface

Summary

           Energy Measurement Board
           (ARM7TDMI)

           Energy Measurement Board
           (ARM7TDMI)

Profile Acquisition
ModuleController Memory

Energy Estimation
Module

• Summary

• On-board, cycle-level power measurement

• Source code related energy analysis
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• Source code related energy analysis



SES : SNU Energy Scanner (2)

• Energy Measurement H/W Module
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SES : SNU Energy Scanner (3)

• Energy Analyzer GUI
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SES : SNU Energy Scanner (4)

• Pros

• No additional measurement device (like DMM or DAQ) 
necessary

• Cycle-level accuracy and timeliness

• Source code related energy analysisSource code related energy analysis

– C program function or instruction level

• Cons

• No portability

F h h d d– For each processor, new hardware and program are 
necessary 

time, cost, and effort!!

• No exact performance-energy correlation

– Performance is not measured
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PowerScope (1)

• Overall Structure

Summary• Summary

• Power measurement w/ external device (DMM)

• Source code related energy analysis
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• Source code related energy analysis



Powerscope (2)

• Pros

• Portability

l Li LKM (L d bl K l M d l ) d MM– Employs Linux LKM (Loadable Kernel Module) and DMM

• Moderate accuracy but fast measurement

• Source code related energy analysisSource code related energy analysis

– C program function level

C• Cons

• Overhead

– Sampling trigger feedback between target b’d and DMM

varying interrupt handling time 

- Long profile function path

• No performance energy correlation• No performance-energy correlation

– Performance is not measured
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ePRO : energy PRofiler and Optimizer (1)
• Overall Structure

Collection & Analysis 
System (Windows XP)Target System

Embedded S/W Eclipse Platform 

Collection Symbol

CPU

RAM

Adapter

y ( )

power 
samples

Kernel 

Collection
Monitor

Symbol 
Table 

System Monitor

ext. trigger

HDD
PC/PID
samples

DAQ 

performance profiles

Code Size
Analyzer

Energy
Analyzer

GUI

Performance
Analyzer

Performance
Monitor

System Monitor

Energy, 
Performance, 

• Summary

GUIMonitor Code Size 
Profiles

Summary

• Power measurement w/ external device (DAQ)

• Source code related energy, performance, and code size analysis
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• Automatic compiler-level optimization

ePRO : energy PRofiler and Optimizer (2)

• Overview

• Automatized tool which analyzes and optimizes software 
d f b denergy and performance based on measurement

• Function details

• Performance AnalysisPerformance Analysis

– Function-level performance indices 

• Energy Analysis

– Function-level energy consumption

– Device-level energy consumption

E O ti i ti• Energy Optimization

– Energy-optimal compiler option selection

• Integrated Development Environment (IDE)Integrated Development Environment (IDE)

– Plug-in of Eclipse  
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ePRO : energy PRofiler and Optimizer (3)

• Performance Analysis

• Using XScale processor’s PMU

• CPI (Cycles Per Instruction) I-cache/D-cache efficiency

• Instruction fetch latency

D t /b t b ff : D h b ff t ll• Data/bus request buffer : D-cache buffer stall

• Stall/writeback statistics

• I-TLB/D-TLB efficiencyI TLB/D TLB efficiency
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ePRO : energy PRofiler and Optimizer (4)

• Function-level Energy Consumption Analysis

• Device-level Energy Consumption Analysis

• CPU, RAM, FLASH, HDD, etc
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ePRO : energy PRofiler and Optimizer (5)

• Energy Optimization

• CL-OSE (Compiler-Level Optimal Space 
)Exploration) : Selects the energy-optimal options 

time-efficiently for the target program among the 
all the available compiler optionsp p
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ePRO : energy PRofiler and Optimizer (6)

• Integrated Development Environment

• Employs Eclipse’s plug-in functionEmploys Eclipse s plug in function
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ePRO : energy PRofiler and Optimizer (7)

• Pros

• Portability

– Employs Linux LKM and DAQ assembly

• Program function-level energy, performance, and code 
size analysissize analysis

• Automatized compiler-level energy optimization

• Cons

• Overhead

S t b h i li h d– System behavior sampling overhead

• Limited to a processor with PMU (Performance Monitoring 
Unit) : e.g. XScale

• No support for multiple processes till now

20
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3D Graphics Pipeline

• 3D Graphics Pipeline

• Geometry CalculationGeometry Calculation

–Calculation of geometric data of objects 

• RasterizationRasterization

–Converting an object on a screen 
or
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<3D Graphics Pipeline>

Geometry Calculation RasterizationGeometry Calculation Rasterization
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p p

Power Breakdown of 3D Graphics

• Power Consumption of 3D Graphics Application
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A Low-Power Texture Mapping (1)
• Previous Work

• “A Low-Power Content-Adaptive Texture Mapping 
Architecture for Real-Time 3D Graphics”, Jeongseon Euh 
et al, PACS’02.

– Adaptive texture mappingAdaptive texture mapping 

• based on a model of human visual perception (HVP)

– DVS is applied to the interpolation block

• “Trading Efficiency for Energy in a Texture Cache 
Architecture”, Iosif Antochi et al, MPCS’02

– Mobile devices cannot afford large texture cache

• Due to gate count limitation and low power consumption

– 128~512 bytes texture cache between the graphics128 512 bytes texture cache between the graphics 
accelerator and texture memory

24
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A Low-Power Texture Mapping (2)
• A Low-Power Texture Mapping Technique for Mobile 3D 

Graphics

• A small texture cache can increase the miss ratio

• The technique to preserve performance is needed

–Prefetching

–Victim cache
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Cache S ize

A Low-Power Texture Mapping (3)
• Prefetch techniques

• Technique 1: Prediction of next texelsTechnique 1  Prediction of next texels

–Division is required due to “perspective 
correction”

• Technique 2: Prediction of next blocks

–Assuming that derivatives are not changedg g

–Division is eliminated 

• Technique 3: Prediction of next blocks based on q
direction of texture map access

–Simple, but less exact than technique 2

• A small fully associative prefetch buffer is used
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Technique 1

●●

●

Prefetch
●

●

●

● ● ● ●●

Prefetch
●
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● ● ● ●

Span Line

u

v 다음에 접근될 텍셀

u

v

u

v 다음에 접근될 텍셀

<screen> <Texture Image>

현재 접근되는 텍셀현재 접근되는 텍셀
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Technique 2

예측된 텍셀예측된 텍셀
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Block Prefetch●
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Block Prefetch●Span Line
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<screen>

현재 접근되는 텍셀현재 접근되는 텍셀

<Texture Image><screen>
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Technique 3

현재 접근되는 블록현재 접근되는 블록
현재 접근되는 블록현재 접근되는 블록

현재 접근되는 블록현재 접근되는 블록
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A Low-Power Texture Mapping (4)
• Using victim cache

• Sizes of texture images are powers of twoSizes of texture images are powers of two

• Conflict misses can occur between blocks

–Especially in the small texture cacheEspecially in the small texture cache

–Blocks are reused in processing of next 
spanlinep

• Victim cache can reduce conflict misses 

–Prefetch buffer performs as the victim cachep

–Evicted blocks are moved into the prefetch 
buffer
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A Low-Power Texture Mapping (5)
• Experimental Results

• Area Reduction
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A Low-Power Texture Mapping (6)
• Miss Ratio and Power Consumption
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Researches on 3D Graphics (1)
• “An Effective Pixel Rasterization Pipeline Architecture 

for 3D Rendering Processors”, Woo-Chan Park et al, 
IEEE Transactions on Computers `03

• Avoid unnecessary texture mapping for obscured 
fragmentsfragments

• Reduce the miss penalties of the pixel cache by 
prefetching schemeprefetching scheme

• “Design and Implementation of Low-Power 3D• Design and Implementation of Low Power 3D 
Graphics SoC for Mobile Multimedia Applications”, 
Ramchan Woo, PHD thesis, KAIST `04

• Implementing full-3D pipeline with texture 
mapping and special effects
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Researches on 3D Graphics (2)
• “GraalBench: A 3D Graphics Benchmark Suite for 

Mobile Phones”, Iosif Antochi et al. LCTES`04

• A set of 3D graphics workloads representative for 
mobile devices

• “Power-Aware 3D Computer Graphics Rendering”, 
J E h J l f VLSI Si l P i `05Jeongseon Euh, Journal of VLSI Signal Processing`05

• Low power system based on Approximate 
Graphics Rendering (AGR)Graphics Rendering (AGR)

• Power savings are examined for stages

–Shading–Shading

–Texture mapping
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Low-Power Techniques for 
M l iMultiprocessors
• DVS techniques for Multiprocessors

• Slack reclamation

• Condition-aware scheduling

• dist-PID• dist PID

• Power-Aware Parallelism Optimization

• Static & Dynamic optimizing

• Local Memory Management
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Slack Reclamation (1)
• Problem definition

• Greedy slack reclamation

–Any slack is used to reduce the speed of next 
task on same processor

It t t d dli– It cannot guarantee deadline

• Example: 6 tasks in 2 processors
Γ={T (WCET AET)|T (5 2) T (4 4) T (3 3)– Γ={Ti(WCET,AET)|T1(5,2), T2(4,4), T3(3,3), 
T4(2,2), T5(2,2), T6(2,2)}, Deadline=9

T3 uses up its time, T6 misses the deadline3 p 6
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Slack Reclamation (2)
• Shared slack reclamation [Zhu03]

• Share the slack with other processors

–Split slack into multiple parts

• Slack sharing example (see figure (b))

–Slack1: Two time units before T2’s finish time 
(based on T2’s WCET)

Slack2: One time units after T ’s finish time–Slack2: One time units after T2’s finish time

Share slack2 with P2

• All tasks meet deadlines• All tasks meet deadlines 
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Condition-Aware Scheduling (1)
• Task scheduling for conditional task graph

• Conditional Task Graph (CTG)Conditional Task Graph (CTG)

–Various task sequences depending on the 
conditions

–Require power-aware scheduling technique 
considering conditions

38
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Condition-Aware Scheduling (2)

• Condition-Aware scheduling [Shin03]
• Step 1: Task orderingStep 1  Task ordering

–Use the schedule table: <start time, clock 
speed>
Depending the condition value each task has–Depending the condition value, each task has 
different start time and clock speed

39
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Condition-Aware Scheduling (3)

• Condition-Aware scheduling [Shin03]
• Step 2: Task stretchingStep 2  Task stretching

–Use probabilities of conditions from profile 
information
Minimize ∑ E ( ) Prob( )–Minimize ∑ E (τ) Prob(τ)
•Optimize for high probability conditions
•c1 ≫ c2, c3c1 ≫ c2, c3

40
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DVFS in MPSoC (1)

• Local-DVFS 

• Decide the frequency of the each processor onlyDecide the frequency of the each processor only 
using the local information.

–Do not use the information of the other 
processors.

• Higher frequency as more tasks in the task 
queue.

Li it ti f th l l DVFS• Limitations of the local-DVFS

• If a processor is executed with lower frequency, 
it can hurt the performance of the otherit can hurt the performance of the other 
processor because of the dependency.
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DVFS in MPSoC (2)

• dist-DVFS [Juang05]

• Decide the frequency of the each processor using 
the global information.

• Operation steps

E ti t th f t t k–Estimate the future task queue occupancy

– Identify the critical-path-tasks
(with the highest queue occupancy)(with the highest queue occupancy)

–Decide the frequency of the each processor not 
hurting the performance of the critical-path-g p p
tasks

42
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Optimizing Parallelism (2)

• The number of processors that generate the best 
execution time for each loop nestp

Loop nest

Number of 
processors 
for the best 

tiexecution 
time

• Using only a small subset of processors out of 8 
processors

• This is a strong motivation for shutting down unused 
processors.
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Optimizing Parallelism (3)

• Designing an effective parallelization strategy for an 
on-chip multiprocessor

• Mechanism

–Dynamic approach

Th b f f h l•The number of processors for each loop 
nest is decided at run time.

–Static approachStatic approach

•The number of processors for each loop 
nest is decided at compile time.

• Policy 

–Criterion to decide the number of processors

i i d•Execution time, energy and so on.
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Optimizing Parallelism (4)

• Procedure

• Determine the number of processors from 
mechanism and policy

• Insert activation / deactivation call in the code

O ti i th d• Optimize the code

• Optimization• Optimization 

• Current active/idle status of processors is 
maintained as much as possiblep

–To minimize overhead from on/off

• We have to pre-activate the processors,

– If the processor will be used in next loop

–Not to hurt the performance
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Runtime Code Parallelization (1)
• A run-time strategy for determining the best number 

of processors to use  [Kandemir03]

• Dynamic mechanism

• To minimize energy and execution time 

• Need some help from H/W and compiler.
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Run-time Code Parallelization (2)
• Parallelization based on training

• Each dot represents an iteration

• Training period

–Find the optimal number of processors

U i th b f d t i d• Using the number of processors determined

Extra Optimization• Extra Optimization 

• Minimize training iteration based on history.

–Utilize the past history avoid redundant
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Utilize the past history, avoid redundant 
training.

Local Memory Management (1)

• Latency of memory access

local memory  <

local memory of other CPUy

<< off-chip memory

• Frequent off-chip memory access can be very costly

Target MPSoC architecture

• Frequent off chip memory access can be very costly 
from both performance and energy perspectives

• Propose local memory management scheme for low 
cost [Chen05]

48
Low Power SW.4 J. Kim/SNU



Local Memory Management (2)

• Access pattern of the data block is analyzed by 
compilercompiler

• Software-managed memory is usedSoftware managed memory is used

• When a data block is stored in the local memory ofWhen a data block is stored in the local memory of 
the processor,

• Even though the data block is predicted not to be 
used any more by the processorused any more by the processor, 

• If the data block is predicted to be used by 
another processor, keep the data block in the p , p
local memory.
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Leakage Current

Leakage: Not Activity Based
Shutting down inactive parts helpShutting down inactive parts help 
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(source: Kim et al., IEEE Computer, Dec, 2003)

Subthreshold Leakage, Isub

• Isub ~ e(-Vt/Va) (1 – e(-V/Va))

where Va is the thermal voltage

• How to reduce Isub

• Turn off the supply voltage• Turn off the supply voltage

(-) loss of state

• Increase the threshold voltage• Increase the threshold voltage

(-) loss of performance
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Leakage Power Reduction
• State-Destructive vs State-Preserving

• Application-Sensitive vs Application-InsensitiveApplication Sensitive vs. Application Insensitive
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Dynamic Resizing of Instruction Cache

[Powell, ISLPED00]
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Gated-Vdd

• State Destructive Application Insensitive
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• State Destructive, Application Insensitive

Drowsy Cache          [Flautner, 2002]
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• State Preserving, Application Insensitive



Compiler-Directed Approach 
[Zhang MICRO 35][Zhang, MICRO-35]

Power Status Register:Power Status Register:
00: Active
01: State Preserving
11: State Destroying11: State Destroying
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Two special instructions for power state changes


