
Software-level
Power-Aware Computing

Lecture 4

Lecture Organizations
• Lecture 1:

• Introduction to Low-power systems

L bi di• Low-power binary encoding

• Power-aware compiler techniques

• Lectures 2 & 3ectures & 3

• Dynamic voltage scaling (DVS) techniques

– OS-level DVS: Inter-Task DVS

C il l l DVS: I t T k DVS– Compiler-level DVS: Intra-Task DVS

– Application-level DVS

• Dynamic power management

• Lecture 4

• Software power estimation & optimization

• Low power techniques for multiprocessor systems• Low-power techniques for multiprocessor systems

• Leakage reduction techniques

2
Low Power SW.4 J. Kim/SNU

Software Power Estimation & Optimization

• Modeling-based Approaches

• Instruction-level power modeling (V. Tiwari)

l b f h i i– Employs base energy cost of each instruction

– Instruction-level analysis and optimization

• Component-based power modelingComponent based power modeling

– Wattch, SimPower

M t b d A h• Measurement-based Approaches

• SES : SNU Energy Scanner

– Cycle-level power measurement on the target board

• PowerScope (J. Flinn)

– Function-level analysis w/ DMM

• ePRO : energy PRofiler and Optimizer• ePRO : energy PRofiler and Optimizer

– Function-level analysis and optimization w/ DAQ

3
Low Power SW.4 J. Kim/SNU

Instruction-level Power Estimation (1)

• Base energy cost

mov bx, [dx]
b [d]

mov bx, [dx]
b [d]

same instructions repeatedly executed

mov bx, [dx]
mov bx, [dx]

.

.

mov bx, [dx]
mov bx, [dx]

.

.

Target
Processor

Target
Processor

.
mov bx, [dx]

.
mov bx, [dx] current measured by ammeter

→ average value calculated

• For variations in base energy costs due to

g

• For variations in base energy costs due to
operands and addresses, average base cost
values are employed

4
Low Power SW.4 J. Kim/SNU

Instruction-level Power Estimation (2)

• Inter-Instruction Effects

• Effects of circuit state : switching activity in a circuit

A h d h h i i b– Avg. overhead through extensive experiments between
pairs of instructions

• Effect of resource constraints : pipeline stall and write
b ff t llbuffer stalls

– Avg. energy cost of each stall experimentally determined

• Effect of cache misses

– Avg. energy penalty of cache miss cycles

∑∑∑ +×+×=
k kji jijii iip ENONBE

, ,,)()(

pE

iB jiN ,

jiO ,: average energy cost for a program

: the base cost of each instruction

: the circuit state overhead

: the no. of times the pair is executed

5
Low Power SW.4 J. Kim/SNU

iN kE: the number of times executed : other instruction effects

Instruction-level Power Estimation (3)

• Energy estimation framework for a program

6
Low Power SW.4 J. Kim/SNU

Instruction-level Power Optimization
• Instruction Reordering

• A technique to reduce the circuit state overhead
• Instructions are scheduled in order to minimize the• Instructions are scheduled in order to minimize the

estimated switching in the control path
– For 486DX, energy saving only up to 2%, but for a DSP

up to 33.1%p

• Energy cost driven code generation
• Instructions with memory operands have much higherInstructions with memory operands have much higher

currents than those with register operands
• Better utilization like optimal global register allocation of

temporaries and frequently used variables

7
Low Power SW.4 J. Kim/SNU

SES : SNU Energy Scanner (1)

• Overall Structure

Host PC
Host PCCompilerC Program

User Interface

Execution and Energy InformationProgram
Loader

Control
Input

User Interface

Energy Analysis Module

CPU Energy Analayzer
Memory Energy

Estimator

Profile Matching ModuleEnergy Analysis
Module

HW/SW PCI Interface

Summary

 Energy Measurement Board
 (ARM7TDMI)

 Energy Measurement Board
 (ARM7TDMI)

Profile Acquisition
ModuleController Memory

Energy Estimation
Module

• Summary

• On-board, cycle-level power measurement

• Source code related energy analysis

8
Low Power SW.4 J. Kim/SNU

• Source code related energy analysis

SES : SNU Energy Scanner (2)

• Energy Measurement H/W Module

9
Low Power SW.4 J. Kim/SNU

SES : SNU Energy Scanner (3)

• Energy Analyzer GUI

10
Low Power SW.4 J. Kim/SNU

SES : SNU Energy Scanner (4)

• Pros

• No additional measurement device (like DMM or DAQ)
necessary

• Cycle-level accuracy and timeliness

• Source code related energy analysisSource code related energy analysis

– C program function or instruction level

• Cons

• No portability

F h h d d– For each processor, new hardware and program are
necessary

time, cost, and effort!!

• No exact performance-energy correlation

– Performance is not measured

11
Low Power SW.4 J. Kim/SNU

PowerScope (1)

• Overall Structure

Summary• Summary

• Power measurement w/ external device (DMM)

• Source code related energy analysis

12
Low Power SW.4 J. Kim/SNU

• Source code related energy analysis

Powerscope (2)

• Pros

• Portability

l Li LKM (L d bl K l M d l) d MM– Employs Linux LKM (Loadable Kernel Module) and DMM

• Moderate accuracy but fast measurement

• Source code related energy analysisSource code related energy analysis

– C program function level

C• Cons

• Overhead

– Sampling trigger feedback between target b’d and DMM

varying interrupt handling time

- Long profile function path

• No performance energy correlation• No performance-energy correlation

– Performance is not measured

13
Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (1)
• Overall Structure

Collection & Analysis
System (Windows XP)Target System

Embedded S/W Eclipse Platform

Collection Symbol

CPU

RAM

Adapter

y ()

power
samples

Kernel

Collection
Monitor

Symbol
Table

System Monitor

ext. trigger

HDD
PC/PID
samples

DAQ

performance profiles

Code Size
Analyzer

Energy
Analyzer

GUI

Performance
Analyzer

Performance
Monitor

System Monitor

Energy,
Performance,

• Summary

GUIMonitor Code Size
Profiles

Summary

• Power measurement w/ external device (DAQ)

• Source code related energy, performance, and code size analysis

14
Low Power SW.4 J. Kim/SNU

• Automatic compiler-level optimization

ePRO : energy PRofiler and Optimizer (2)

• Overview

• Automatized tool which analyzes and optimizes software
d f b denergy and performance based on measurement

• Function details

• Performance AnalysisPerformance Analysis

– Function-level performance indices

• Energy Analysis

– Function-level energy consumption

– Device-level energy consumption

E O ti i ti• Energy Optimization

– Energy-optimal compiler option selection

• Integrated Development Environment (IDE)Integrated Development Environment (IDE)

– Plug-in of Eclipse

15
Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (3)

• Performance Analysis

• Using XScale processor’s PMU

• CPI (Cycles Per Instruction) I-cache/D-cache efficiency

• Instruction fetch latency

D t /b t b ff : D h b ff t ll• Data/bus request buffer : D-cache buffer stall

• Stall/writeback statistics

• I-TLB/D-TLB efficiencyI TLB/D TLB efficiency

16
Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (4)

• Function-level Energy Consumption Analysis

• Device-level Energy Consumption Analysis

• CPU, RAM, FLASH, HDD, etc

17
Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (5)

• Energy Optimization

• CL-OSE (Compiler-Level Optimal Space
)Exploration) : Selects the energy-optimal options

time-efficiently for the target program among the
all the available compiler optionsp p

18
Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (6)

• Integrated Development Environment

• Employs Eclipse’s plug-in functionEmploys Eclipse s plug in function

19
Low Power SW.4 J. Kim/SNU

ePRO : energy PRofiler and Optimizer (7)

• Pros

• Portability

– Employs Linux LKM and DAQ assembly

• Program function-level energy, performance, and code
size analysissize analysis

• Automatized compiler-level energy optimization

• Cons

• Overhead

S t b h i li h d– System behavior sampling overhead

• Limited to a processor with PMU (Performance Monitoring
Unit) : e.g. XScale

• No support for multiple processes till now

20
Low Power SW.4 J. Kim/SNU

3D Graphics Pipeline

• 3D Graphics Pipeline

• Geometry CalculationGeometry Calculation

–Calculation of geometric data of objects

• RasterizationRasterization

–Converting an object on a screen
or

m
at

io
n

Re
je

ct
io

n

ht
in

g

vi
si

on

t
M

ap
pi

ng

e
Se

tu
p

on
ve

rs
io

n

M
ap

pi
ng

m
en

t
ra

tio
n

or
m

at
io

n

Re
je

ct
io

n

ht
in

g

vi
si

on

t
M

ap
pi

ng

e
Se

tu
p

on
ve

rs
io

n

M
ap

pi
ng

m
en

t
ra

tio
n

Tr
an

sf
o

Tr
iv

ia
l R

Li
gh

W
 D

i

Vi
ew

po
rt

Tr
ia

ng
l

Sc
an

 C
o

Te
xt

ur
e

Fr
ag

m
O

pe
r

Tr
an

sf
o

Tr
iv

ia
l R

Li
gh

W
 D

i

Vi
ew

po
rt

Tr
ia

ng
l

Sc
an

 C
o

Te
xt

ur
e

Fr
ag

m
O

pe
r

<3D Graphics Pipeline>

Geometry Calculation RasterizationGeometry Calculation Rasterization

21
Low Power SW.4 J. Kim/SNU

p p

Power Breakdown of 3D Graphics

• Power Consumption of 3D Graphics Application

60%

70%

%
)

c h e ck image

20%

30%

40%

50%

60%

e
r

C
o
n
s
u
m

p
ti
o
n
 (

%

0%

10%

ns
fo

rm
at

io
n

l R
ej

ec
tio

n

Li
gh

tin
g

&
 v

ie
w

po
rt

ng
le

 S
et

up

Co
nv

er
si

on

re
 M

ap
pi

ng

Fr
ag

m
en

t

P
o
w

e

Tr
an

s

Tr
iv

ia
l

W
 d

iv
is

io
n

&

Tr
ia

n

Sc
an

 C

Te
xt

ur
e

P ipe line S tage

cpu

memory

to ta l

je lly fish
45%

50%

jelly fish

15%

20%

25%

30%

35%

40%

o
n
su

m
p
ti
o
n
 (

%
)

0%

5%

10%

15%

or
m

at
io

n

ej
ec

tio
n

Li
gh

tin
g

vie
w

po
rt

le
 S

et
up

nv
er

si
on

M
ap

pi
ng

Fr
ag

m
en

t

P
o
w

e
r
C

o

22
Low Power SW.4 J. Kim/SNU

Tr
an

sf
or

Tr
iv

ia
l R

ej L
W

 d
iv

is
io

n
&

 v
ie

Tr
ia

ng
le

Sc
an

 C
on

v

Te
xt

ur
e

M Fr

P ipeline Stage

cpu
memory
total

face model
25%

30%

35%

(%
)

5%

10%

15%

20%

25%

e
r

C
o
n
s
u
m

p
ti
o
n

Face model
0%

Tr
an

sf
or

m
at

io
n

Tr
iv

ia
l R

ej
ec

tio
n

Li
gh

tin
g

si
on

 &
 v

ie
w

po
rt

Tr
ia

ng
le

 S
et

up
ca

n
Co

nv
er

si
on

Te
xt

ur
e

M
ap

pi
ng

Fr
ag

m
en

tP
o
w

e

cpuT Tr

W
 d

iv
is

i T

Sc
a

Te

Pipeline Stage

cpu
memory
total

23
Low Power SW.4 J. Kim/SNU

A Low-Power Texture Mapping (1)
• Previous Work

• “A Low-Power Content-Adaptive Texture Mapping
Architecture for Real-Time 3D Graphics”, Jeongseon Euh
et al, PACS’02.

– Adaptive texture mappingAdaptive texture mapping

• based on a model of human visual perception (HVP)

– DVS is applied to the interpolation block

• “Trading Efficiency for Energy in a Texture Cache
Architecture”, Iosif Antochi et al, MPCS’02

– Mobile devices cannot afford large texture cache

• Due to gate count limitation and low power consumption

– 128~512 bytes texture cache between the graphics128 512 bytes texture cache between the graphics
accelerator and texture memory

24
Low Power SW.4 J. Kim/SNU

A Low-Power Texture Mapping (2)
• A Low-Power Texture Mapping Technique for Mobile 3D

Graphics

• A small texture cache can increase the miss ratio

• The technique to preserve performance is needed

–Prefetching

–Victim cache

25%

30%

Jelly Fish

Check Image

10%

15%

20%

M
is

s
 R

a
ti
o
 (

%
)

0%

5%

10%

1KDM 2KDM 4KDM 8KDM 16KDM

M

25
Low Power SW.4 J. Kim/SNU

Cache S ize

A Low-Power Texture Mapping (3)
• Prefetch techniques

• Technique 1: Prediction of next texelsTechnique 1 Prediction of next texels

–Division is required due to “perspective
correction”

• Technique 2: Prediction of next blocks

–Assuming that derivatives are not changedg g

–Division is eliminated

• Technique 3: Prediction of next blocks based on q
direction of texture map access

–Simple, but less exact than technique 2

• A small fully associative prefetch buffer is used

26
Low Power SW.4 J. Kim/SNU

Technique 1

●●

●

Prefetch
●

●

●

● ● ● ●●

Prefetch
●

●

●

● ● ● ●

Span Line

u

v 다음에 접근될 텍셀

u

v

u

v 다음에 접근될 텍셀

<screen> <Texture Image>

현재 접근되는 텍셀현재 접근되는 텍셀

27
Low Power SW.4 J. Kim/SNU

Technique 2

예측된 텍셀예측된 텍셀

●
●

●

●

●

● ● ● ●

Block Prefetch●

●
●

●

●

●

● ● ● ●

Block Prefetch●Span Line

u

v
다음에 접근될 텍셀

u

v

u

v
다음에 접근될 텍셀

<screen>

현재 접근되는 텍셀현재 접근되는 텍셀

<Texture Image><screen>

28
Low Power SW.4 J. Kim/SNU

Technique 3

현재 접근되는 블록현재 접근되는 블록
현재 접근되는 블록현재 접근되는 블록

현재 접근되는 블록현재 접근되는 블록

Block
Prefetch
Block
Prefetch

Block
Prefetch

현재 접근되는 블록

Block
Prefetch

현재 접근되는 블록

Block
Prefetch
Block
Prefetch

u

v

u

v

u

v

u

v

uu

v

29
Low Power SW.4 J. Kim/SNU

A Low-Power Texture Mapping (4)
• Using victim cache

• Sizes of texture images are powers of twoSizes of texture images are powers of two

• Conflict misses can occur between blocks

–Especially in the small texture cacheEspecially in the small texture cache

–Blocks are reused in processing of next
spanlinep

• Victim cache can reduce conflict misses

–Prefetch buffer performs as the victim cachep

–Evicted blocks are moved into the prefetch
buffer

30
Low Power SW.4 J. Kim/SNU

A Low-Power Texture Mapping (5)
• Experimental Results

• Area Reduction

0 008

0.01

0.012

0.014

m
^
2
)

conventional cache

double port tag cache with prefetch buffer

0

0.002

0.004

0.006

0.008

A
re

a
 (

c
m

• Prefetch Accuracy

1KDM 2KDM 4KDM 8KDM 16KDM
Cache Size

0 6

0.8

1

1.2

A
c
c
u
ra

c
y

P1 P2 P3

0 6

0.8

1

1.2

A
c
c
u
ra

c
y

P1 P2 P3

0

0.2

0.4

0.6

P
re

fe
tc

h
 A

0

0.2

0.4

0.6

P
re

fe
tc

h
 A

31
Low Power SW.4 J. Kim/SNU

1KDM 2KDM 4KDM 8KDM 16KDM
Cache Size

1KDM 2KDM 4KDM 8KDM 16KDM

Cache Size

<jelly fish> <check image>

A Low-Power Texture Mapping (6)
• Miss Ratio and Power Consumption

3 0 %

N o _ P r e fe tc h P 1 P 2 P 3

30%

N o _ P r e fe tc h P 1 P 2 P 3

1 5 %

2 0 %

2 5 %

M
is

s
 r
a
ti
o

1 5%

20%

25%

s
s
 R

a
ti
o

0 %

5 %

1 0 %

1 K D M 2 K D M 4 K D M 8 K D M 1 6 K D M

M

0%

5%

10%

1K D M 2K D M 4K D M 8K D M 16K D M

M
i

<jelly fish> <check image>

1 K D M 2 K D M 4 K D M 8 K D M 1 6 K D M

C a c h e S i z e
C a c h e S i z e

1 0 00

1 1 00

700

800

4 00

5 00

6 00

7 00

8 00

9 00

o
n
su

m
p
ti
o
n
(m

J)

300

400

500

600

700

n
su

m
p
ti
o
n
(m

J)

0

1 00

2 00

3 00

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

E
n
e
rg

y
C

o

0

100

200

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

re
fe

tc
h

P
1

P
2

P
3

E
n
e
rg

y
C

o
n

32
Low Power SW.4 J. Kim/SNU

N
o
_
P

N
o
_
P

N
o
_
P

N
o
_
P

N
o
_
P

1 K D M 2K D M 4 K D M 8 K D M 16 K D M
C a c h e S i z e

N
o
_
P
r

N
o
_
P
r

N
o
_
P
r

N
o
_
P
r

N
o
_
P
r

1KD M 2KD M 4KD M 8KD M 16KD M
C a c h e S iz e

<jelly fish> <check image>

Researches on 3D Graphics (1)
• “An Effective Pixel Rasterization Pipeline Architecture

for 3D Rendering Processors”, Woo-Chan Park et al,
IEEE Transactions on Computers `03

• Avoid unnecessary texture mapping for obscured
fragmentsfragments

• Reduce the miss penalties of the pixel cache by
prefetching schemeprefetching scheme

• “Design and Implementation of Low-Power 3D• Design and Implementation of Low Power 3D
Graphics SoC for Mobile Multimedia Applications”,
Ramchan Woo, PHD thesis, KAIST `04

• Implementing full-3D pipeline with texture
mapping and special effects

33
Low Power SW.4 J. Kim/SNU

Researches on 3D Graphics (2)
• “GraalBench: A 3D Graphics Benchmark Suite for

Mobile Phones”, Iosif Antochi et al. LCTES`04

• A set of 3D graphics workloads representative for
mobile devices

• “Power-Aware 3D Computer Graphics Rendering”,
J E h J l f VLSI Si l P i `05Jeongseon Euh, Journal of VLSI Signal Processing`05

• Low power system based on Approximate
Graphics Rendering (AGR)Graphics Rendering (AGR)

• Power savings are examined for stages

–Shading–Shading

–Texture mapping

34
Low Power SW.4 J. Kim/SNU

Low-Power Techniques for
M l iMultiprocessors
• DVS techniques for Multiprocessors

• Slack reclamation

• Condition-aware scheduling

• dist-PID• dist PID

• Power-Aware Parallelism Optimization

• Static & Dynamic optimizing

• Local Memory Management

35
Low Power SW.4 J. Kim/SNU

Slack Reclamation (1)
• Problem definition

• Greedy slack reclamation

–Any slack is used to reduce the speed of next
task on same processor

It t t d dli– It cannot guarantee deadline

• Example: 6 tasks in 2 processors
Γ={T (WCET AET)|T (5 2) T (4 4) T (3 3)– Γ={Ti(WCET,AET)|T1(5,2), T2(4,4), T3(3,3),
T4(2,2), T5(2,2), T6(2,2)}, Deadline=9

T3 uses up its time, T6 misses the deadline3 p 6

36
Low Power SW.4 J. Kim/SNU

Slack Reclamation (2)
• Shared slack reclamation [Zhu03]

• Share the slack with other processors

–Split slack into multiple parts

• Slack sharing example (see figure (b))

–Slack1: Two time units before T2’s finish time
(based on T2’s WCET)

Slack2: One time units after T ’s finish time–Slack2: One time units after T2’s finish time

Share slack2 with P2

• All tasks meet deadlines• All tasks meet deadlines

37
Low Power SW.4 J. Kim/SNU

Condition-Aware Scheduling (1)
• Task scheduling for conditional task graph

• Conditional Task Graph (CTG)Conditional Task Graph (CTG)

–Various task sequences depending on the
conditions

–Require power-aware scheduling technique
considering conditions

38
Low Power SW.4 J. Kim/SNU

Condition-Aware Scheduling (2)

• Condition-Aware scheduling [Shin03]
• Step 1: Task orderingStep 1 Task ordering

–Use the schedule table: <start time, clock
speed>
Depending the condition value each task has–Depending the condition value, each task has
different start time and clock speed

39
Low Power SW.4 J. Kim/SNU

Condition-Aware Scheduling (3)

• Condition-Aware scheduling [Shin03]
• Step 2: Task stretchingStep 2 Task stretching

–Use probabilities of conditions from profile
information
Minimize ∑ E () Prob()–Minimize ∑ E (τ) Prob(τ)
•Optimize for high probability conditions
•c1 ≫ c2, c3c1 ≫ c2, c3

40
Low Power SW.4 J. Kim/SNU

DVFS in MPSoC (1)

• Local-DVFS

• Decide the frequency of the each processor onlyDecide the frequency of the each processor only
using the local information.

–Do not use the information of the other
processors.

• Higher frequency as more tasks in the task
queue.

Li it ti f th l l DVFS• Limitations of the local-DVFS

• If a processor is executed with lower frequency,
it can hurt the performance of the otherit can hurt the performance of the other
processor because of the dependency.

41
Low Power SW.4 J. Kim/SNU

DVFS in MPSoC (2)

• dist-DVFS [Juang05]

• Decide the frequency of the each processor using
the global information.

• Operation steps

E ti t th f t t k–Estimate the future task queue occupancy

– Identify the critical-path-tasks
(with the highest queue occupancy)(with the highest queue occupancy)

–Decide the frequency of the each processor not
hurting the performance of the critical-path-g p p
tasks

42
Low Power SW.4 J. Kim/SNU

Optimizing Parallelism (2)

• The number of processors that generate the best
execution time for each loop nestp

Loop nest

Number of
processors
for the best

tiexecution
time

• Using only a small subset of processors out of 8
processors

• This is a strong motivation for shutting down unused
processors.

43
Low Power SW.4 J. Kim/SNU

Optimizing Parallelism (3)

• Designing an effective parallelization strategy for an
on-chip multiprocessor

• Mechanism

–Dynamic approach

Th b f f h l•The number of processors for each loop
nest is decided at run time.

–Static approachStatic approach

•The number of processors for each loop
nest is decided at compile time.

• Policy

–Criterion to decide the number of processors

i i d•Execution time, energy and so on.

44
Low Power SW.4 J. Kim/SNU

Optimizing Parallelism (4)

• Procedure

• Determine the number of processors from
mechanism and policy

• Insert activation / deactivation call in the code

O ti i th d• Optimize the code

• Optimization• Optimization

• Current active/idle status of processors is
maintained as much as possiblep

–To minimize overhead from on/off

• We have to pre-activate the processors,

– If the processor will be used in next loop

–Not to hurt the performance

45
Low Power SW.4 J. Kim/SNU

Runtime Code Parallelization (1)
• A run-time strategy for determining the best number

of processors to use [Kandemir03]

• Dynamic mechanism

• To minimize energy and execution time

• Need some help from H/W and compiler.

46
Low Power SW.4 J. Kim/SNU

Run-time Code Parallelization (2)
• Parallelization based on training

• Each dot represents an iteration

• Training period

–Find the optimal number of processors

U i th b f d t i d• Using the number of processors determined

Extra Optimization• Extra Optimization

• Minimize training iteration based on history.

–Utilize the past history avoid redundant

47
Low Power SW.4 J. Kim/SNU

Utilize the past history, avoid redundant
training.

Local Memory Management (1)

• Latency of memory access

local memory <

local memory of other CPUy

<< off-chip memory

• Frequent off-chip memory access can be very costly

Target MPSoC architecture

• Frequent off chip memory access can be very costly
from both performance and energy perspectives

• Propose local memory management scheme for low
cost [Chen05]

48
Low Power SW.4 J. Kim/SNU

Local Memory Management (2)

• Access pattern of the data block is analyzed by
compilercompiler

• Software-managed memory is usedSoftware managed memory is used

• When a data block is stored in the local memory ofWhen a data block is stored in the local memory of
the processor,

• Even though the data block is predicted not to be
used any more by the processorused any more by the processor,

• If the data block is predicted to be used by
another processor, keep the data block in the p , p
local memory.

49
Low Power SW.4 J. Kim/SNU

References
[Chen05] Guilin Chen, Guangyu Chen, Ozcan Ozturk and Mahmut

Kandemir, “Exploiting Inter-Processor Data Sharing for Improving
Bebavior of Multi-Processor SoCs” In Proc of Annual Symposium onBebavior of Multi Processor SoCs , In Proc. of Annual Symposium on
VLSI, 2005.

[Juang05] Philo Juang and Qiang Wu, “Coordinated, Distributed, Formal
Energy Management of Chip Multiprocessors”, In Proc. of ISLPED,
2005.

[Kadayif05] Ismail Kadayif, Mahmut Kandemir, Guilin Chen and Ozcan
Ozturk, Optimizing Array-Intensive Applications for On-Chip
Multiprocessors” IEEE Trans on Parallel and Distributed SystemsMultiprocessors , IEEE Trans. on Parallel and Distributed Systems,
2005.

[Kandemir03] M Kandemir, W Zhang, M Karakoy, “Runtime code
parallelization for on-chip multiprocessors “, In Proc. of DATE, 2003.paralleli ation for on chip multiprocessors , In Proc. of AT , 003.

[Shin03] Dongkun Shin and Jihong Kim, “Power-Aware Scheduling of
Conditional Task Graphs in Real-Time Multiprocessor Systems”, In
Proc. of ISLPED, 2005.

[Zhu03] Dakai Zhu, Rami Melhem, and Bruce R. Childers, “Scheduling
with Dynamic Voltage/Speed Adjustment Using Slack Reclamation in
Multiprocessor Real-Time Systems”, IEEE Trans. on Parallel and
Distributed Systems Vol 14 No 7 July 2003

50
Low Power SW.4 J. Kim/SNU

Distributed Systems, Vol.14, No.7, July 2003.

Leakage Current

Leakage: Not Activity Based
Shutting down inactive parts helpShutting down inactive parts help

51
Low Power SW.4 J. Kim/SNU

(source: Kim et al., IEEE Computer, Dec, 2003)

Subthreshold Leakage, Isub

• Isub ~ e(-Vt/Va) (1 – e(-V/Va))

where Va is the thermal voltage

• How to reduce Isub

• Turn off the supply voltage• Turn off the supply voltage

(-) loss of state

• Increase the threshold voltage• Increase the threshold voltage

(-) loss of performance

52
Low Power SW.4 J. Kim/SNU

Leakage Power Reduction
• State-Destructive vs State-Preserving

• Application-Sensitive vs Application-InsensitiveApplication Sensitive vs. Application Insensitive

53
Low Power SW.4 J. Kim/SNU

Dynamic Resizing of Instruction Cache

[Powell, ISLPED00]

54
Low Power SW.4 J. Kim/SNU

Gated-Vdd

• State Destructive Application Insensitive

55
Low Power SW.4 J. Kim/SNU

• State Destructive, Application Insensitive

Drowsy Cache [Flautner, 2002]

56
Low Power SW.4 J. Kim/SNU

• State Preserving, Application Insensitive

Compiler-Directed Approach
[Zhang MICRO 35][Zhang, MICRO-35]

Power Status Register:Power Status Register:
00: Active
01: State Preserving
11: State Destroying11: State Destroying

57
Low Power SW.4 J. Kim/SNU

Two special instructions for power state changes

