Chapter 3 Single-Stage Amplifiers

Analog Design

Common-Source (CS) Amplifier With R_D Load

Design Method, Constraints and Tradeoffs-L5

Simple CS Amplifier

Common Source – Large Signal Analysis

- If V_{in} is low (below threshold) transistor is OFF
- For V_{in} not-too-much-above threshold, transistor is in Saturation, and V_{out} decreases.
- For large enough input $(V_{in}>V_{in1})$ Triode Mode.

Common Source (cont.)

$$A_{v} = -g_{m}R_{D}$$
$$A_{v} = -\sqrt{2\mu n C_{ox} \frac{W}{L}} \frac{V_{RD}}{\sqrt{I_{D}}}$$

Design Tradeoffs

- Gain is determined by 3 factors: W/L, $R_{\rm D}$ DC voltage and $I_{\rm D}$
- If current and R_D are kept constant, an increase of W/L increases the gain, but it also increases the gate capacitance – lower bandwidth

Design Tradeoffs

- If I_D and W/L are kept constant, and we increase R_D , then V_{DS} becomes smaller. Operating Point gets closer to the borderline of Triode Mode.
- It means less "swing" (room for the amplified signal)

Design Tradeoffs

- If I_D decreases and W/L and V_{RD} are kept constant, then we must increase R_D
- Large R_D consumes too much space, increases the noise level and slows the amplifier down (time constant with input capacitance of next stage).

Common Source Tradeoffs

 Larger R_D values increase the influence of channel-length modulation (r_o term begins to strongly affect the gain)

Common Source Maximum Gain

CS Amplifier with Diode-Connected Load-L6

 "Diode-Connected" MOSFET is only a name. In BJT if Base and Collector are short-circuited, then the BJT acts exactly as a diode.

CS Amplifier with Diode-Connected Load

 We want to replace R_D with a MOSFET that will operate like a small-signal resistor.

$$V_1 = V_X \Longrightarrow I_X = \frac{V_X}{r_o} + g_m V_X$$
$$\Longrightarrow R_d = \frac{1}{g_m} || r_o \approx \frac{1}{g_m}$$

Common Source with Diode-Connected NMOS Load (Body Effect included)

$$(g_m + g_{mb})V_x + \frac{v_x}{r_o} = I_x$$

$$\frac{V_x}{I_x} = \frac{1}{g_m + g_{mb}} || r_o \approx \frac{1}{g_m + g_{mb}}$$

CS with Diode-Connected NMOS Load Voltage Gain Calculation

$$A_{\nu} = -\sqrt{\frac{(W / L)_{1}}{(W / L)_{2}}} \frac{1}{1 + \eta}$$

CS with Diode-Connected NMOS Load Voltage Gain Calculation

- If variations of η with the output voltage are neglected, the gain is independent of the bias currents and voltages (as long as M₁ stays in Saturation)
- The point: Gain does not depend on V_{in} (as we so in the case of R_{D} load)

Amplifier is relatively linear (even for large signal analysis!)

$$\sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in} - V_{TH1}) = \sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD} - V_{out} - V_{TH2})$$

Assumptions made along the way:

- We neglected channel-length modulation effect
- We neglected V_{TH} voltage dependent variations
- We assumed that two transistors are matching in terms of $C_{\text{OX}}.$

Comment about "cutting off"

- If I_1 is made smaller and smaller, what happens to $V_{\text{out}}?$
- It should be equal to V_{DD} at the end of the current reduction process, or is it?

Comment about "cutting off" (cont'd)

- If I₁ is made smaller and smaller, V_{GS} gets closer and closer to $V_{TH}.$
- Very near I₁=0, if we neglect sub-threshold conduction, we should have V_{GS}≈V_{TH2}, and therefore V_{out}≈V_{DD}-V_{TH2} !

Cutoff conflict resolved:

- In reality, sub-threshold conduction, at a very low current, eventually brings V_{out} to the value V_{DD} .
- Output node capacitance slows down this transition.
- In high-speed switching, sometimes indeed V_{out} doesn't make it to V_{DD}

Back to large-signal behavior of the CS amplifier with diode-connected NMOS load:

$$\sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in} - V_{THI}) = \sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD} - V_{out} - V_{TH2})$$

$$V_{DO} - V_{TH2}$$

$$V_{DO} - V_{TH2}$$

Large signal behavior of CS amplifier with diode-connected load

- When V_{in}<V_{TH1} (but near), we have the above "imperfect cutoff" effect.
- Then we have a, more or less, linear region.
- When V_{in} exceeds V_{out} + V_{TH1} amplifier enters the Triode mode, and becomes nonlinear.

No body effect!

Numerical Example

• Say that we want the voltage gain to be 10. Then:

$$A_{\nu} = -\sqrt{\frac{\mu_n (W/L)_1}{\mu_p (W/L)_2}} = -10$$
$$\Rightarrow \frac{\mu_n (W/L)_1}{\mu_p (W/L)_2} = 100$$

Example continued

$$\frac{\mu_n (W/L)_1}{\mu_p (W/L)_2} = 100$$

Typically

 $\mu_n \approx 2\mu_p$

Example continued

$$\frac{(W/L)_1}{(W/L)_2} \approx 50$$

- Need a "strong" input device, and a "weak" load device.
- Large dimension ratios lead to either a larger input capacitance (if we make input device very wide $(W/L)_1 >> 1$) or to a larger output capacitance (if we make the load device very narrow $(W/L)_2 << 1$).
- Latter option (narrow load) is preferred from bandwidth considerations.

CS with Diode-Connected Load Swing Issues

 $ID1 = ID2, \quad \therefore$

This implies substantial voltage swing constraint. Why?

Numerical Example to illustrate the swing problems

- Assume for instance $V_{DD}=3V$
- Let's assume that V_{GS1} - V_{TH1} =200mV (arbitrary selection, consistent with current selection)
- Assume also that $|V_{TH2}|=0.7V$ (for PMOS load $V_{TH2}=-0.7V$)
- For a gain of 10, we now need $|V_{GS2}|=2.7V$ (for PMOS load V_{GS2} <-2.7V)
- Therefore because $V_{GD2}=0$: $V_{DS2}=V_{GS2}=-2.7V$).
- Now $V_{DS1}=V_{DD}-V_{SD2}<3-2.7=0.3V$, and recall that $V_{DS1}>V_{GS1}-V_{TH1}=0.2V$. Not much room left for the amplified signal v_{ds1} .

DC Q-Point of the Amplifier

- V_{G1} determines the current and the voltage V_{GS2}
- If we neglect the effect of the transistors' λ, the error in predicting the Q-point solution may be large!

Example as Introduction to Current Source Load

- M₁ is biased to be in Saturation and have a current of I₁.
- A current source of I_S=0.75I₁ is hooked up in parallel to the load – does this addition ease up the amplifier's swing problems?

Example as Introduction to Current Source Load

• Now $I_{D2}=I_1/4$. Therefore (from the ratio of the two transconductances with different currents):

$$A_{v} \approx -\sqrt{\frac{4\mu_{n} (W/L)_{1}}{\mu_{p} (W/L)_{2}}}$$

Example: Swing Issues

It sure helps in terms of swing.

CS Amplifier with Current-Source Load-L7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

How can V_{in} change the current of M_1 if I_1 is constant?

• As V_{in} increases, V_{out} must decrease
Simple Implementation: Current Source obtained from M₂ in Saturation

CS with Current Source Load

 $A_{v} = -g_{m}(r_{o1} || r_{o2})$

DC Conditions

$$V_{b} = V_{DD} \qquad I_{D1} = 0.5 \mu_{n} c_{ox} \left(\frac{W}{L}\right)_{1} (V_{in} - V_{THI})^{2} (1 + \lambda_{1} V_{out}) = I_{D2} = 0.5 \mu_{p} c_{ox} \left(\frac{W}{L}\right)_{2} (V_{b} - V_{DD} - V_{TH2})^{2} (1 + \lambda_{2} [V_{out} - V_{DD}])$$

- {(W/L)₁,V_{G1}} and {(W/L)₂,V_b} need to be more or less consistent, if we wish to avoid too much dependence on λ values.
- Need DC feedback to fix better the DC V_{out}

Swing Considerations

$$V_{b} = \prod_{i=1}^{V_{DD}} I_{D1} = 0.5 \mu_{n} c_{ox} \left(\frac{W}{L}\right)_{1} (V_{in} - V_{TH1})^{2} (1 + \lambda_{1} V_{out}) = I_{D2}$$

$$V_{in} = 0.5 \mu_{p} c_{ox} \left(\frac{W}{L}\right)_{2} (V_{b} - V_{DD} - V_{TH2})^{2} (1 + \lambda_{2} [V_{out} - V_{DD}])$$

• We can make $|V_{DS2}| > |V_{GS2} - V_{TH2}|$ small (say a few hundreds of mV), if we compensate by making W₂ wider.

- Recall: λ is inversely proportional to the channel length L.
- To make λ values smaller (so that r_o be larger) need to increase L. In order to keep the same current, need to increase W by the same proportion as the L increase.

CS Amplifier with Current-Source Load Gains

- Typical gains that such an amplifier can achieve are in the range of -10 to -100.
- To achieve similar gains with a R_D load would require much larger V_{DD} values.
- For low-gain and high-frequency applications, R_D load may be preferred because of its smaller parasitic capacitance (compared to a MOSFET load)

Numerical Example

- Let W/L for both transistors be W/L = 100µm / 1.6µm
- Let $\mu_n C_{ox} = 90 \mu A/V^2$, $\mu_p C_{ox} = 30 \mu A/V^2$
- Bias current is $I_D = 100 \mu A$

Numerical Example (Cont'd)

- Let r_{o1} =8000L/I_D and r_{o2} =12000L/I_D where L is in μm and I_D is in mA.
- What is the gain of this stage?

Numerical Example (Cont'd)

$$V_{b} = \int_{a}^{b} M_{2} \qquad g_{m1} = \sqrt{2\mu_{n}C_{OX}(W/L)_{1}I_{D}} = 1.06mA/V$$

$$V_{in} = V_{out} \qquad r_{o1} = 8000 \cdot 1.6/0.1 = 128K\Omega$$

$$V_{in} = I_{0} + I_{0} + I_{0} + I_{0} = 12000 \cdot 1.6/0.1 = 192K\Omega$$

$$A_{V} = -g_{m1}(r_{o1} \parallel r_{o2}) = -81.4$$

How does L influence the gain?

$$A_v = -g_m r_{o1} \parallel r_{o2}$$

How does L influence the gain?

- As L_1 increases the gain increases, because λ_1 depends on L_1 more strongly than g_{m1} does!
- As I_D increases the gain decreases.
- Increasing L₂ while keeping W₂ constant increases r_{o2} and the gain, but $|V_{DS2}|$ necessary to keep M₂ in Saturation increases.

CS with Triode Region Load

$$R_{ON2} = \frac{1}{\mu_p C_{ox} \left(\frac{W}{L}\right)_2 (V_{DD} - V_b + V_{TH2})}$$

1

How should V_b be chosen?

- M_2 must conduct: $V_b V_{DD} \le V_{TH2}$, or $V_b \le V_{DD} + V_{TH2}$
- M_2 must be in Triode Mode: $V_{out}-V_{DD} \le V_b-V_{DD}-V_{TH2}$, or $V_b \ge V_{out}+V_{TH2}$
- M_2 must be "deep inside" Triode Mode: $2(V_b V_{DD} V_{TH2}) > V_{out} V_{DD}$, or: $V_b > V_{DD}/2 + V_{TH2} + V_{out}/2$
- Also V_b and $(W/L)_2$ determine the desired value of R_{on2}

It's not easy at all to determine (and implement) a working value for V_b CS Amplifiers with Triode Region load is rarely used

CS Amplifier with Source Degeneration-L9

The effects of adding a resistor $\ensuremath{\mathsf{R}_{\mathsf{S}}}$ between Source and ground.

CS Amplifier with Source Degeneration

Summary of key formulas, Neglecting Channel-Length Modulation and Body Effect

$$A_{v} \approx \frac{-g_{m}R_{D}}{1+g_{m}R_{S}}$$

Linearizing effect of R_S:

- For low current levels 1/g_m>>R_S and therefore G_m≈g_m.
- For very large V_{in}, if transistor is still in Saturation, G_m approaches 1/R_S.

Estimating Gain by Inspection $V_{in} \rightarrow I_{g_m}$ $g_{m} \rightarrow R_s$ $A_v = \frac{-g_m R_D}{1+g_m R_S} = -\frac{R_D}{1/g_m + R_S}$

- Denominator: Resistance seen the Source path, "looking up" from ground towards Source.
- Numerator: Resistance seen at Drain.

Example to demonstrate method:

- Note that M_2 is "diode-connected", thus acting like a resistor $1/g_{m2}$
- $A_V = -R_D / (1/g_{m1} + 1/g_{m2})$

CS Amplifier with Source Degeneration Key Formulas with λ and Body-Effect Included

 $R_{OUT} = [1 + (g_m + g_{mb})r_o]R_S + r_o$

 $A_{v} = -G_{m}(R_{D} \parallel R_{OUT})$

Derivation is similar to that of the simplified case – generalized transconductance

R_S effect on CS Output Resistance

$$R_{OUT} = r_o' \approx r_o [1 + (g_m + g_{mb})R_S]$$

R_S causes a significant increase in the output resistance of the amplifier

CS Amplifier with Source Degeneration Gain Formula with λ and Body-Effect Included

$$v_{in} \underbrace{\downarrow}_{=}^{+} \underbrace{v_{1}}_{=}^{+} \underbrace{\downarrow}_{R_{S}}^{+} \underbrace$$

$$A_{v} = -G_{m}(R_{D} \parallel R_{OUT})$$

Source Follower

Main use: Voltage Buffer

- To achieve a high voltage gain with limited supply voltage, in a CS amplifier, the load impedance must be as large as possible.
- If such a stage is to drive a low impedance load, then a "buffer" must be placed after the amplifier so as to drive the load with negligible loss of the signal level.
- The source follower (also called the "commondrain" stage) can operate as a voltage buffer.

Buffering Action

- Input resistance of source follower is large.
- CS amplifier, connected to a Source Follower, will see as a load R_{in} of the Source Follower.
- R_{in} of the Source Follower is unaffected by R_L of the Source Follower. Variations in R_L has no effect on R_{in} of the MOSFET.

Source Follower with R_S resistance

- Source Follower: Input signal comes into the Gate; Output signal comes out of the Source.
- Load connected between Source and ground.

Source Follower with R_S resistance: Large Signal Behavior

- If $V_{in} < V_{TH} M_1$ is off.
- As V_{in} exceed V_{TH} M_1 is in Saturation.
- M_1 goes into Triode Mode only when V_{in} exceeds V_{DD} .

Why V_{out} follows V_{in}?

- Source followers exhibit a Body Effect: As I_D increases, $V_S = I_D R_S$ increases. As V_{SB} increases, V_{TH} increases.

Why V_{out} follows V_{in}? (Cont'd)

- If V_{in} slightly increases, I_D slightly increases and therefore V_{out} slightly increases.
- As I_D increases V_{TH} increases due to Body Effect.
- FACT: V_{GS} increases but not at the same rate that V_{in} increases.

Source Follower Gain

Source Follower Gain

Gain Dependence on V_G

- When V_G is slightly above V_{TH} , g_m is very small, and therefore A_V is small.

 V_{in}

 V_{TH}

 When g_m becomes large enough (i.e. g_mR_S>>1), then A_V approaches 1/(1+η).

Gain Dependence on V_G (cont'd)

- Recall $\eta = \gamma / (2(2\Phi_F + V_{SB})^{1/2}) = \gamma / (2(2\Phi_F + V_{out})^{1/2})$
- As V_G increases, and V_{out} increases, η decreases, and the gain may approach 1.
- In most practical circuits η remains >0.2.
Source Follower with Current Source Load

- Left: Conceptual diagram
- Right: Actual implementation, using a NMOS operating in Saturation Mode.

Example

• Let $(W/L)_1 = 20/0.5$, $I_1 = 200\mu A$, $V_{THO} = 0.6V$, $2\Phi_F = 0.7V$, $\mu_n C_{OX} = 50\mu A/V^2$, $\gamma = 0.4V^{1/2}$

Output Resistance of the Ideal Source Follower with Current Source Load

$$V_1 = -V_X \implies \frac{I_X - g_m V_X - g_{mb} V_X = 0}{R_{out} = \frac{1}{g_m + g_{mb}}}$$

Output Resistance of the Ideal Source Follower with Current Source Load becomes smaller with the help of the Body Effect!

• Only in a Source Follower the current source $g_{mb}V_{bs}$ is equivalent to a resistor $1/g_{mb}$ in parallel to the output.

Gain of Source Follower with Ideal Current Source Load

Gain Formula: NMOS Source Follower with NMOS Current Source and R_I Loads

Gain Formula: NMOS Source Follower with PMOS Current Source Load

Sources of Nonlinearities in NMOS Source Followers

- Body Effect in the driving NMOS transistor causes $V_{\rm TH}$ to vary with $V_{\rm in}$
- Are we allowed to connect substrate to source in the driving NMOS? (to eliminate the body effect). Answer: No! All NMOS transistors in the entire circuit share the same substrate, so it has to be grounded!
- r_o resistors vary with V_{DS}. Problem becomes more and more aggravated as L becomes smaller and smaller

PMOS Source Follower

 Key idea: PMOS transistors have each a separate substrate. Each can be powered differently CMOS fabrication process: All NMOS share the same substrate, each PMOS has a separate substrate

PMOS Source Follower Advantage

 Body Effects eliminated – device is more linear than NMOS Source Follower

PMOS Source Follower Drawbacks

- PMOS carriers mobility is smaller than that of NMOS.
- As a result of mobility differences: PMOS source followers have larger output resistance, than NMOS followers.

CS Amplifier directly driving a Source Follower: DC levels considerations

- CS Amplifier alone: V_X≥V_{GS1}-V_{TH1} to assure that M₁ is in Saturation.
- With Source Follower: V_X≥V_{GS2}+(V_{GS3}-V_{TH3}) to assure that M₃ is in Saturation.

CS Amplifier directly driving a Source Follower: DC levels considerations

- If V_{GS1} - $V_{TH1} \approx V_{GS3}$ - V_{TH3} then $V_{X,with Source Follower}$ must be bigger than $V_{X, without Source Follower}$ by about V_{GS2} .
- Swing of CS reduces by $V_{GS2.}$

Source Followers as Level Shifters

- Example (a): DC level of V_{in} cannot exceed V_{DD} $|V_{GS2}|+V_{TH1}$
- Example (b): If V_{in} has a DC level of around V_{DD} , we put first a Source Follower.

Source Followers as Level Shifters

If V_{in}≈V_{DD}, then for M₁ to be in Saturation, we need: V_{DD}-V_{GS3}-V_{TH1}≤V_{DD}-|V_{GS2} |

Common-Gate Amplifier-L12

 $V_{in} \underbrace{\int_{-}^{+} V_{DD}}_{(a)}$

CG Amplifier: Input-Output Structure

- Input signal goes into Source
- Output signal comes out of Drain.
- It is called Common-Gate because in the small signal model Gate is grounded.

CG Amplifier: Two types of input signal interface

- (a): Direct coupling: DC bias current of M₁ flows through the input signal source.
- (b): Coupling (large) capacitor: Bias current is independent of the input signal source.

CG Amplifier's Properties

- Voltage gain comparable to that of a CS amplifier.
- Current gain of 1 amplifier is used as current buffer.
- Small input resistance
- Large output resistance
- Bandwidth much larger than that of a CS amplifier.

CG Amplifier with R_D load – Large Signal Analysis

- In (a), if DC part of V_{in} ≥ V_b V_{TH} transistor is in Cutoff.
- If M_1 in Saturation, and V_{in} decreasing, then V_{out} decreasing too.

CG Amplifier with R_D load – Large Signal Analysis

- Saturation:
- $V_{out} = V_{DD} 0.5 \mu_n C_{OX} (W/L) (V_b V_{in} V_{TH})^2 R_D$
- Small-Signal Voltage Gain derivation:
- $dV_{out}/dV_{in} = -\mu_n C_{OX}(W/L)(V_b V_{in} V_{TH})(-1 dV_{TH}/dV_{in})R_D$
- Note: $dV_{TH}/dV_{in}=dV_{TH}/dV_{SB}=\eta$

CG Amplifier with R_D load – Small-Signal Voltage Gain

- $dV_{out}/dV_{in} = \mu_n C_{OX}(W/L)(V_b V_{in} V_{TH})(1+\eta)R_D$
- $A_V = dV_{out}/dV_{in} = g_m(1+\eta)R_D$
- Same order of magnitude as CS gain, however it is positive.
- Can you derive it from the small-signal model?

CG Amplifier with R_D load – Small-Signal Input Resistance

- If $\lambda = 0$ then
- $R_{in} = 1/(g_m + g_{mb}) = 1/[g_m(1+\eta)]$
- Body effect makes gain larger and R_{in} smaller this is good! However – it adds nonlinearity.

Low R_{in} of CG Amplifiers is useful if signal comes from a transmission line

- Assume: 50Ω transmission line
- If λ=γ=0, then theoretically both circuits have the same voltage gain A_V≈ -g_mR_D.
- In (a): If R_D≠ 50Ω there will be reflections (see simulations)

Low R_{in} of CG Amplifiers is useful if signal comes from a transmission line

- In (b): R_{in} of M_2 is set to 50 Ω to prevent reflections.
- R_D can be much larger to determine the deired gain.

Common Gate Amplifier – Output Resistance

 $R_{out} = \{ [1 + (g_m + g_{mb})r_o]R_S + r_o \} || R_D$

Common Gate Voltage Gain, taking into account r_o and V_{in} source resistance

$$A_{v} = \frac{(g_{m} + g_{mb})r_{o} + 1}{r_{o} + (g_{m} + g_{mb})r_{o}R_{S} + R_{S} + R_{D}} R_{D}$$

Common Gate Gain and R_{in} taking r_o into account, and assuming ideal signal source

$$A_{v} = \frac{(g_{m} + g_{mb})r_{o} + 1}{r_{o} + (g_{m} + g_{mb})r_{o}R_{S} + R_{S} + R_{D}} R_{D}$$

$$A_v \approx (g_m + g_{mb})(r_o \parallel R_D), \quad R_S = 0$$

$$R_{in} = r_o \|\frac{1}{g_m}\|\frac{1}{g_{mb}}\|$$

Cascode Amplifier-L13,L14

Cascode Amplifier

- M₁ generates small-signal drain current proportional to V_{in}.
- M_2 routes the current to the load R_D

Cascode Amplifier

- M₁ is the input device (CS amplifier with small load resistance)
- M₂ is the Cascode device

Properties of Cascode Amplifiers

- Same voltage gain and input resistance as a CS amplifier.
- Output resistance much larger than that of CS or CG amplifiers.
- Bandwidth much larger than that of a CS amplifier.

Cascode amplifier – Bias Conditions: How big should V_b be? V_{DD} W_{D} W_{D}

• M_1 in Saturation: $V_X \ge V_{in} - V_{TH1}$. That is:

М,

•
$$V_b - V_{GS2} \ge V_{in} - V_{TH1}$$

Cascode amplifier – Bias Conditions: How big should V_{out} be? VDD $R_{\rm D}$

- M_2 in Saturation: $V_{out} \ge V_b V_{TH2}$. That is:
- $V_{out} \ge V_{in} V_{TH1} + V_{GS2} V_{TH2}$ if V_b places M_1 at edge of Triode Mode. This is the minimum V_{out}

Cascode amplifier – Reduced Swing

 Tradeoff: For all the nice properties of Cascode, the "stacking" of M₂ on top of M₁ reduces the swing.

- If $V_{in} \leq V_{TH1}$ both transistors are off.
- $V_{out} = V_{DD}$
- If no sub-threshold conduction, then $V_X \approx V_b V_{TH2}$! (as explained for CS with diode-connected load)

- As $V_{in} \ge V_{TH1}$ a current develops. V_{out} must drop.
- As $I_{\rm D}$ increases, $V_{\rm GS2}$ increases, causing $V_{\rm X}$ to fall.
- As we keep increasing V_{in} which transistor enters Triode Mode first?

- As we keep increasing V_{in} which transistor enters Triode Mode first?
- Either one may, depending on the parameters and $R_{\rm D}, V_{\rm b}$

- If V_X falls below $V_{in} V_{TH1}$ then M_1 goes into Triode Mode.
- If V_{out} drops below $V_b V_{TH2}$ then M_2 goes into Triode Mode.
- For instance, if V_b is low, M_1 enters Triode first.

Gain independent of g_{m2} and body effect of M_2 !

Small-Signal Equivalent Circuit of Cacode Stage

Cascode's Output Resistance

$$R_{out} = [1 + (g_{m2} + g_{mb2})r_{o2}]r_{o1} + r_{o2}$$

$$\approx r_{o1}r_{o2}(g_{m2} + g_{mb2})$$

Cascode Gain taking into account r_o resistors $-v_{ox}$

Recall the generalized gain formula $A_V = G_m R_{out}$ discussed in the context of CS amplifier with R_s

$$R_{out} = \{ [1 + (g_{m2} + g_{mb2})r_{o2}]r_{o1} + r_{o2} \} || R_D$$

 $\approx [r_{o1}r_{o2}(g_{m2} + g_{mb2})] || R_D$

$$A_{V} \approx -g_{m1} \{ [r_{o1}r_{o2}(g_{m2} + g_{mb2})] \| R_{D}] \}$$

Cascode Gain Example

$$A_{V} \approx -g_{m1}r_{o1}r_{o2}(g_{m2} + g_{mb2})$$

Cascoding extended

Can achieve phenomenal R_{out} values, at the expense of a much reduced swing

CS and Cascode Size vs. Swing Comparison

- What happens to a CS amplifier if we quadruple L without changing W and I_D?
- The "overdrive" V_{GS} - V_{TH} doubles, and as a result, swing will be similar to that of Cascode (c).

CS and Cascode Size vs. Output Resistance Comparison

Recall that λ is proportional to 1/L. Quadrupling of L only doubles the value of $g_m r_{o.}$

Output resistance of (b) is four times bigger than that of (a).

Output resistance of (c) is approximately $(g_m r_o)^2$, much bigger than (b).

CS and Cascode Noise Comparison

 g_m in (b) is half of that of (c). As a result the CS amplifier with quadrupled L is noisier than the Cascode amplifier (We'll learn about device noise later on).

PMOS Cascode as Current Source Load for an NMOS Cascode amplifier

PMOS Cascode as Current Source Load for an NMOS Cascode amplifier - Swing

If all gates' DC voltages are properly chosen, the maximum output swing equals $V_{DD} - (V_{GS1} - V_{TH1}) - (V_{GS2} - V_{TH2}) - |V_{GS3} - V_{TH3}| - |V_{GS4} - V_{TH4}|$

PMOS Cascode as Current Source Load for an NMOS Cascode amplifier – Gain

 $R_{out} = \{ [1 + (g_{m2} + g_{mb2})r_{o2}]r_{o1} + r_{o1} \} \| \{ [1 + (g_{m3} + g_{mb3})r_{o3}]r_{o4} + r_{o3} \}$

Current Mirror Current Sources

- Assume that ${\rm I}_{\rm D1}$ is the reference current, and ${\rm I}_{\rm D2}$ is the desired current source.
- If $\lambda \neq 0$ and if $V_X \neq V_Y$ then there may be a significant error between the two currents.

Current Mirror Current Sources

- Error in (a): (assuming that both transistors have the same W/L ratio)
- $I_{D1}-I_{D2} = 0.5k_n'(W/L)(V_b-V_{TH})^2\lambda(V_X-V_Y)$

Current Mirror Current Sources

- In (b) it can be shown that I_{D1}-I_{D2} ≈
 0.5k_n'(W/L)(V_b-V_{TH})²λ(V_X-V_Y)/[(g_{m3}+g_{mb3})r_{o3}]
- Cascoding significantly reduces the mismatch between the two mirrored currents

Folded Cascode

- Folded Cascode: NMOS CS feeding into PMOS CG, or vice versa.
- Biasing by a DC current source is necessary.