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Query Optimization

To process an SQL queryTo process an SQL query, 
database systems must select the most 
efficient plan

Very expensive
The number of alternative plans for a query 
grows at least exponentially with the number of 
tables

2

tables

Cost-based optimization
Cost estimation of operators

Selectivity estimation is required 
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Query Optimization

An important task in a relational DBMSAn important task in a relational DBMS.

Must understand optimization in order to 
understand the performance impact of a 
given database design (relations, indexes) 
on a workload (set of queries)

3

on a workload (set of queries).

Query Optimization

Plan A tree of relational algebra operatorsPlan - A tree of relational algebra operators 
with choices of algorithms for each operator

Two main issues:

For a given query, what plans are 

considered? - search space 

4

How to estimate the cost of a plan?

Practically, we want to avoid worst plans!
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System R Optimizer

Wid l d tl k ll f < 10 j iWidely used currently - works well for < 10 joins

Cost estimation

Approximation

Statistics are maintained in system catalogs to estimate costs of 
operations and result sizes.

Considers combination of CPU and I/O costs

Search Space

5

Too large

left-deep plans

Left-deep plans allow output of each operator to be pipelined
into the next operator without storing it in a temporary relation.

Cartesian products are avoided

Schema for Examples

Sailors (sid: integer  sname: string  rating: integer  age: real)

Reserves

Each tuple is 40 bytes long,  100 tuples per page, 
1000 pages.

Sailors

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

6

Sailors

Each tuple is 50 bytes long,  80 tuples per page, 
500 pages. 



2009-02-13

4

A Motivating Example

Reserves 1000 pages
SELECT  S.sname

O S l SReserves - 1000 pages

Each tuple is 40 bytes long,  100 tuples 
per page

Sailors - 500 pages

Each tuple is 50 bytes long,  80 tuples 
per page

Simple Nested Loop Join

Cost: 500+500*1000 I/Os

FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

bid=100 rating > 5

sname

(On-the-fly)

(On-the-fly)Plan:

7

Cost:  500+500*1000 I/Os

Misses several opportunities: selections 
could have been `pushed` earlier, no use is 
made of any available indexes, etc.

Sailors Reserves

sid=sid

bid 100 g

(Simple Nested Loops)

( y)

Alternative Plan 1 

Push selection as early as possible Reserves - 1000 pages

Each tuple is 40 bytes long 100With 5 buffers

Scan Reserves (1000) + write temp T1 
(10 pages, if we have 100 boats, 
uniform distribution).

Scan Sailors (500) + write temp T2 (250 
pages, if we have 10 ratings).

Sort T1 (2*2*10), sort T2 (2*3*250), 
merge (10+250)

Total: 3560 page I/Os

sname(On-the-fly)

Each tuple is 40 bytes long,  100 
tuples per page

Sailors - 500 pages

Each tuple is 50 bytes long,  80 
tuples per page
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Total:  3560 page I/Os.

If we use Block Nested Loop join, join cost 
= 10+4*250, total cost = 2770.

If we `push?projections, T1 has only sid, T2 
only sid and sname:

T1 fits in 3 pages, cost of BNL drops to 
under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100 rating > 5
(Scan;
write to 
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)
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Alternative Plan 2

With clustered index on bid of Reserves, With clustered index on bid of Reserves, 
we get 100,000/100 =  1000 tuples on 
1000/100 = 10 pages.
INL with pipelining (outer is not 
materialized)

Projecting out unnecessary fields from 
outer doesn’t help

Join column sid is a key for Sailors.
At most one matching tuple, 
unclustered index on sid OK.

sname
(On-the-fly)

rating > 5 (On-the-fly)

9

Decision not to push rating>5 before the 
join is based on availability of sid index on 
Sailors.
Cost: Selection of Reserves tuples (10 

I/Os); for each, 
must get matching Sailors tuple 

(1000*1.2); total 1210 I/Os. Reserves

Sailors

sid=sid

bid=100 
(Use hash
index; do
not write
result to 
temp)

(Index Nested Loops,
with pipelining )

Cost Estimation

For each plan considered, must estimate cost:For each plan considered, must estimate cost

Must estimate cost of each operation in plan tree.

Depends on input cardinalities.

Must estimate size of result for each operation in tree!

Use information about the input relations.

For selections and joins, assume independence of 
predicates.

10

System R cost estimation approach

Very inexact, but works ok in practice.

More sophisticated techniques known now.



2009-02-13

6

Statistics and Catalogs

N d i f ti b t th l ti d i dNeed information about the relations and indexes 
involved.  Catalogs typically contain at least:

# tuples (NTuples) and # pages (NPages) for each 
relation.

# distinct key values (NKeys) and NPages for each index.

Index height, low/high key values (Low/High) for each 
tree index.

11

tree index.

Catalogs are updated periodically.
Updating whenever data changes is too expensive; lots 
of approximation anyway, so slight inconsistency ok.

More detailed information (e.g., histograms of the 
values in some field) are sometimes stored.

Selectivity
SELECT attribute list

l ti  li t

Maximum # tuples in result is the product of the cardinalities of 
relations in the FROM clause.

selectivity (SF) associated with each condition reflects the 
impact of the condition in reducing result size.  

FROM relation list
WHERE cond1 AND ... AND condk

12

Result cardinality = (Max # tuples)  *  product of all selectivities

Implicit assumption that conditions are independent!

Term col=value has SF 1/NKeys(I), given index I on col

Term col1=col2 has SF 1/MAX(NKeys(I1), NKeys(I2))

Term col>value has SF (High(I)-value)/(High(I)-Low(I))
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Units of Optimization

SELECT  S.sname
FROM  Sailors S
WHERE  S.age IN 

(SELECT  MAX (S2.age)
FROM  Sailors S2
GROUP BY  S2.rating)

Nested blockOuter block

13

An SQL query is parsed into a collection of query blocks, 
and these are optimized one block at a time.

Nested blocks are usually treated as calls to a subroutine, 
made once per outer tuple. 

Nested blockOuter block

Relational Algebra 
Equivalences

Allow us to choose different join orders and to `push` j p
selections and projections ahead of joins.

Selections:
(Cascade)

( ) ( )( )σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

( )( ) ( )( )σ σ σ σc c c cR R1 2 2 1≡ (Commute)

v Projections: ( ) ( )( )( )π π πa a anR R1 1≡ . . . (Cascade)

14

v Joins: ><R      (S     T)      (R     S)      T>< >< ><≡ (Associative)

><(R     S)      (S     R) >< ≡ (Commute)

R      (S     T)      (T     R)      S+ Show that:  ≡>< >< >< ><
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More Equivalences

A projection commutes with a selection that onlyA projection commutes with a selection that only 
uses attributes retained by the projection.

Selection between attributes of the two 
arguments of a cross-product converts cross-
product to a join.

A selection on just attributes of R commutes 
i h R S (i (R S) (R) S )>< ><

15

with  R      S.  (i.e.,    (R     S)         (R)      S )

Similarly, if a projection follows a join R      S, 
we can `push` it by retaining only attributes of R 
(and S) that are needed for the join or are kept 
by the projection.

>< σ ><

><

σ≡ ><

Enumeration of Alternative 
Plans

There are two main cases:There are two main cases:
Single-relation plans

Multiple-relation plans

For queries over a single relation, queries consist of a 
combination of selects, projects, and aggregate ops:

Each available access path (file scan / index) is considered, 
and the one with the least estimated cost is chosen.

16

The different operations are essentially carried out together 
(e.g., if an index is used for a selection, projection is done 
for each retrieved tuple, and the resulting tuples are pipelined
into the aggregate computation). 
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Cost Estimates for Single-
Relation Plans

Index I on primary key matches selection:Index I on primary key matches selection

Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

Clustered index I matching one or more selects:

(NPages(I)+NPages(R)) * product of SFs of matching 
selects.

Non-clustered index I matching one or more selects:

(NPages(I)+NTuples(R)) * product of SFs of matching 
l t

17

selects.

Sequential scan of file:

NPages(R).

+ Note: Typically, no duplicate elimination on projections! 
(Exception:  Done on answers if user says DISTINCT.)

An Example

SELECT S.sid

If we use an index on rating:
(1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.

Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = 
(1/10) * (50+500) pages are retrieved (This is the cost )

FROM Sailors S
WHERE S.rating=8

18

(1/10) * (50+500) pages are retrieved. (This is the cost.)

Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = 
(1/10) * (50+40000) pages are retrieved.  

Doing a file scan:
We retrieve all file pages (500).
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Queries Over Multiple 
Relations

Fundamental decision in System R:  only left-deep join trees are y y p j
considered.

As the number of joins increases, the number of alternative plans 
grows rapidly; we need to restrict the search space.

Left-deep trees allow us to generate all fully pipelined plans.

Intermediate results not written to temporary files.

Not all left-deep trees are fully pipelined (e.g., SM join).

Bushy join Left-deep join

19
BA

C

D

BA

C

D

C DBA

e deep jo

Enumeration of Left-Deep 
Plans

Left-deep plans differ only in the order of relations theLeft deep plans differ only in the order of relations, the 
access method for each relation, and the join method for 
each join.

Enumerated using N passes (if N relations joined):

Pass 1:  Find best 1-relation plan for each relation.

Pass 2:  Find best way to join result of each 1-relation plan (as 
outer) to another relation.  (All 2-relation plans.)

20

…..

Pass N:  Find best way to join result of a (N-1)-relation plan (as 
outer) to the N뭪h relation.  (All N-relation plans.)

For each subset of relations, retain only:

Cheapest plan overall, plus

Cheapest plan for each interesting order of the tuples.
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Enumeration of Plans 
(Contd.)

ORDER BY GROUP BY aggregates etc handledORDER BY, GROUP BY, aggregates etc. handled 
as a final step, using either an `interestingly 
ordered` plan or an additional sorting operator.

An N-1 way plan is not combined with an 
additional relation unless there is a join condition 
between them, unless all predicates in WHERE 
have been used up

21

have been used up.

i.e., avoid Cartesian products if possible.

In spite of pruning plan space, this approach is 
still exponential in the # of tables.

Example

Sailors:
i

sid=sid

sname

Pass1:

Sailors: B+ tree matches rating>5, and is probably cheapest.  However,  if 
this selection is expected to retrieve a lot of tuples, and index is 
unclustered, file scan may be cheaper.

B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

Reserves Sailors

bid=100 rating > 5

22

Still, B+ tree plan kept (because tuples are in rating order).

Reserves:  B+ tree on bid matches bid=500; cheapest. 

Pass 2:

We consider each plan retained from Pass 1 as the outer, and consider 
how to join it with the (only) other relation.

e.g., Reserves as outer:  Hash index can be used to get Sailors tuples 
that satisfy sid = outer tuple뭩 sid value.
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Nested Queries

Nested block is optimized

SELECT  S.sname
FROM  Sailors S
WHERE EXISTS 

(SELECT  *
FROM  Reserves R
WHERE  R.bid=103 

d d)Nested block is optimized 
independently, with the outer tuple 
considered as providing a selection 
condition.

Outer block is optimized with the cost 
of `calling` nested block computation 
taken into account.

Implicit ordering of these blocks

AND  R.sid=S.sid)

Nested block to optimize:
SELECT  *
FROM  Reserves R
WHERE  R.bid=103 

AND  S.sid= outer value

23

Implicit ordering of these blocks 
means that some good strategies are 
not considered.

Equivalent non-nested query:
SELECT DISTINCT S.sname
FROM Sailors S, Reserves R
WHERE  S.sid=R.sid 

AND R.bid=103

Dynamic Programming 
Algorithm

DP_Algorithm_LD

for i=2 to n do

for all S⊆{R1,…,Rn} such that |S| = i do

bestPlan = a dummy plan with infinite cost

for all Rj, Sj such that S = {Rj} ∩Sj = ø do {

p = joinPlan(optPlan(Sj), Rj)

if cost(p) < cost(bestPlan)

bestPlan = p

}

24

}

optPlan(S) = bestPlan

}

}

return(optPlan({R1,…,Rn}))

Naïve enumeration: O(n!)

DP Algorithm: O(n2n-1)



2009-02-13

13

DP_Algorithm_LD
{1 2 3 4}{1,2,3,4}

{4}                  {2}

{1,2,3}             {1,3,4}          {1,2,4}            {2,3,4}

{3}         {1}

{1,2}        {2,3}        {1,3}       {1,4}       {3,4}        {2,4}

25

Dynamic Programming 
Algorithm

DP_Algorithm_Bushy

for i=2 to n do

for all S⊆{R1,…,Rn} such that |S| = i do

bestPlan = a dummy plan with infinite cost

for all S1, S1 such that S = S1 ∪S2, S1 ≠ ø, S2 ≠ ø, S = S1 ∩S2 = ø 
do {

p = joinPlan(optPlan(Sj), Rj)

if cost(p) < cost(bestPlan)

bestPlan = p

26

bestPlan  p

}

optPlan(S) = bestPlan

}

}

return(optPlan({R1,…,Rn}))

DP Algorithm: O(3n)
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DP_Algorithm_LD_Bushy
{1 2 3 4}{1,2,3,4}

{4}                  {2}

{1,2,3}             {1,3,4}          {1,2,4}            {2,3,4}

{1,2}        {2,3}        {1,3}       {1,4}       {3,4}        {2,4}

27

Query Optimization with 
User-define Predicates

ACM Transaction on Database 
Systems 24(2): 1999 

28

y
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Outline
MotivationMotivation

User-defined predicates

Desirable execution space

Past work

LDL project

Predicate migration

Algorithms [VLDB 96], [ACM TODS 99]

29

An optimization algorithm that guarantees the optimal 
plan

A remarkably good approximate algorithm

Experimental Studies

User-Defined Predicates

User defined predicates (storedUser defined predicates (stored 
procedures) capture application logic

They can be stored and executed at the 
server

Can be invoked in an SQL query

E i h h f i li f SQL

30

Enriches the functionality of SQL

Raises execution and optimization 
challenges
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An Example 
(From [Hellerstein 95])

Select raster images and corresponding notesSelect raster images and corresponding notes

select rasters.name, notes.note

from   rasters, notes

where  rasters.rtime = notes.rtime

and  rasters.rtime  < 20  

31

and rasters.rtime 20

and  notes.author = “clifford”
and  veg(rasters.raster) > 20

System R Style
Optimization Algorithm

R3

R4

Execution Space

32

R1 R2 R1 R2 R3 R4

Linear join tree Bushy join tree
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System R Style 
Optimization Algorithm

Push down all selectionsPush down all selections

Build plans bottom-up using DP algorithm

Enumeration complexity - exponential in the number of 
relations

Linear  join trees: 

Bushy join trees: 

{1234}

)3( nO
)2( 1−nnO

33

{123}          {134}          {124}          {234}

{12}      {23}      {13}      {14}      {34}      {24}

System R Style 
Optimization Algorithm

Interesting order

Assume sort-merge join costs more than hash join for a 
join with R1 and R2

Sorted order resulted by a sort-merge join can reduce 
the cost of the extended plan from it

Thus, the plan with sort-merge join is additionally  stored

Sort-merge
R1 a=R3 a

Sort-merge
R1 a=R3 a

34
R1 R2

Sort-merge
R1.a=R2.a

R1 R2

Hash
R1.a=R2.a

R1 R2

Sort-merge
R1.a=R2.a

R1 R2

Hash
R1.a=R2.aR3 R3

R1.a=R3.a R1.a=R3.a
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User-Defined Predicates

Evaluating user defined predicate as earlyEvaluating user-defined predicate as early 
as possible is not necessarily a good idea

Checking whether 20% of the image 
have signs of vegetation takes time to 
evaluate

How do we optimize queries containing

35

How do we optimize queries containing 
user-defined predicates?

Cost Model

Execution Space

Cost Model

Follow the cost models in past workFollow the cost models in past work 

[Chimenti, Gamboa and Krishnamurthy 89], 
[Hellerstein and Stonebraker 93]

Selectivity, Cost per tuple

Cost of checking whether a raster-image 
has at least 20% vegetation

36

For example, Illustra allows break-up of cost  
into several parameters (invocation, input 
size,..)
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Question

GivenGiven

A single relation

Selection predicates f1, f2, …, fn
their selectivities s1,s2,…,sn

their costs per tuple c1, c2, …, cn

37

What is optimal ordering of the 
predicates f1, f2, …, fn to process?

Question

GivenGiven
A single relation

Selection predicates f1, f2, …, fn
their selectivities s1,s2,…,sn

their costs per tuple c1, c2, …, cn

where c1=c2= …=cn

38

What is optimal ordering of the predicates 
f1, f2, …, fn to process?
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Question

GivenGiven
A single relation

Selection predicates f1, f2, …, fn
their selectivities s1,s2,…,sn

their costs per tuple c1, c2, …, cn

where c1=c2= …=cn

What is optimal ordering of the predicates f

39

What is optimal ordering of the predicates f1, 
f2, …, fn to process?

Answer:
Increasing order of selectivities

Question

GivenGiven
A single relation

Selection predicates f1, f2, …, fn
their selectivities s1,s2,…,sn

their costs per tuple c1, c2, …, cn

where s1=s2= …=sn

40

What is optimal ordering of the predicates 
f1, f2, …, fn to process?
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Question

GivenGiven
A single relation

Selection predicates f1, f2, …, fn
their selectivities s1,s2,…,sn

their costs per tuple c1, c2, …, cn

where s1=s2= …=sn

What is optimal ordering of the predicates f

41

What is optimal ordering of the predicates f1, 
f2, …, fn to process?

Answer:
Increasing order of costs

Question

GivenGiven

A single relation

Selection predicates f1, f2, …, fn
their selectivities s1,s2,…,sn

their costs per tuple c1, c2, …, cn

42

What is the optimal ordering of the 
predicates f1, f2, …, fn to process?
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Question

GivenGiven
A single relation

Selection predicates f1, f2, …, fn
their selectivities s1,s2,…,sn

their costs per tuple c1, c2, …, cn

What is the optimal ordering of the 
predicates f f f to process?

43

predicates f1, f2, …, fn to process?

Answer: [Monma and Sidney 79]
Rank = cost/(1-selectivity)

Increasing order of rank

Desirable Execution Space

Unconstrained Linear Join 
Trees

R3e1 e2 R3e1

e2

44

R1 R2 R2R1
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Past Work: LDL Project

[Chimenti Gamboa and Krishnamurthy 89][Chimenti, Gamboa and Krishnamurthy 89]

Treat a user-defined selection as a virtual relation 
with infinite cardinality

Plan is a linear sequence of operators

No dual-push-down execution plans:  
Join (pred1(R), pred2(S))

45

Troublesome for relatively cheap predicates

Exponential in number of relations and user-
defined predicates

Past Work: LDL Project

R1 R2

R3

e2

e1

R1

R2

R3

e2

e1

46

R1 R2

R3e2e1

R1 R2

R3

e2e1
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Past Work: 
Predicate Migration

[H ll t i d St b k 93] [H ll t i 94][Hellerstein and Stonebraker 93], [Hellerstein 94]

Selections can be ordered by

Rank: cost/(1-selectivity)

Ascending order [Monma and Sidney 79]

Treat a join predicate as a selection

Assume join cost is linear : 

JoinCost (R S) = a + b*R + c* S

47

JoinCost (R, S) = a + b*R + c* S

c.f.) nested-loop join, user-defined join predicate

Assign a rank for each join predicate

Enumerate possible join trees

For every join tree,  consider placing selections at the optimal 
place

Past Work:
Predicate Migration

Unfortunately fails to guarantee theUnfortunately, fails to guarantee the 
optimal

Needs a priori decision on which 
selections are evaluated before the join

Assume all user-defined selections are 
applied before the join

Sep 3, 1996 48

applied before the join
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Past Work:
Predicate Migration

Poor integration with dynamic programmingPoor integration with dynamic programming
Use PullRank to find an optimal plan for each join

If the optimal plan for join has any user-defined 
predicate pushed, mark unpruneable

Mark a subplan unpruneable if it contains unprunable 
subplan within it

Saves subplans unpruneable as well as interesting 

49

ordered

Polynomial in number of user-defined predicates 

But can be as worse as O(n!) in the number of 
joins n

Annotating Plans with Tags

Concept of PropertyConcept of Property
[Graefe and Dewitt 87], 

[Lee, Freytag and Lohman 88]

Two plans that represent the same expression can be 
compared: Join (pred1(R),S) and 

pred1(Join (R,S))

Attach a prefix (tag) to every plan

Sep 3, 1996 50

Attach a prefix (tag) to every plan
The tag lists the set of yet to be evaluated user-defined 
predicates applicable to the plan

< e2 > {R2, R3, R4}

We can use the traditional algorithm (almost)
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Naive Optimization 
Algorithm

Exponential with # of UDFs

Rank order: {e1, e2, e3}

{e1, e2, e3}

{e1} {e2, e3}
{e2} {e1, e3}
{e3} {e1, e2}
{e1, e2} {e3}
{e1, e3} {e2}
…..      …..

p

Sep 3, 1996 51

R1 R2

R3

R1 R2

R3

Only one ordering by rank All possible subset of {e1, e2, e3} => 
k2

Naive Optimization 
Algorithm

Integrates well with dynamic programmingIntegrates well with dynamic programming 
algorithm

Two plans are comparable only if both the 
set of relations and the tag are the same 

Very robust!

N i h d l

Sep 3, 1996 52

No assumption on the cost model

But, exponential number of tags for every 
subplan
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Selection Ordering

Evaluation of a set of predicates on a relation canEvaluation of a set of predicates on a relation can 
be ordered by 

Rank = cost/(1-selectivity)

Can we use ranks to reduce the number of tags?

Need to show that selections are ordered by 
rank even when separated by joins and 

l i

Sep 3, 1996 53

selections

True if join formulas are of the form:

JoinCost (R, S) = a + b*R + c* S + d*R*S

Satisfied for common join methods

Selection Ordering

TheoremTheorem

If T is any constrained execution tree 
using only regular join methods, then 
there must exist an equivalent 
unconstrained execution tree T` such 
that cost(T`) cost(T) and the user-≤

54

that cost(T )     cost(T)  and the user
defined predicates in T` are rank-
ordered.

Proof: See [ACM TODS 99]

≤
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Exploiting Rank Ordering

R2

R3

R1

e1 e2

R2

R3

e1

e2

R1R2

R3e1

e2

R1

Sep 3, 1996 55

(O) (O) (X)

Optimization Algorithm With
Complete Rank-Ordering

At the time of every join we consider evaluating allAt the time of every join, we consider evaluating all 
remaining evaluable predicates prior to join. 

If a predicate with a rank j is applied, then so must all 
predicates with rank less than j.

We need at most (1+w)u tags

w:  max(number of user-defined selections, 

number of user-defined join predicates)

Sep 3, 1996 56

u: sum of number of user-defined selections and 
number of pairs of relations having user-defined join 
predicates
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Exploiting Rank Ordering
Polynomial with # of UDFs

Rank order: {e1, e2, e3}

{}  {e1, e2, e3}
{e1} {e1, e3}
{e1, e2} {e3}
{e1, e2, e3} {}

y

57

R1 R2

R3

=> 1+kk2

Optimization Algorithm with 
Complete Rank-Ordering

Consider the step of constructing the optimal plan for theConsider the step of constructing the optimal plan for the 
join between an intermediate relation S and a base relation 
R

…………………………………………..

for all u := 0  to s do

for all v := 0  to r do

( ( ) )

Sep 3, 1996 58

p := extjoinPlan(optPlan(S), R, u, v) 

if addtotable(p) then

remove pruneset(p) 

add p to Plantable
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Pruning Strategies

Compare and prune plans with different tagsCompare and prune plans with different tags

UDP Push Down Rule 

If cost(Plan 1) > cost(Plan 2) then prune Plan 1

e1

Sep 3, 1996 59

Plan 1 Plan 2

R S R S

Pruning Strategies

UDP Pullover RuleUDP Pullover Rule

If cost(Plan 1) > cost(Plan2)+evaluation of e1,  
then prune Plan1

e1

e1
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R S R S
Plan 1 Plan 2
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Optimization Algorithm With
Complete Rank-Ordering

Guarantees optimalityGuarantees optimality

Polynomial in number of user-defined 
predicates but exponential in number of 
relations 

No exhaustive enumeration of join space

C l k d i l d

Sep 3, 1996 61

Complete rank-ordering rule reduces 
number of tags

Pruning rules help compare plans with 
different tags

Approximate Algorithms

Known algorithms do badlyKnown algorithms do badly

Traditional algorithm (all predicates pushed-down)

Pullup (all predicate evaluations deferred)

PullRank [Hellerstein 94]

Considers all possible placements of expensive 
predicates locally either immediately preceding or 
immediately after join

Sep 3, 1996 62

Picks the cheapest plan among them

R1 R2 R1

e1 e2

R2
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Conservative Local Heuristic

Pi k t l l lPick two local plans:

a) Minimize costs of 

evaluating P and J

b) Minimize costs of 

evaluating P, P’& J

P’

P
J

Sep 3, 1996 63

Distinguish between Pull-up and Push-down but 
blur the distinctions among tags

Conservative Local Heuristic

The two local plans favor locally pushingThe two local plans favor locally pushing 
down or pulling over expensive selections

It is now possible for the optimizer to 
consider more alternatives.

Sep 3, 1996 64
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Conservative Local Heuristic

Guarantees Optimality in many importantGuarantees Optimality in many important 
cases

Single Join

Single Predicate

Pullover/Pushdown is the optimal

Sep 3, 1996 65

Near optimal performance and significantly 
better than other known approximate 
methods

Experimental Studies

Implemented by extending a System R styleImplemented by extending a System R style 
prototype

Varied two parameters

Number of user-defined predicates

Distribution of predicates among relations

Setup:

Sep 3, 1996 66

Varied number of distinct values and relation 
cardinality

Popular indexing structures and join methods
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Experimental Results
100 Random QueriesQ

67

Experimental Results

Plans by traditional optimizers andPlans by traditional optimizers and 
PullRank heuristic fared badly

Pruning strategies are very effective

Conservative Local Heuristic generates 
plans close to optimal with almost no 
overhead

Sep 3, 1996 68

overhead

Distribution of predicates have interesting 
effect on the optimization cost
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Query Optimization with 
Foreign Functions

Query:Query

select business.name, map.location

from business, map
where business.type = ‘Restaurant’

and business.etakid = map.etakid

and inside(w, map.location)

and business.earning > expected_revenue(bisiness.size)

69

Rewrite Rule:

Insode(w1, point), Inside(w2, point) 

-> Inside(w, point), Intersect(w1,w2,w)

Foreign Functions in Query 
Optimization [VLDB 1993]

A Query Q a set of rewrite rules R and aA Query Q, a set of rewrite rules R and a 
set of base tables B:

Question 1: What are all the alternative 
ways of answering Q?

Question 2: How can we pick the best

70

Question 2: How can we pick the best 
execution plan for Q from its alternatives?
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Materialized Views
emp(name, salary, dno) 
dept(dno, mgr, floor, location)

Query:
select name
from emp, dept
where emp.sal > 220k 

and dept.floor=1 and emp.dno = dept.dno

Vi

71

View:
create view emp_loc(name, size, location) as
select name, size, location
from emp, dept
where emp.dno = dept.dno

Materialized Views in Query 
Optimization [ICDE 1995]

A Query Q a set of materialized views VA Query Q, a set of materialized views V 
and a set of base tables B:

Question 1: What are all the alternative 
ways of answering Q?

Question 2: How can we pick the best

72

Question 2: How can we pick the best 
execution plan for Q from its alternatives?



2009-02-13

37

Including Group-By in Query 
Optimization [VLDB 1994]

emp(name, salary, dno) 
dept(dno, mgr, floor, location)

select emp.dno, sum(emp.salary)
from emp, dept
where emp.dno = dept.dno and

dept.floor = 5
group by dno

G B (d )

73

Group-By(dno)

Join(dno)

emp              dept

Including Group-By in Query 
Optimization

Traditional ExecutionTraditional Execution

A Two-phase execution
Execute all joins

Then, process group-by

Observation: 

74

Execution plans that interleave join and 
group-by may be much cheaper
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Including Group-By in Query 
Optimization
emp(name, salary, dno) 

dept(dno, mgr, floor, location)

A Traditional  Execution

Group-By(dno)

An Alternative Execution

Join(dno)

75

Join(dno)

emp  (100k)     dept (10)

Group-By(dno) (10)    dept (10)

emp  (100k) 

Advantage of Early Group-by

May reduce the cost of a join byMay reduce the cost of a join by 
reducing the size of input relation 
significantly

May allow the use of indexes over 
base tables to combine scan and 

76

group-by
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Including Group-By in Query 
Optimization

Transformations (push group by past join)Transformations (push group-by past join)
Invariant grouping

Simple Coalescing grouping

May not always desirable

Query Optimization
Integration with System R style optimizer needs

77

Integration with System R style optimizer needs 
to be considered

But search space is too large

Propose a greedy conservative heuristic

Invariant Grouping

Substitutes group-by with an early group-bySubstitutes group by with an early group by

Take advantage of foreign key

Universally applicable for any aggregate function

R4

Group by

R4

78

R1 R2

R3

R4

R1 R2

R3

R4

Group by
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Simple Coalescing Grouping

early group-bys are addedearly group bys are added

Future join needs not be with foreign keys

Exploit the property of aggregate functions

R4

G

R4G

G

G

79

R1 R2

R3

R4

R1 R2

R3

R4

G

G

Multiple Query Optimization 
[DKE 1994]

emp(name, salary, dno) p( , y, )
dept(dno, mgr, floor, location)

Query1:
select emp.name
from emp, dept
where emp.dno = dept.dno 

and dept.floor = 1

Query2:

80

select emp.name
from emp, dept
where emp.dno = dept.dno 

and dept.floor = 1
and emp.age < 30
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Parametric Query Optimization 
[VLDB1992]

emp(name, salary, dno)emp(name, salary, dno) 

dept(dno, mgr, floor, location)

Query:

select emp.name

from emp, dept

where emp.dno = dept.dno 

and dept.floor = 1

81

and emp.age < X


