
1

Self-Managing Technology in
Database Management SystemsDatabase Management Systems

Kyuseok Shim

1

Motivation
Hardware & Software becomes cheaper and
mo e po e f lmore powerful

CPU is getting faster
Sizes of Memory and Disk is getting larger
DELL XPS 600 costs only $2749

2 GB of memory
1TB RAID
Pentium® D Processor 820 (2.8GHz, 800FSB)

2

Include 17 inch Flat Monitor

Complexity of DBMS is increasing
DBA is getting more expensive, but not more
reliable

2

Motivation

Total cost of database management isTotal cost of database management is
significantly dominated by human costs.
55% of DBA spend time in
management, monitoring and tuning
Increased business competitiveness
f t t ti

3

forces to cut operating expenses
Self-configuration and self-tuning is a
viable solution!

Ongoing System Management
Performance Diagnosis & TroubleshootingPerformance Diagnosis & Troubleshooting
SQL and Application tuning

Response time, throughput, schema, index, views
System Resource Tuning

CPU utilization, buffer, memory
Space Management

Disk configuration data fragmentation

4

Disk configuration, data fragmentation
Backup & Recovery

Source: International Oracle User Group (IOUG) 2001 DBA Survey

3

Microsoft SQL Server

5

Self Tuning for SQL Server
Monitoring toolsMonitoring tools

SQL Profiler
SQLCM
Workload analyzer
SQL Query Execution Progress Estimator

S lf T i M M t

6

Self Tuning Memory Management
Statistics Management
Self Tuning Physical Database Design

4

Monitoring Tools
Check connections space long runningCheck connections, space, long running
jobs

PERFMON command

Best Practices Analyzer
Detect common oversights in SQL Server

7

Detect common oversights in SQL Server
installation

SQL Profiler
GUI tool for SQL TraceGUI tool for SQL Trace

SQL Trace
Located at server

Event log

8

5

SQLCM
Located at SQL ServerLocated at SQL Server
Online grouping/aggregation processed
at server help monitoring
ECA rule are used to control monitoring

9

SQLCM
Logical query signatureLogical query signature

Tree structure
Exact matching is allowed between
signatures

Light-weight aggregation table (LAT)

10

g g gg g ()
Grouping attributes and aggregations

6

Workload Analyzer
Obtained using SQL Profiler from logs ofObtained using SQL Profiler from logs of
workloads in server
Useful for

DBA
Self tuning tools

11

Self tuning tools

Workload can be very large
Scalability is important

Workload Analyzer
SummarizationSummarization

Random sampling
Clustering

12

7

SQL Query Execution Progress
Estimator

Provide accurate progress estimatorProvide accurate progress estimator
during query execution
Use feedback from query execution

13

Automatic Statistics Management

Invoked by Query OptimizerInvoked by Query Optimizer
Refreshed when a certain number of
tuples are updated
Use sampling

Uniform random sampling is expensive

14

Block-level sampling is cheap, but may
degrade the quality of estimation

Pick a few blocks at random and use all tuples
in them

8

Self Tuning Physical Database
Design - Index Tuning Wizard

Provide recommendations for indexes materializedProvide recommendations for indexes, materialized
views and partitioning at SQL Server 2005
Constraints: Tuning time and space limit on the space
for indexes and views
Estimate the impact of physical design on workload
without making actual changes to database

Consult to the query optimizer

15

Each physical design simulated by faking statistics
Search space is reduced by pruning used in frequent
itemset mining
Incremental cost estimation for each different
physical design

Cost-Driven Index Selection
[Chaudhuri Narasayya: VLDB 1997][Chaudhuri, Narasayya: VLDB 1997]
Efficiency of selection and quality of its
solution to the optimal
Important measures of efficiency

Number of indexes considered

16

Number of indexes considered
Number of cinfigurations enumerated
Number of optimizer invocations

9

Cost-Driven Index Selection
OptimizationsOptimizations

Invoke optimizers only for a selected
subset of the configurations
Since an index considered may not be
present in the current database, need to
i l t th f i d f th

17

simulate the presence of index for the
optimizer

Cost-Driven Index Selection
Indexable column for a queryIndexable column for a query

a column R.a such that there is a condition in
WHERE clause
A column in GROUP BY or ORDER BY clause

Admissible index for a query
An index that is on one or more indexable
columns of the query

18

columns of the query
Admissible index for a workload

Admissible index for at least one query in the
workload

10

Indexable Columns : An Example
select *select
from onektup, tenktup1
where onektup.unique1 = tenktup1.unique1 and

tenktup1.unique2 between 0 and 100

{onektup,unique1, tenktup1.unique1, tenktup1.unique2} is the set
of indexable columns

19

Cost-Driven Index Selection
A configuration C is atomic for a workload ifA configuration C is atomic for a workload if
for some query in the workload, there is a
possible plan that uses all indexes in C
Instead of evaluating all M configurations, it
is sufficient to ask optimizer to evaluate only
M’ that contains all atomic configurations

20

M that contains all atomic configurations
among M

11

Architecture of Index
Selection Tool

Workload

Candidate Index
Selection

Configuration
Enumeration

“What-if” Index
Creation

SQL Server

21

Multi-column Index
Generation

Final
Indexes

Cost Evaluation

Cost Evaluation of Atomic
Configurations

For select queryFor select query
Inclusion of index can only reduce the cost
Suffice to take the minimum cost over the
largest atomic configurations

© TIM & Kyuseok Shim 22

12

Cost Evaluation of Atomic
Configurations

For insert/delete query/ q y
Cost consists of

(a) selection
(b) updating the table and the index that may be used
for selection
(c) updating index that do not affect the selection cost

Cost of updating index that do not affect the
selection cost is independent of each other and

© TIM & Kyuseok Shim 23

selection cost is independent of each other and
independent of (a) and (b)
Suffice to pick a plan with the minimum cost for
(a) and (b)

Cost Evaluation of Atomic
Configurations

Cost consists of
(a) selection
(b) updating the table and the index that may be used for
selection
(c) updating index that do not affect the selection cost

For select/update query
Let T be the minimum cost of all atomic configurations of
Q that are subsets of C in (a) and (b)

© TIM & Kyuseok Shim 24

The cost of updating an index I in (c) is Cost(Q, {I}) –
Cost(Q, {})
The total cost can be computed without invoking the
optimizer for C as:

{})),(}){,((QCostIQCostT
k

k −+∑

13

Atomic Configurations
Number of atomic configuration isNumber of atomic configuration is
exponential in number of tables
Query Processor based restrictions

For a query execution, allow up to a certain
number (J) of indexes per table
For multi-table query execution, allow the indexes

25

For multi table query execution, allow the indexes
from at most a certain number of (K) tables
J=2 and K=2 provide good quality
We call single join atomic configuration

Indexable Columns : An Example
select *select
from T1, T2, T3
where T1.a < 20 and T1.a = T2.B and

T3.c between 30 and 50

One 3-table atomic configuration is (T1.a, T2.b, T3.c)
Due to the single-join atomic configuration based

26

pruning, it is not evaluated.
Rather be computed by taking minimum cost of the atomic
configurations: (T1.a, T2.b), (T1.a, T3.c), (T2.b, T3.c)

14

Relevant Index Set Optimization

When asked to evaluate COST(Q C)When asked to evaluate COST(Q, C)
Let the set of indexable columns for
select/update query Q be P
Only indexes in C that are on at least one
column in P affect the cost of Q
If C’ is the configurations consisting of only

27

If C is the configurations consisting of only
such indexes, COST(Q, C) = COST(Q, C’)
If COST(Q, C’) has already evaluated,
reuse it

Candidate Index Set
Observation: An index that is not part of theObservation: An index that is not part of the
best design for even a single query is unlikely
to be part of the best design for the entire
workload
Strategy

Determine the best configuration for each query
independently

28

independently
Consider all indexes belonging to at least one of
these best configurations as the candidate index
set

15

Configuration Enumeration
Greedy(m k)Greedy(m,k)

Naïve enumeration algorithm picking up to k indexes
Greedily choose rest of indexes

First select single column indexes
Then, enumerate multi-column indexes in increasing
width
Observation: If two-column index is desirable, a

29

,
single index for its leading column must also be
desirable

2-coulmn (a,b) – a is the leading column

AutoAdmin – “What-if” Index
Analysis Utility
[Chaudhuri Narasayya: SIGMOD 2005][Chaudhuri, Narasayya: SIGMOD 2005]
Workload

SQL Server Profiler can provide from logging events
Can be generated dynamically from Query Analyzer

Hypothetical Configuration Analysis (HCA) Engine
Estimate the cost of a query in the workload and the index
usage with respect to a hypothetical configuration

h l f

30

Hypothetical configuration
Indexes and database scaling values
Represents a database where each table Tj has mj times the
number of rows where mj captures the size of the database for
each table Tj

16

Interface for Hypothetical
Configuration Simulation

DEFINE WORKLOAD <workload_name> [FROM <file> | AS (Q1,f1),
Q f) (Q f)]

1 1
Q2,f2),…,(Qn,fn)]

DEFINE CONFIGURATION <configuration_name> AS (Table1,
colulmn_list1),…, (Tablem, colulmn_listm)

SET DATABASE SIZE OF <configuration_name> AS (Table1,
row_count1),…, (Tablem, row_countm)

ESTIMATE CONFIGURATION OF <workload_name> for

31

_
<configuration_name>

REMOVE [WORKLOAD <workload_name> | Configuration
<configuration_name> | COST-USAGE <workload_name>,
<configuration_name>

DEFINE WORKLOAD command
DEFINE WORKLOAD <workload_name> [FROM <file> | AS
(Q f) Q f) (Q f)](Q1,f1), Q2,f2),…,(Qn,fn)]

Associates a name with a set of queries

These queries can be specified from a file or directly through
the command

Th f f i i t t d th kl d i ti f f

© TIM & Kyuseok Shim 32

The frequency fi is interpreted the workload consisting of fi

copies of query Qi

Workload
name

Query ID Frequency Query Properties

WrkId_A 1 1 <SQL Text>,{T1,T2}, etc.

17

DEFINE CONFIGURATION command
DEFINE CONFIGURATION <configuration_name> AS (Table1,

l l li t) (T bl l l li t)colulmn_list1),…, (Tablem, colulmn_listm)

Configuration
name

Indexes in Configuration Scaling values

Current_Conf Ind_A, Ind_B, Ind_D (T1,1), (T2,5)

Configuration Information

© TIM & Kyuseok Shim 33

Index
name

Table name Number of
rows

Number of
pages

Columns Index Statistics

Ind_A R 10,000 1685 R.a <histogram>

Index Information

ESTIMATE CONFIGURATION
command

ESTIMATE CONFIGURATION OF <workload_name> for
<configuration name><configuration_name>

The unit of cost below is relative to the total cost of the
workload in current configuration

The Used Indexes are expected to be used by the server if the
hypothetical configuration existed

© TIM & Kyuseok Shim 34

Configuration
name

Query ID Cost Used Indexes

New_Conf 1 0.02 Ind_A, Ind_D

New_Conf 2 0.11 Ind_B

18

REMOVE COMMAND
REMOVE [WORKLOAD <workload_name> | Configuration <configuration_name>
| COST USAGE kl d fi ti| COST-USAGE <workload_name>, <configuration_name>

Removes analysis data generated by previous
commands
All information about the workload is removed
including cost and usage information
When REMOVE COST-USAGE is invoked

l h i f i f h ifi d kl d

35

only the cost-usage information for the specified workload
and configuration is removed
Workload and configuration is retained

Implementation Details
Simulating a hypothetical configuration by physicallySimulating a hypothetical configuration by physically
altering the current configuration is not viable – due
to serious overhead of dropping and creating indexes
Updating system tables with database scaling value
can lead to error in optimizer’s estimates of potential
queries
An optimizer’s decision on whether or not to use an
i d i l l b d th t ti ti l i f ti

36

index is solely based on the statistical information on
the columns in the index
These statistical measures can be obtained via
sampling without significantly compromising accuarcy

19

ESTIMATE CONFIGURATION
The following steps are repeated for each queryThe following steps are repeated for each query
in the workload

1. Create all needed hypothetical indexes in the
configuration

2. Request the optimizer to
1. Restrict its choice of indexes to those in the give

configuration
2. Consider the table and index sizes to be as adjusted by

scaling values

37

scaling values
3. Request the optimizer to produce the optimal plan for

the query and gather the results
1. The cost of the query
2. Indexes used to answer the query

Creation of Hypothetical Indexes

Extend the CREATE INDEX statement in SQLExtend the CREATE INDEX statement in SQL
with the qualifer WITH STATISTICS_ONLY [=
fraction>]
It is optionally possible to specify the fraction
of the table to be scanned when generating
sample data on columns for the index

38

sample data on columns for the index.
If <fraction> is not given, system determines
the appropriate fraction of rows to be
scanned

20

Creation of Hypothetical Indexes
Sampling StrategySampling Strategy

Adaptive page-level sampling algorithm is used
The server maintains sorted list of values in the Sample-
Table and the set of statistical measures (density of the data
set and Equi-depth histograms) based on the Sample-Table
The data in New-Sample is used for cross validation purpose

Checked if the values in New-Sample are divided approximately
in euqal numbers in each bin of the histogram

39

If the above test is true, the density measure also reaches
convergence
If fails, the new sample is added to Sample-Table. This addition
is done via merging to build a new Sample-Table
Repeat the above step until converges

Defining Hypothetical
Configuration

A hypothetical configuration cannot be supported by updating yp g pp y p g
system catalog
Instead the information for the hypothetical configuration must
be conveyed to the optimizer in a connection-specific manner
Augment the server with a connection-specific HC mode call
HC mode call takes as arguments:

Set of indexes corresponding to the hypothetical configuration to
be used
The base index for each table in the configuration
Si f t bl d i d i th d t b

40

Sizes of tables and indexes in the database
HCA engine projects the size of each index in the configuration
based on the database scaling value

21

Summary Analysis Interface
ANALYZE [WORKLOAD | CONFIGURATION | COST-USAGE]
WITH <parameter-list>
[TOP <number> | SUMMARIZE USING <aggregation-function>|
BY <measure>
WHERE <filter-expression>
{PARTITION BY <partition-parameter> IN <number> STEPS}

Example
ANALYZE WORKLOAD WITH Workload_A SUMMARIZING USING Count
PARTITION BY Query Type

41

PARTITION BY Query_Type

ANALYZE CONFIGURATION WITH Current_Config SUMMARIZING USING Count

ANALYZE CONFIGURATION New_Config TOP 3 BY Storage

ANALYZE CONFIGURATION WITH Current_Config SUMMARIZING USING Count
WHERE (Num-Columns=2) AND (Is-Clustered=FALSE)

Automated Selection of
Materialized Views and Indexes

[Agrawal Shaudhuri Narasayya: VLDB 2000][Agrawal, Shaudhuri, Narasayya: VLDB 2000]
Candidate selection identifies relevant indexes,
materialized views and indexes on
materialized views potentially useful
If there are m selection conditions in the
query on a table subset T materialized views

42

query on a table-subset T, materialized views
containing any subset of these selection
conditions are syntactically relevant

22

Automated Selection of
Materialized Views and Indexes

Selecting one candidate materialized view perSelecting one candidate materialized view per
query exactly matching each query does not
work

In some Commercial DBMS, Nested subquery
cannot appear in view definitions

When storage is constrained, ignoring
commonality across queries can result in sub-

ti l lit

43

optimal quality
If the materialized views lead to a small
reduction in cost for the entire workload, we
can prune

Candidate Materialized Views
Selection Steps
1 Select a smaller set of interesting table-1. Select a smaller set of interesting table

subsets
2. From these table-subsets,

Generate a set of materialized views for each
query in the workload
Select a best configuration for that query

S i f h i

44

3. Starting from these views,
Generate additional set of merged views such
that the merged view can service multiple
queries in the workload

23

Finding Interesting Table-Subsets
TS-Cost(T) = total cost of all queries in the workloadTS Cost(T) total cost of all queries in the workload
where table-subset T occurs
TS-Weight(T) = Σ Cost(Oi)*(sum of sizes of tables in
T)/(sum of sizes of all tables referenced in Oi)
TS-Cost metric has monotonic.

i.e. for tables T1 and T2, if T1 is a subset of T2, TS-Cost(T1) ≥
TS-Cost(T2)
Efficient algorithm similar to frequent itemset mining can be

d

45

used
If TS-Weight(T) ≥ c, then TS-Cost(T) ≥ c

We prune table-subsets using TS-Cost metric first
Next prune the table-subsets retained with TS-Weight

Pruning Candidate Materialized
Views

If a materialized view is not part of theIf a materialized view is not part of the
best solution for even a single query in
the workload, then it is unlikely to be
part of the best solution for the entire
workload

46

Syntactically relevant materialized views
for a query Qi on all interesting table-
subsets occurring in Qi

24

View Merging
Use a sequence of pair-wise mergesUse a sequence of pair wise merges

Determine the criteria governing when and how a
given pair of views is merged
Enumerate the space of possible merged views

Similar to index merging
When we merge a pair of views,

All queries that can be answered using either of

47

q g
the parent views should be answerable using the
merged views
Cost of answering these queries using the merged
view should not be significantly higher than the
cost of answering the queries without the merged
views

Integrating Vertical and
Horizontal Partitioning

[Agrawal Narasayya Yang: SIGMOD 2004][Agrawal, Narasayya, Yang: SIGMOD 2004]
Horizontal and vertical partitioning are important
aspects of physical design
Like indexes and materialized views, Horizontal and
vertical partitioning can impact significantly the
performance of query workload
Horizontal partitioning allows access methods (e.g.

48

p g (g
tables, indexes, materialized views) to be partitioned
into disjoint sets of rows
Vertical partitioning allows a table to be partitioned
into disjoint set of columns

25

Motivation - Horizontal
Partitioning

Horizontal partitioning allows access methods (e.g.Horizontal partitioning allows access methods (e.g.
tables, indexes, materialized views) to be partitioned
into disjoint sets of rows
Range and hash partitioning
Today’s DBAs use horizontal partitioning extensively
to make database servers easier to manage

If the indexes and underlying table are partitioned identically
(i.e. aligned), database operations such as backup and
restore become much easier

49

restore become much easier
Thus, DBAs in today’s enterprise are faced with the
challenging task of determining the appropriate choice of
physical design consisting of partitioned tables, indexes and
materialized views

Complexity - Integrating Vertical
and Horizontal Partitioning

Need for an integrated approach to automating theNeed for an integrated approach to automating the
choice of physical design
With the inclusion of vertical and horizontal
partitioning, the space of physical design significantly
increases
With incorporating alignment, different queries may
lead to physical design with conflicting horizontal

titi i th t bl

50

partitioning on the same table
Indexes are considered as aligned if these are horizontally
partitioned in the same way as the underlying tables

26

A Motivating Example –
Integrated Approach
select l_returnflag, l_linestatus, sum(l_quantity), count(*)
from lineitem
where l_shipdate <= “1998/12/08”
Group by l_returnflag, l_linestatus
Order by l_returnflag, l_linestatus

Plan1- First select the best un-partitioned index and next horizontally partition
1. select the best un-partitioned index (I1) on columns (l_shipdate, l_returnflag,

l_linestatus, l_quantity)
2. Hash partition on (l_returnflag, l_linestatus)

51

Plan 2 – Integrated Approach
1. Select the best index (I2) on columns (l_shipdate, l_returnflag, l_linestatus, l_quantity)

that is also range partitioned on (l_shipdate)

Plan 2 is about 30% faster than Plan 1 – Both indexes and horizontal
partitioning can speed up the same operations in the query (grouping and
selections)

A Motivating Example –
Integrated Approach

Selection:Selection:
Consider a query with the WHERE clause of Age
< 30 AND Salary > 50K
If neither condition is very selective, but
conjunction is selective, an index on salary range
partitioned on the age column can improve the
performance

Join:

52

Join:
If two joining tables share identical partitioning,
the join can be much faster in multiprocessor
systems

27

Architecture of Tool
Workload

Column-Group Restriction

Candidate Selection SQL Server

53

Merging

Recommendation

Enumeration

Architecture of Tool
Column-Group Restrictionp

Eliminates from further consideration a large number of column-
groups at beast having a marginal impact

Candidate Selection
Selects for each query in the workload a set of good configurations
for that query
A physical design that is part of the selected configurations of at
least one query in the workload is referred to as a candidate

Merging
Consider new physical design which can benefit multiple queries

54

Consider new physical design, which can benefit multiple queries,
based on candidate chosen in the Candidate Selection step

Enumeration
Takes as input the candidates and produces the final solution
Use Greedy(m,k)

28

An Example for Determination of
Interesting Column-Group

Define CG-Cost(g) as the fraction of the cost of all (g)
queries in the workload where column-group g is
referenced
A column-group g is interesting if CG-group(g) >= f
(minimum threshold)
CG-Cost is monotonic

For column-group g1 and g2, if g1 is a subset of g2, CG-Cost(g1)

55

For column group g1 and g2, if g1 is a subset of g2, CG Cost(g1)
≥CG-Cost(g2)
We can use pruning used in Apriori algorithms for frequent
itemset mining

An Example for Determination of
Interesting Column-Group

Q Q Q Q Q Q Q Q Q QQ1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A 1 1 1 1 1 1 1 1 1 1
B 1 1 1
C 1 1 1 1 1 1 1 1 1
D 1

56

Define CG-Cost(g) as the fraction of the cost of all queries in the
workload where column-group g is referenced
CG-Cost({A}) = 1.0

29

Effectiveness of a Column-Group
for vertical Partitioning

VP-Confidence of a column-group g is defined asVP Confidence of a column group g is defined as

where
c is a column belonging to column-group g,

∑

∑

∈ ∈

∈

gc gc

gc

cOccurrncecwidth

cOccurencecwidth

)()(

)()(

U

57

width(c) is the average width in bytes of c
Occurrence(c) is the set of queries in the workload where
c is referenced

VPC({A,B}) = 13/20 = 0.65

References (General Background)
Surajit Chaudhuri, Benoît Dageville, and Guy M. Lohman. Self-
Managing Technology in Database Management Systems.Managing Technology in Database Management Systems.
Tutorial presented at VLDB 2004.
Gerhard Weikum, Axel Mönkeberg, Christof Hasse, and Peter
Zabback. Self-tuning Database Technology and Information
Services: from Wishful Thinking to Viable Engineering. VLDB
2002.
Jeffrey O. Kephart and David M. Chess. The Vision of
Autonomic Computing. IEEE Computer 36(1): 41-50 (2003).
Paul Horn. Autonomic Computing: IBM's Perspective on the
State of Information Technology IBM White paper

58

State of Information Technology. IBM White paper.
Surajit Chaudhuri (editor). Special Issue on Self-Tuning
Databases and Application Tuning. IEEE Data Engineering
Bulletin 22(2) June 1999.

30

References (MS SQL SERVER)
Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-Driven Index Selection Tool for
Microsoft SQL Server. VLDB 1997.
S jit Ch dh i dVi k R N A t Ad i 'Wh t if' I d A l i UtilitSurajit Chaudhuri, andVivek R. Narasayya. AutoAdmin 'What-if' Index Analysis Utility.
SIGMOD 1998.
Surajit Chaudhuri and Vivek R. Narasayya. Index Merging. ICDE 1999.
Surajit Chaudhuri, Mayur Datar, and Vivek R. Narasayya. Index Selection for Databases: A
Hardness Study and a Principled Heuristic Solution. IEEE TKDE 16(11): 1313-1323 (2004).
Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated Selection of
Materialized Views and Indexes in SQL Databases. VLDB 2000.
Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. Integrating Vertical and Horizontal
Partitioning Into Automated Physical Database Design. SIGMOD 2004.
Nicolas Bruno and Surajit Chaudhuri. Automatic Physical Database Tuning: A Relaxation-
based Approach. SIGMOD 2005.
Mariano Consens, Denilson Barbosa, Adrian Teisanu, and Laurent Mignet. Goals and
B h k f A t i C fi ti R d SIGMOD 2005

59

Benchmarks for Autonomic Configuration Recommenders. SIGMOD 2005.
Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe, Vivek R.
Narasayya, and Manoj Syamala. Database Tuning Advisor for Microsoft SQL Server 2005.
VLDB 2004.
Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek R. Narasayya. Compressing SQL
Workloads. SIGMOD 2002.

