
1

Chapter 12: Indexing and HashingChapter 12: Indexing and Hashing

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 12: Indexing and HashingChapter 12: Indexing and Hashing

Basic Concepts
Ordered Indices
B+-Tree Index Files
B-Tree Index Files
Static Hashing
Dynamic Hashing
Comparison of Ordered Indexing and Hashing
Index Definition in SQL
Multiple-Key Access

©Silberschatz, Korth and Sudarshan12.2Database System Concepts - 5th Edition, Oct 4, 2006

2

Basic ConceptsBasic Concepts

Indexing mechanisms used to speed up access to desired data.
E.g., author catalog in library

Search Key - attribute to set of attributes used to look up records in a
filfile.
An index file consists of records (called index entries) of the form

Index files are typically much smaller than the original file
Two basic kinds of indices:

Ordered indices: search keys are stored in sorted order

search-key pointer

©Silberschatz, Korth and Sudarshan12.3Database System Concepts - 5th Edition, Oct 4, 2006

Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

Index Evaluation MetricsIndex Evaluation Metrics

Access types supported efficiently. E.g.,
records with a specified value in the attribute
or records with an attribute value falling in a specified range of

lvalues.
Access time
Insertion time
Deletion time
Space overhead

©Silberschatz, Korth and Sudarshan12.4Database System Concepts - 5th Edition, Oct 4, 2006

3

Ordered IndicesOrdered Indices

In an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.
Primary index: in a sequentially ordered file the index whose searchPrimary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.

Also called clustering index
The search key of a primary index is usually but not necessarily the
primary key.

Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index

©Silberschatz, Korth and Sudarshan12.5Database System Concepts - 5th Edition, Oct 4, 2006

non clustering index.
Index-sequential file: ordered sequential file with a primary index.

Dense Index FilesDense Index Files

Dense index — Index record appears for every search-key value in
the file.

©Silberschatz, Korth and Sudarshan12.6Database System Concepts - 5th Edition, Oct 4, 2006

4

Sparse Index FilesSparse Index Files

Sparse Index: contains index records for only some search-key
values.

Applicable when records are sequentially ordered on search-key
T l t d ith h k l KTo locate a record with search-key value K we:

Find index record with largest search-key value < K
Search file sequentially starting at the record to which the index
record points

©Silberschatz, Korth and Sudarshan12.7Database System Concepts - 5th Edition, Oct 4, 2006

Sparse Index Files (Cont.)Sparse Index Files (Cont.)

Compared to dense indices:
Less space and less maintenance overhead for insertions and
deletions.
G ll l th d i d f l ti dGenerally slower than dense index for locating records.

Good tradeoff: sparse index with an index entry for every block in file,
corresponding to least search-key value in the block.

©Silberschatz, Korth and Sudarshan12.8Database System Concepts - 5th Edition, Oct 4, 2006

5

Multilevel IndexMultilevel Index
If primary index does not fit in memory, access becomes
expensive.
Solution: treat primary index kept on disk as a sequential file
and construct a sparse index on it.

outer index – a sparse index of primary index
inner index – the primary index file

If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.
Indices at all levels must be updated on insertion or deletion
from the file.

©Silberschatz, Korth and Sudarshan12.9Database System Concepts - 5th Edition, Oct 4, 2006

Multilevel Index (Cont.)Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan12.10Database System Concepts - 5th Edition, Oct 4, 2006

6

Index Update: DeletionIndex Update: Deletion
If deleted record was the only record in the file with its particular search-
key value, the search-key is deleted from the index also.
Single-level index deletion:

Dense indices – deletion of search-key:similar to file record deletion.y
Sparse indices –

if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in
the file (in search-key order).
If the next search-key value already has an index entry, the entry
is deleted instead of being replaced.

©Silberschatz, Korth and Sudarshan12.11Database System Concepts - 5th Edition, Oct 4, 2006

Index Update: InsertionIndex Update: Insertion

Single-level index insertion:
Perform a lookup using the search-key value appearing in the
record to be inserted.
D i di if th h k l d t i thDense indices – if the search-key value does not appear in the
index, insert it.
Sparse indices – if index stores an entry for each block of the file,
no change needs to be made to the index unless a new block is
created.

If a new block is created, the first search-key value appearing
in the new block is inserted into the index.

Multilevel insertion (as well as deletion) algorithms are simple

©Silberschatz, Korth and Sudarshan12.12Database System Concepts - 5th Edition, Oct 4, 2006

Multilevel insertion (as well as deletion) algorithms are simple
extensions of the single-level algorithms

7

Secondary IndicesSecondary Indices

Frequently, one wants to find all the records whose values in a
certain field (which is not the search-key of the primary index) satisfy
some condition.

Example 1: In the account relation stored sequentially byExample 1: In the account relation stored sequentially by
account number, we may want to find all accounts in a particular
branch
Example 2: as above, but where we want to find all accounts
with a specified balance or range of balances

We can have a secondary index with an index record for each
search-key value

©Silberschatz, Korth and Sudarshan12.13Database System Concepts - 5th Edition, Oct 4, 2006

Secondary Indices ExampleSecondary Indices Example

©Silberschatz, Korth and Sudarshan12.14Database System Concepts - 5th Edition, Oct 4, 2006

Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.
Secondary indices have to be dense

Secondary index on balance field of account

8

Primary and Secondary IndicesPrimary and Secondary Indices

Indices offer substantial benefits when searching for records.
BUT: Updating indices imposes overhead on database modification --
when a file is modified, every index on the file must be updated,
S ti l i i i d i ffi i t b t ti lSequential scan using primary index is efficient, but a sequential scan
using a secondary index is expensive

Each record access may fetch a new block from disk
Block fetch requires about 5 to 10 milliseconds

versus about 100 nanoseconds for memory access

©Silberschatz, Korth and Sudarshan12.15Database System Concepts - 5th Edition, Oct 4, 2006

BB++--Tree Index FilesTree Index Files

Disadvantage of indexed-sequential files
performance degrades as file grows, since many overflow blocks

B+-tree indices are an alternative to indexed-sequential files.

performance degrades as file grows, since many overflow blocks
get created.
Periodic reorganization of entire file is required.

Advantage of B+-tree index files:
automatically reorganizes itself with small, local, changes, in the
face of insertions and deletions.
Reorganization of entire file is not required to maintain
performance.

©Silberschatz, Korth and Sudarshan12.16Database System Concepts - 5th Edition, Oct 4, 2006

(Minor) disadvantage of B+-trees:
extra insertion and deletion overhead, space overhead.

Advantages of B+-trees outweigh disadvantages
B+-trees are used extensively

9

BB++--Tree Index Files (Cont.)Tree Index Files (Cont.)

All paths from root to leaf are of the same length
Each node that is not a root or a leaf has between ⎡n/2⎤ and n

A B+-tree is a rooted tree satisfying the following properties:

children.
A leaf node has between ⎡(n–1)/2⎤ and n–1 values
Special cases:

If the root is not a leaf, it has at least 2 children.
If the root is a leaf (that is, there are no other nodes in the
tree), it can have between 0 and (n–1) values.

©Silberschatz, Korth and Sudarshan12.17Database System Concepts - 5th Edition, Oct 4, 2006

BB++--Tree Node StructureTree Node Structure

Typical node

Ki are the search-key values
Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

The search-keys in a node are ordered
K1 < K2 < K3 < . . . < Kn–1

©Silberschatz, Korth and Sudarshan12.18Database System Concepts - 5th Edition, Oct 4, 2006

10

Leaf Nodes in BLeaf Nodes in B++--TreesTrees

For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with search-
key value Ki, or to a bucket of pointers to file records, each record
ha ing search ke al e K Onl need b cket str ct re if search ke

Properties of a leaf node:

having search-key value Ki. Only need bucket structure if search-key
does not form a primary key.
If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than Lj’s
search-key values
Pn points to next leaf node in search-key order

©Silberschatz, Korth and Sudarshan12.19Database System Concepts - 5th Edition, Oct 4, 2006

NonNon--Leaf Nodes in BLeaf Nodes in B++--TreesTrees

Non leaf nodes form a multi-level sparse index on the leaf nodes. For
a non-leaf node with m pointers:

All the search-keys in the subtree to which P1 points are less than
K1K1

For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than Ki

All the search-keys in the subtree to which Pn points have values
greater than or equal to Kn–1

©Silberschatz, Korth and Sudarshan12.20Database System Concepts - 5th Edition, Oct 4, 2006

11

Example of a BExample of a B++--treetree

B+ tree for account file (n = 3)

©Silberschatz, Korth and Sudarshan12.21Database System Concepts - 5th Edition, Oct 4, 2006

B+-tree for account file (n = 3)

Example of BExample of B++--treetree

Leaf nodes must have between 2 and 4 values
(⎡(n–1)/2⎤ and n –1, with n = 5).

B+-tree for account file (n = 5)

©Silberschatz, Korth and Sudarshan12.22Database System Concepts - 5th Edition, Oct 4, 2006

(() ,)
Non-leaf nodes other than root must have between 3 and 5
children (⎡(n/2⎤ and n with n =5).
Root must have at least 2 children.

12

Observations about BObservations about B++--treestrees

Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” close.
The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
Th B+ t t i l ti l ll b f l lThe B+-tree contains a relatively small number of levels

Level below root has at least 2* ⎡n/2⎤ values
Next level has at least 2* ⎡n/2⎤ * ⎡n/2⎤ values
.. etc.

If there are K search-key values in the file, the tree height is no
more than ⎡ log⎡n/2⎤(K)⎤
thus searches can be conducted efficiently.

©Silberschatz, Korth and Sudarshan12.23Database System Concepts - 5th Edition, Oct 4, 2006

y
Insertions and deletions to the main file can be handled efficiently, as
the index can be restructured in logarithmic time (as we shall see).

Queries on BQueries on B++--TreesTrees

Find all records with a search-key value of k.
1. N=root
2. Repeat

1. Examine N for the smallest search-key value > k.
2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k ≥ Kn–1. Set N = Pn

Until N is a leaf node
3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.
4. Else no record with search-key value k exists.

©Silberschatz, Korth and Sudarshan12.24Database System Concepts - 5th Edition, Oct 4, 2006

13

Queries on BQueries on B++--Trees (Cont.)Trees (Cont.)

If there are K search-key values in the file, the height of the tree is no
more than ⎡log⎡n/2⎤(K)⎤.
A node is generally the same size as a disk block, typically 4
kilobyteskilobytes

and n is typically around 100 (40 bytes per index entry).
With 1 million search key values and n = 100

at most log50(1,000,000) = 4 nodes are accessed in a lookup.
Contrast this with a balanced binary tree with 1 million search key
values — around 20 nodes are accessed in a lookup

above difference is significant since every node access may need
di k I/O ti d 20 illi d

©Silberschatz, Korth and Sudarshan12.25Database System Concepts - 5th Edition, Oct 4, 2006

a disk I/O, costing around 20 milliseconds

Updates on BUpdates on B++--Trees: InsertionTrees: Insertion

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node

1. Add record to the file
2. If necessary add a pointer to the bucket.

3. If the search-key value is not present, then
1. add the record to the main file (and create a bucket if

necessary)
2. If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node

©Silberschatz, Korth and Sudarshan12.26Database System Concepts - 5th Edition, Oct 4, 2006

3. Otherwise, split the node (along with the new (key-value,
pointer) entry) as discussed in the next slide.

14

Updates on BUpdates on B++--Trees: Insertion (Cont.)Trees: Insertion (Cont.)

Splitting a leaf node:
take the n (search-key value, pointer) pairs (including the one
being inserted) in sorted order. Place the first ⎡n/2⎤ in the original
node and the rest in a new nodenode, and the rest in a new node.
let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.
If the parent is full, split it and propagate the split further up.

Splitting of nodes proceeds upwards till a node that is not full is found.
In the worst case the root node may be split increasing the height
of the tree by 1.

©Silberschatz, Korth and Sudarshan12.27Database System Concepts - 5th Edition, Oct 4, 2006

Result of splitting node containing Brighton and Downtown on inserting Clearview
Next step: insert entry with (Downtown,pointer-to-new-node) into parent

Updates on BUpdates on B++--Trees: Insertion (Cont.)Trees: Insertion (Cont.)

©Silberschatz, Korth and Sudarshan12.28Database System Concepts - 5th Edition, Oct 4, 2006

B+-Tree before and after insertion of “Clearview”

15

Insertion in BInsertion in B++--Trees (Cont.)Trees (Cont.)

Splitting a non-leaf node: when inserting (k,p) into an already full
internal node N

Copy N to an in-memory area M with space for n+1 pointers and n
keyskeys
Insert (k,p) into M
Copy P1,K1, …, K ⎡n/2⎤-1,P ⎡n/2⎤ from M back into node N
Copy P⎡n/2⎤+1,K ⎡n/2⎤+1,…,Kn,Pn+1 from M into newly allocated node
N’
Insert (K ⎡n/2⎤,N’) into parent N

Read pseudocode in book!

©Silberschatz, Korth and Sudarshan12.29Database System Concepts - 5th Edition, Oct 4, 2006

RedwoodDowntown Mianus Perryridge Downtown

Mianus

Updates on BUpdates on B++--Trees: DeletionTrees: Deletion

Find the record to be deleted, and remove it from the main file and
from the bucket (if present)
Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become emptybucket or if the bucket has become empty
If the node has too few entries due to the removal, and the entries in
the node and a sibling fit into a single node, then merge siblings:

Insert all the search-key values in the two nodes into a single node
(the one on the left), and delete the other node.
Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted
node, from its parent, recursively using the above procedure.

©Silberschatz, Korth and Sudarshan12.30Database System Concepts - 5th Edition, Oct 4, 2006

16

Updates on BUpdates on B++--Trees: DeletionTrees: Deletion

Otherwise, if the node has too few entries due to the removal, but the
entries in the node and a sibling do not fit into a single node, then
redistribute pointers:

Redistribute the pointers between the node and a sibling such thatRedistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.
Update the corresponding search-key value in the parent of the
node.

The node deletions may cascade upwards till a node which has ⎡n/2⎤
or more pointers is found.
If the root node has only one pointer after deletion, it is deleted and
the sole child becomes the root.

©Silberschatz, Korth and Sudarshan12.31Database System Concepts - 5th Edition, Oct 4, 2006

Examples of BExamples of B++--Tree DeletionTree Deletion

©Silberschatz, Korth and Sudarshan12.32Database System Concepts - 5th Edition, Oct 4, 2006

Deleting “Downtown” causes merging of under-full leaves
leaf node can become empty only for n=3!

Before and after deleting “Downtown”

17

Examples of BExamples of B++--Tree Deletion (Cont.)Tree Deletion (Cont.)

Deletion of “Perryridge” from result of previous

©Silberschatz, Korth and Sudarshan12.33Database System Concepts - 5th Edition, Oct 4, 2006

Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.
As a result “Perryridge” node’s parent became underfull, and was merged with its sibling

Value separating two nodes (at parent) moves into merged node
Entry deleted from parent

Root node then has only one child, and is deleted

Deletion of “Perryridge” from result of previous
example

Example of BExample of B++--tree Deletion (Cont.)tree Deletion (Cont.)

©Silberschatz, Korth and Sudarshan12.34Database System Concepts - 5th Edition, Oct 4, 2006

Parent of leaf containing Perryridge became underfull, and borrowed a
pointer from its left sibling
Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier example

18

BB++--Tree File OrganizationTree File Organization

Index file degradation problem is solved by using B+-Tree indices.
Data file degradation problem is solved by using B+-Tree File
Organization.
Th l f d i B+ t fil i ti t d i t d fThe leaf nodes in a B+-tree file organization store records, instead of
pointers.
Leaf nodes are still required to be half full

Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a nonleaf node.

Insertion and deletion are handled in the same way as insertion and
deletion of entries in a B+-tree index

©Silberschatz, Korth and Sudarshan12.35Database System Concepts - 5th Edition, Oct 4, 2006

deletion of entries in a B -tree index.

BB++--Tree File Organization (Cont.)Tree File Organization (Cont.)

Good space utilization important since records use more space than

Example of B+-tree File Organization

©Silberschatz, Korth and Sudarshan12.36Database System Concepts - 5th Edition, Oct 4, 2006

Good space utilization important since records use more space than
pointers.
To improve space utilization, involve more sibling nodes in redistribution
during splits and merges

Involving 2 siblings in redistribution (to avoid split / merge where
possible) results in each node having at least entries⎣ ⎦3/2n

19

Indexing StringsIndexing Strings

Variable length strings as keys
Variable fanout
Use space utilization as criterion for splitting, not number of

i tpointers
Prefix compression

Key values at internal nodes can be prefixes of full key
Keep enough characters to distinguish entries in the subtrees
separated by the key value
– E.g. “Silas” and “Silberschatz” can be separated by “Silb”

Keys in leaf node can be compressed by sharing common prefixes

©Silberschatz, Korth and Sudarshan12.37Database System Concepts - 5th Edition, Oct 4, 2006

y p y g p

BB--Tree Index FilesTree Index Files

Similar to B+-tree, but B-tree allows search-key values to
appear only once; eliminates redundant storage of search
keys.
Search keys in nonleaf nodes appear nowhere else in the B-Search keys in nonleaf nodes appear nowhere else in the B
tree; an additional pointer field for each search key in a
nonleaf node must be included.
Generalized B-tree leaf node

©Silberschatz, Korth and Sudarshan12.38Database System Concepts - 5th Edition, Oct 4, 2006

Nonleaf node – pointers Bi are the bucket or file record
pointers.

20

BB--Tree Index File ExampleTree Index File Example

B-tree (above) and B+-tree (below) on same data

©Silberschatz, Korth and Sudarshan12.39Database System Concepts - 5th Edition, Oct 4, 2006

BB--Tree Index Files (Cont.)Tree Index Files (Cont.)

Advantages of B-Tree indices:
May use less tree nodes than a corresponding B+-Tree.
Sometimes possible to find search-key value before reaching leaf

dnode.
Disadvantages of B-Tree indices:

Only small fraction of all search-key values are found early
Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees
typically have greater depth than corresponding B+-Tree
Insertion and deletion more complicated than in B+-Trees
Implementation is harder than B+-Trees.

©Silberschatz, Korth and Sudarshan12.40Database System Concepts - 5th Edition, Oct 4, 2006

p
Typically, advantages of B-Trees do not out weigh disadvantages.

21

MultipleMultiple--Key AccessKey Access

Use multiple indices for certain types of queries.
Example:
select account_number
from acco ntfrom account
where branch_name = “Perryridge” and balance = 1000

Possible strategies for processing query using indices on single
attributes:
1. Use index on branch_name to find accounts with branch name

Perryridge; test balance = 1000
2. Use index on balance to find accounts with balances of $1000;

test branch_name = “Perryridge”.

©Silberschatz, Korth and Sudarshan12.41Database System Concepts - 5th Edition, Oct 4, 2006

3. Use branch_name index to find pointers to all records pertaining to
the Perryridge branch. Similarly use index on balance. Take
intersection of both sets of pointers obtained.

Indices on Multiple KeysIndices on Multiple Keys

Composite search keys are search keys containing more than one
attribute

E.g. (branch_name, balance)
L i hi d i () < (b b) if ithLexicographic ordering: (a1, a2) < (b1, b2) if either

a1 < b1, or
a1=b1 and a2 < b2

©Silberschatz, Korth and Sudarshan12.42Database System Concepts - 5th Edition, Oct 4, 2006

22

Indices on Multiple AttributesIndices on Multiple Attributes

With the where clause

Suppose we have an index on combined search-key
(branch_name, balance).

where branch_name = “Perryridge” and balance = 1000
the index on (branch_name, balance) can be used to fetch only
records that satisfy both conditions.

Using separate indices in less efficient — we may fetch many
records (or pointers) that satisfy only one of the conditions.

Can also efficiently handle
where branch_name = “Perryridge” and balance < 1000

©Silberschatz, Korth and Sudarshan12.43Database System Concepts - 5th Edition, Oct 4, 2006

But cannot efficiently handle
where branch_name < “Perryridge” and balance = 1000

May fetch many records that satisfy the first but not the second
condition

NonNon--Unique Search KeysUnique Search Keys

Alternatives:
Buckets on separate block (bad idea)
List of tuple pointers with each key

Extra code to handle long lists
Deletion of a tuple can be expensive if there are many
duplicates on search key (why?)
Low space overhead, no extra cost for queries

Make search key unique by adding a record-identifier
Extra storage overhead for keys
Simpler code for insertion/deletion

©Silberschatz, Korth and Sudarshan12.44Database System Concepts - 5th Edition, Oct 4, 2006

Simpler code for insertion/deletion
Widely used

23

Other Issues in IndexingOther Issues in Indexing

Covering indices
Add extra attributes to index so (some) queries can avoid fetching
the actual records

Particularly useful for secondary indicesParticularly useful for secondary indices
– Why?

Can store extra attributes only at leaf
Record relocation and secondary indices

If a record moves, all secondary indices that store record pointers
have to be updated
Node splits in B+-tree file organizations become very expensive
Solution: use primary-index search key instead of record pointer in

©Silberschatz, Korth and Sudarshan12.45Database System Concepts - 5th Edition, Oct 4, 2006

Solution: use primary index search key instead of record pointer in
secondary index

Extra traversal of primary index to locate record
– Higher cost for queries, but node splits are cheap

Add record-id if primary-index search key is non-unique

HashingHashing

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

24

Static HashingStatic Hashing

A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).
In a hash file organization we obtain the bucket of a record directly
f it h k l i h h f tifrom its search-key value using a hash function.
Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B.
Hash function is used to locate records for access, insertion as well
as deletion.
Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record

©Silberschatz, Korth and Sudarshan12.47Database System Concepts - 5th Edition, Oct 4, 2006

locate a record.

Example of Hash File OrganizationExample of Hash File Organization

Hash file organization of account file, using branch_name as key
(See figure in next slide.)

There are 10 buckets,
The binary representation of the ith character is assumed to be the
integer i.
The hash function returns the sum of the binary representations of
the characters modulo 10

E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

©Silberschatz, Korth and Sudarshan12.48Database System Concepts - 5th Edition, Oct 4, 2006

25

Example of Hash File Organization Example of Hash File Organization

Hash file organization
of account file, using
branch_name as key
(see previous slide for(see previous slide for
details).

©Silberschatz, Korth and Sudarshan12.49Database System Concepts - 5th Edition, Oct 4, 2006

Hash FunctionsHash Functions

Worst hash function maps all search-key values to the same bucket;
this makes access time proportional to the number of search-key
values in the file.
An ideal hash function is uniform i e each bucket is assigned theAn ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.
Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of
search-key values in the file.
Typical hash functions perform computation on the internal binary
representation of the search-key.

For example, for a string search-key, the binary representations of

©Silberschatz, Korth and Sudarshan12.50Database System Concepts - 5th Edition, Oct 4, 2006

p g y y p
all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

26

Handling of Bucket OverflowsHandling of Bucket Overflows

Bucket overflow can occur because of
Insufficient buckets
Skew in distribution of records. This can occur due to two
reasons:

multiple records have same search-key value
chosen hash function produces non-uniform distribution of key
values

Although the probability of bucket overflow can be reduced, it cannot
be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan12.51Database System Concepts - 5th Edition, Oct 4, 2006

Handling of Bucket Overflows (Cont.)Handling of Bucket Overflows (Cont.)

Overflow chaining – the overflow buckets of a given bucket are chained
together in a linked list.
Above scheme is called closed hashing.

A lt ti ll d h hi hi h d t flAn alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.

©Silberschatz, Korth and Sudarshan12.52Database System Concepts - 5th Edition, Oct 4, 2006

27

Hash IndicesHash Indices

Hashing can be used not only for file organization, but also for index-
structure creation.
A hash index organizes the search keys, with their associated record
pointers into a hash file structurepointers, into a hash file structure.
Strictly speaking, hash indices are always secondary indices

if the file itself is organized using hashing, a separate primary
hash index on it using the same search-key is unnecessary.
However, we use the term hash index to refer to both secondary
index structures and hash organized files.

©Silberschatz, Korth and Sudarshan12.53Database System Concepts - 5th Edition, Oct 4, 2006

Example of Hash IndexExample of Hash Index

©Silberschatz, Korth and Sudarshan12.54Database System Concepts - 5th Edition, Oct 4, 2006

28

Deficiencies of Static HashingDeficiencies of Static Hashing

In static hashing, function h maps search-key values to a fixed set of B
of bucket addresses. Databases grow or shrink with time.

If initial number of buckets is too small, and file grows, performance
will degrade due to too much overflowswill degrade due to too much overflows.
If space is allocated for anticipated growth, a significant amount of
space will be wasted initially (and buckets will be underfull).
If database shrinks, again space will be wasted.

One solution: periodic re-organization of the file with a new hash
function

Expensive, disrupts normal operations
B tt l ti ll th b f b k t t b difi d d i ll

©Silberschatz, Korth and Sudarshan12.55Database System Concepts - 5th Edition, Oct 4, 2006

Better solution: allow the number of buckets to be modified dynamically.

Dynamic HashingDynamic Hashing

Good for database that grows and shrinks in size
Allows the hash function to be modified dynamically
Extendable hashing – one form of dynamic hashing

Hash f nction generates al es o er a large range t picall b bitHash function generates values over a large range — typically b-bit
integers, with b = 32.
At any time use only a prefix of the hash function to index into a
table of bucket addresses.
Let the length of the prefix be i bits, 0 ≤ i ≤ 32.

Bucket address table size = 2i. Initially i = 0
Value of i grows and shrinks as the size of the database grows
and shrinks

©Silberschatz, Korth and Sudarshan12.56Database System Concepts - 5th Edition, Oct 4, 2006

and shrinks.
Multiple entries in the bucket address table may point to a bucket
(why?)

Thus, actual number of buckets is < 2i

The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

29

General Extendable Hash Structure General Extendable Hash Structure

©Silberschatz, Korth and Sudarshan12.57Database System Concepts - 5th Edition, Oct 4, 2006

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next
slide for details)

Use of Extendable Hash StructureUse of Extendable Hash Structure

Each bucket j stores a value ij
All the entries that point to the same bucket have the same values on
the first ij bits.

T l t th b k t t i i h k KTo locate the bucket containing search-key Kj:
1. Compute h(Kj) = X
2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket
To insert a record with search-key value Kj

follow same procedure as look-up and locate the bucket, say j.
If there is room in the bucket j insert record in the bucket.

©Silberschatz, Korth and Sudarshan12.58Database System Concepts - 5th Edition, Oct 4, 2006

j
Else the bucket must be split and insertion re-attempted (next slide.)

Overflow buckets used instead in some cases (will see shortly)

30

Insertion in Extendable Hash Structure (Cont) Insertion in Extendable Hash Structure (Cont)

If i > ij (more than one pointer to bucket j)
allocate a new bucket z, and set ij = iz = (ij + 1)
Update the second half of the bucket address table entries originally

To split a bucket j when inserting record with search-key value Kj:

Update the second half of the bucket address table entries originally
pointing to j, to point to z
remove each record in bucket j and reinsert (in j or z)
recompute new bucket for Kj and insert record in the bucket (further
splitting is required if the bucket is still full)

If i = ij (only one pointer to bucket j)
If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

©Silberschatz, Korth and Sudarshan12.59Database System Concepts - 5th Edition, Oct 4, 2006

Else
increment i and double the size of the bucket address table.
replace each entry in the table by two entries that point to the
same bucket.
recompute new bucket address table entry for Kj
Now i > ij so use the first case above.

Deletion in Extendable Hash StructureDeletion in Extendable Hash Structure
To delete a key value,

locate it in its bucket and remove it.
The bucket itself can be removed if it becomes empty (with

i t d t t th b k t dd t bl)appropriate updates to the bucket address table).
Coalescing of buckets can be done (can coalesce only with a
“buddy” bucket having same value of ij and same ij –1 prefix, if it is
present)
Decreasing bucket address table size is also possible

Note: decreasing bucket address table size is an expensive
operation and should be done only if number of buckets becomes
much smaller than the size of the table

©Silberschatz, Korth and Sudarshan12.60Database System Concepts - 5th Edition, Oct 4, 2006

much smaller than the size of the table

31

Use of Extendable Hash Structure: Use of Extendable Hash Structure:
Example Example

©Silberschatz, Korth and Sudarshan12.61Database System Concepts - 5th Edition, Oct 4, 2006

Initial Hash structure, bucket size = 2

Example (Cont.)Example (Cont.)

Hash structure after insertion of one Brighton and two Downtown
records

©Silberschatz, Korth and Sudarshan12.62Database System Concepts - 5th Edition, Oct 4, 2006

32

Example (Cont.)Example (Cont.)

Hash structure after insertion of Mianus record

©Silberschatz, Korth and Sudarshan12.63Database System Concepts - 5th Edition, Oct 4, 2006

Example (Cont.)Example (Cont.)

©Silberschatz, Korth and Sudarshan12.64Database System Concepts - 5th Edition, Oct 4, 2006

Hash structure after insertion of three Perryridge records

33

Example (Cont.)Example (Cont.)

Hash structure after insertion of Redwood and Round Hill records

©Silberschatz, Korth and Sudarshan12.65Database System Concepts - 5th Edition, Oct 4, 2006

Extendable Hashing vs. Other SchemesExtendable Hashing vs. Other Schemes

Benefits of extendable hashing:
Hash performance does not degrade with growth of file
Minimal space overhead

Disad antages of e tendable hashingDisadvantages of extendable hashing
Extra level of indirection to find desired record
Bucket address table may itself become very big (larger than
memory)

Cannot allocate very large contiguous areas on disk either
Solution: B+-tree structure to locate desired record in bucket
address table

Changing size of bucket address table is an expensive operation

©Silberschatz, Korth and Sudarshan12.66Database System Concepts - 5th Edition, Oct 4, 2006

Changing size of bucket address table is an expensive operation
Linear hashing is an alternative mechanism

Allows incremental growth of its directory (equivalent to bucket
address table)
At the cost of more bucket overflows

34

Comparison of Ordered Indexing and HashingComparison of Ordered Indexing and Hashing

Cost of periodic re-organization
Relative frequency of insertions and deletions
Is it desirable to optimize average access time at the expense of

t ti ?worst-case access time?
Expected type of queries:

Hashing is generally better at retrieving records having a specified
value of the key.
If range queries are common, ordered indices are to be preferred

In practice:
PostgreSQL supports hash indices, but discourages use due to

©Silberschatz, Korth and Sudarshan12.67Database System Concepts - 5th Edition, Oct 4, 2006

g pp , g
poor performance
Oracle supports static hash organization, but not hash indices
SQLServer supports only B+-trees

Bitmap IndicesBitmap Indices

Bitmap indices are a special type of index designed for efficient
querying on multiple keys
Records in a relation are assumed to be numbered sequentially from,
say 0say, 0

Given a number n it must be easy to retrieve record n
Particularly easy if records are of fixed size

Applicable on attributes that take on a relatively small number of
distinct values

E.g. gender, country, state, …
E.g. income-level (income broken up into a small number of levels

h 0 9999 10000 19999 20000 50000 50000 i fi it)

©Silberschatz, Korth and Sudarshan12.68Database System Concepts - 5th Edition, Oct 4, 2006

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)
A bitmap is simply an array of bits

35

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

In its simplest form a bitmap index on an attribute has a bitmap for
each value of the attribute

Bitmap has as many bits as records
I bit f l th bit f d i 1 if th d h thIn a bitmap for value v, the bit for a record is 1 if the record has the
value v for the attribute, and is 0 otherwise

©Silberschatz, Korth and Sudarshan12.69Database System Concepts - 5th Edition, Oct 4, 2006

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

Bitmap indices are useful for queries on multiple attributes
not particularly useful for single attribute queries

Queries are answered using bitmap operations
Intersection (and)
Union (or)
Complementation (not)

Each operation takes two bitmaps of the same size and applies the
operation on corresponding bits to get the result bitmap

E.g. 100110 AND 110011 = 100010
100110 OR 110011 = 110111

©Silberschatz, Korth and Sudarshan12.70Database System Concepts - 5th Edition, Oct 4, 2006

100110 OR 110011 = 110111
NOT 100110 = 011001

Males with income level L1: 10010 AND 10100 = 10000
Can then retrieve required tuples.
Counting number of matching tuples is even faster

36

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

Bitmap indices generally very small compared with relation size
E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space
used by relation.

If b f di ti t tt ib t l i 8 bit i l 1% fIf number of distinct attribute values is 8, bitmap is only 1% of
relation size

Deletion needs to be handled properly
Existence bitmap to note if there is a valid record at a record location
Needed for complementation

not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
Should keep bitmaps for all values, even null value

©Silberschatz, Korth and Sudarshan12.71Database System Concepts - 5th Edition, Oct 4, 2006

p p ,
To correctly handle SQL null semantics for NOT(A=v):

intersect above result with (NOT bitmap-A-Null)

Efficient Implementation of Bitmap OperationsEfficient Implementation of Bitmap Operations

Bitmaps are packed into words; a single word and (a basic CPU
instruction) computes and of 32 or 64 bits at once

E.g. 1-million-bit maps can be and-ed with just 31,250 instruction
C ti b f 1 b d f t b t i kCounting number of 1s can be done fast by a trick:

Use each byte to index into a precomputed array of 256 elements
each storing the count of 1s in the binary representation

Can use pairs of bytes to speed up further at a higher memory
cost

Add up the retrieved counts
Bitmaps can be used instead of Tuple-ID lists at leaf levels of
B+ t f l th t h l b f t hi d

©Silberschatz, Korth and Sudarshan12.72Database System Concepts - 5th Edition, Oct 4, 2006

B+-trees, for values that have a large number of matching records
Worthwhile if > 1/64 of the records have that value, assuming a
tuple-id is 64 bits
Above technique merges benefits of bitmap and B+-tree indices

37

Index Definition in SQLIndex Definition in SQL

Create an index
create index <index-name> on <relation-name>

(<attribute-list>)
E t i d b i d b h(b h)E.g.: create index b-index on branch(branch_name)

Use create unique index to indirectly specify and enforce the
condition that the search key is a candidate key is a candidate key.

Not really required if SQL unique integrity constraint is supported
To drop an index

drop index <index-name>
Most database systems allow specification of type of index, and

©Silberschatz, Korth and Sudarshan12.73Database System Concepts - 5th Edition, Oct 4, 2006

y p yp ,
clustering.

End of ChapterEnd of Chapter

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

38

Partitioned HashingPartitioned Hashing

Hash values are split into segments that depend on each
attribute of the search-key.

(A1, A2, . . . , An) for n attribute search-key
E l 2 f t h k b iExample: n = 2, for customer, search-key being
(customer-street, customer-city)

search-key value hash value
(Main, Harrison) 101 111
(Main, Brooklyn) 101 001
(Park, Palo Alto) 010 010
(Spring, Brooklyn) 001 001
(Alma, Palo Alto) 110 010

©Silberschatz, Korth and Sudarshan12.75Database System Concepts - 5th Edition, Oct 4, 2006

To answer equality query on single attribute, need to look up
multiple buckets. Similar in effect to grid files.

Sequential File For Sequential File For account account RecordsRecords

©Silberschatz, Korth and Sudarshan12.76Database System Concepts - 5th Edition, Oct 4, 2006

39

Sample Sample accountaccount FileFile

©Silberschatz, Korth and Sudarshan12.77Database System Concepts - 5th Edition, Oct 4, 2006

Figure 12.2Figure 12.2

©Silberschatz, Korth and Sudarshan12.78Database System Concepts - 5th Edition, Oct 4, 2006

40

Figure 12.14Figure 12.14

©Silberschatz, Korth and Sudarshan12.79Database System Concepts - 5th Edition, Oct 4, 2006

Figure 12.25Figure 12.25

©Silberschatz, Korth and Sudarshan12.80Database System Concepts - 5th Edition, Oct 4, 2006

41

Grid FilesGrid Files

Structure used to speed the processing of general multiple search-
key queries involving one or more comparison operators.
The grid file has a single grid array and one linear scale for each
search-key attribute The grid array has number of dimensionssearch key attribute. The grid array has number of dimensions
equal to number of search-key attributes.
Multiple cells of grid array can point to same bucket
To find the bucket for a search-key value, locate the row and column
of its cell using the linear scales and follow pointer

©Silberschatz, Korth and Sudarshan12.81Database System Concepts - 5th Edition, Oct 4, 2006

Example Grid File for Example Grid File for accountaccount

©Silberschatz, Korth and Sudarshan12.82Database System Concepts - 5th Edition, Oct 4, 2006

42

Queries on a Grid FileQueries on a Grid File

A grid file on two attributes A and B can handle queries of all following
forms with reasonable efficiency

(a1 ≤ A ≤ a2)
(b ≤ B ≤ b)(b1 ≤ B ≤ b2)
(a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2),.

E.g., to answer (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2), use linear scales to find
corresponding candidate grid array cells, and look up all the buckets
pointed to from those cells.

©Silberschatz, Korth and Sudarshan12.83Database System Concepts - 5th Edition, Oct 4, 2006

Grid Files (Cont.)Grid Files (Cont.)

During insertion, if a bucket becomes full, new bucket can be created
if more than one cell points to it.

Idea similar to extendable hashing, but on multiple dimensions
If l ll i t t it ith fl b k t t bIf only one cell points to it, either an overflow bucket must be
created or the grid size must be increased

Linear scales must be chosen to uniformly distribute records across
cells.

Otherwise there will be too many overflow buckets.
Periodic re-organization to increase grid size will help.

But reorganization can be very expensive.

©Silberschatz, Korth and Sudarshan12.84Database System Concepts - 5th Edition, Oct 4, 2006

Space overhead of grid array can be high.
R-trees (Chapter 23) are an alternative

