
Application to translational motion

Reading: Atkins, ch. 9 (7판 ch. 12)

Schrödinger equations for three basic types of motion: translation,  
vibration, rotation → “quantization”

1. Translational motion

(1) Free motion

(2) Particle in a box

(3) Tunnelling

Quantum Theory: techniques & applications



V = 0,  
HΨ = EΨ, H = (ħ2/2m)(d2Ψ/dx2)

General solutions, Ψk = Aeikx + Be-ikx, Ek = k2ħ2/2m
⇒ HkΨk = EkΨk

- all values of k, all values of the energy are permitted → the translational energy 
of a free particle is not quantized

- eikx is an eigenfunction of operator px with eigenvalue +kħ: motion toward +x
e-ikx is an eigenfunction of the operator px with eigenvalue –kħ: motion toward -x
⇒ ⎪Ψ⎪2 is independent of x

→ the position of the particle is completely unpredictable 
(uncertainty principle, x, px do not commute)

(1) Free motion 



- a particle of mass m is confined between two walls at x = 0 and x = L
- Infinite square wall: V(x) = 0 inside the box, infinity at the walls

e.g.,  a gas phase molecule in 1-D container
π-electrons in a linear conjugated hydrocarbon 

(2) Particle in a box in 1-D 





Boundary conditions
- physically impossible for the particle to be found with an infinite potential 
energy → the wavefunction must be zero (Ψ = 0) at x < 0, x > L

- wavefunction should be continuous
⇒Ψk(0) = 0, Ψk(L) = 0

x = 0 ⇒Ψk(0) = 0 = D = 0,  ∴D = 0
x = L ⇒Ψk(L) = C sin kL

if C = 0, Ψ = 0 for all x: no particle → the particle must be somewhere
⇒∴sin kL = 0
→ kL = nπ, n = 1,2,3…. (n ≠ 0 since if n = 0 →Ψ = 0 everywhere)

∴Ψn(x) = C sin (nπx/L),   n = 1, 2 …. 





- the properties of the solutions

(i) Energy is quantized  
En ∝ n2

→ only certain wavefunctions are acceptable



(ii) ψ vs. n

Ψ1(x) = (2/L)1/2 sin (πx/L)
Ψ2(x) = (2/L)1/2 sin (2πx/L)
……………

→ same amplitude (2/L)1/2, different wavelength

- n↑→ λ↓, Ek = p2/2m, p = h/λ, λ↓, p↑, Ek↑
- n↑→ λ↓ → Ek↑
- n↑→ number of nodes↑ ⇒ Ψn has n-1 nodes



(iii) linear momentum 

<px> = 

However, each wavefunction is a superposition of momentum eigenfunctions

Ψn = (2/L)1/2 sin (nπx/L) = 1/2i (2/L)1/2 (eikx – e-ikx) 

⇒ +kħ for half, -kħ for half
⇒ equal probability for opposite directions



(iv) Emin ≠ 0
cf) C.M. allow zero energy (stationary particle)

n ≠ 0, “zero-point energy”
E1 = h2/8mL2 ≠ 0

uncertainty principle: non zero momentum → kinetic energy

curvature in a wavefunction → possession of kinetic energy 



(v) En+1 – En = (h2/8mL2)(2n + 1)

L↑ ΔE → 0: 
not quantized for complete free particles

(vi) probability

Ψ2(x) = (2/L) sin2 (nπx/L) 

low n → nonuniformity
n →∞, uniform ⇒ classical mechanics

(independent of position)

“correspondence principle”



(vii) orthogonality
∫ Ψn* Ψn′dτ = 0, n′ ≠ n : orthogonal

wavefunctions corresponding to different energies are orthogonal
ex. Ψ1 Ψ3

<n ⎢n′> = 0 (n′ ≠ n): Dirac bracket notation
<n ⎢ “bra” ⇒Ψn*,  ⎢n′> “ket” ⇒Ψ
normalized,  <n ⎢n> = 1

<n ⎢n′> = δnn′: kronecker delta,     n = n′ ⇒ 1
n ≠ n′ ⇒ 0

Orthogonality: important in Q.M.: eliminate a large number of integrals →
central role in the theory of chemical bonding and spectroscopy







The wavefunctions for a 
particle confined to a 
rectangular surface depicted 
as contours of equal 
amplitude. (a) n1 = 1, n2 = 1, the 
state of lowest energy, (b) n1 = 
1, n2 = 2, (c) n1 = 2, n2 = 1, and 
(d) n1 = 2, n2 = 2.



- Degeneracy
ket ⎢n1 n2>

if L1 = L2 = L (square)
Ψn1,n2 (x, y) = (2/L) sin (n1πx/L) sin (n2πy/L) 
En1,n2  = (n1

2 + n2
2) (h2/8mL2) 

if n1 =1,  n2 = 2 and n1 =2,  n2 = 1 
Ψ1,2 (x, y) = (2/L) sin (πx/L) sin (2πy/L), E1,2  = 5h2/8mL2

Ψ2,1 (x, y) = (2/L) sin (2πx/L) sin (πy/L), E1,2  = 5h2/8mL2

⇒ Different wavefunctions, same energy ⇒ “degeneracy”
energy level 5h2/8mL2 is doubly degenerate
⎢1 2> and ⎢2 1>  are degenerate

degeneracy: many examples in atoms, symmetry properties





- if the potential energy of a particle does not rise to infinite in the wall & E < 
V →Ψ does not decay abruptly to zero 

- if the walls are thin → Ψ oscillate inside the box & on the other side of the 
wall outside the box → particle is found on the outside of a container: 
leakage by penetration through classically forbidden zones “tunnelling”

cf) C.M.: insufficient energy to escape 

(4) Tunnelling













- high, wide barrier κL >> 1

⇒ T decrease exponentially with thickness of the barrier, with m1/2

⇒ low mass particle → high tunnelling *tunnelling is important for electron

The transition probabilities for 
passage through a barrier. The 
horizontal axis is the energy of the 
incident particle expressed as a 
multiple of the barrier height. The 
curves are labelled with the value 
of L(2mV)1/2/　. The graph on the 
left is for E<V and that on the right 
for E>V. Note that T = 0 for E<V
whereas classically T would be 
zero. However, T<1 for E>V, 
whereas classically T would be 1.

enhanced reflection (antitunnelling)



e.g) proton transfer reaction
STM (scanning tunnelling microscopy)
AFM (atomic force microscopy)



Application to vibrational motion 

Schrödinger equations for three basic types of motion: translation,  
vibration, rotation → “quantization”

Vibrational motion











∴E = (h/2π)(2πν0)(v + ½) = hν0(n + ½) = ħω (v + ½), v = 0,1,2….

ΔE = Ev+1 – Ev = ħω (same ΔE)

if m↑ ⇒ ω→ 0 ⇒ ΔE → 0: classical mechanics 



- zero point energy

E0 = ½ħω

⇒ ~ 3 x 10-20 J, 0.2 eV, 15 kJ/mol 
⇒ uncertainty of position, momentum → kinetic energy

c.f. C.M.: particle can be perfectly still



- particle in a box vs. harmonic oscillator

Wavefunction for harmonic oscillator

Ψ(x) = N x (polynomial in x) x (Gaussian function) 
Ψv(x) = NvHv(y)e-y2/2, y = x/α, α = (ħ2/mk)1/4

Nv: normalization constant
Hv(y) : Hermite polynomial
Gaussian function: e-y2/2



Hermite polynomials, Hv(y) 

v                    Hv(y) 
0                       1
1                       2y
2                      4y2-2
3                      8y3-12y

…..

∴v = 0 (wavefunction for ground state) 
⇒Ψ0(x) = N0H0(y)e-y2/2 = N0e-x2/2α2

Ψ0
2(x) = N0

2e-x2/α2

largest at zero displacement (x = 0)



- v = 1 (1st excited state)

⇒Ψ1(x) = N12y e-y2/2 = (2N1/α)xe-x2/2α2

node at x = 0
maximum probability at x = ±α (y = ±1)



Ψ Ψ2





f(x) = f(-x): even
f(x) = -f(-x): odd

- oscillator may be found at extensions with V>E that are forbidden by 
classical mechanics (negative kinetic energy)

⇒ Lowest energy: 8% in classical forbidden region
“tunnel effect” : independent of k, m

⇒v (quantum number) ↑ ⇒ probability ↓
v →∞⇒ probability → 0







예:  The potential energy curve for H2 is close to a harmonic oscillator. 
The first vibrational transition is at 4000 cm-1. 
(a) Calculate the force constant k of the hydrogen molecule.
(b) Calculate the vibrational transition energy for D2 (in cm-1) assume 
same force constant with H2.
(c) Calculate the zero point energy of this H2.



Application to rotational motion 

Schrödinger equations for three basic types of motion: translation,  
vibration, rotation → “quantization”

3. Rotational motion

(1) Rotation in 2-D

(2) Rotation in 3-D

(3) Spin



Mass m, radius r (in xy plane)

Total energy = kinetic energy (V=0)

E = p2/2m

Angular momentum Lz (or Jz, z-direction)
(perpendicular to xy plane)

Lz = Jz = ±pr
⇒ E = Jz

2/2mr2 = Jz
2/2I (I = mr2, moment of inertia)

Q.M. angular momentum, rotational energy ⇒ “quantized”

(1) Rotation in 2-D (a particle on a ring) 





x,y → r, φ change of variables

∂f/∂x = (∂r/∂x)∂f/∂r + (∂φ/∂x)∂f/∂φ
f(x,y) → f(r,φ) 

∂/∂x = (∂r/∂x)∂/∂r + (∂φ/∂x)∂/∂φ
r = √(x2 + y2), φ = tan-1(y/x), x = rcosφ, y = rsinφ
∂r/∂x = ½(x2 + y2)-1/2·2x = 2x/2√(x2 + y2) = x/r = cosφ
∂φ/∂x = (-y/x2)/[1 + (y/x)2] = -y/(x2 + y2) = -rsinφ/r2 = -sinφ/r

∂/∂y = (∂r/∂y)∂/∂r + (∂φ/∂y)∂/∂φ
∂r/∂y = 2y/2√(x2 + y2) = rsinφ/r = sinφ
∂φ/∂y = (1/x)/[1 + (y/x)2] = x/(x2 + y2) = rcosφ/r2 = cosφ/r



∂2/∂x2 = (∂/∂x)(∂/∂x) = [cosφ(∂/∂r) – (-sinφ/r)(∂/∂φ)]2,    r is fixed → ∂/∂r = 0
= (1/r2)sinφ [(∂/∂φ)sinφ(∂/∂φ)] = (sinφ/r2)[cosφ(∂/∂φ) + sinφ(∂2/∂φ2)] 

∂2/∂y2 = [(cosφ/r)(∂/∂φ)]2 = (cosφ/r2)(∂/∂φ)[cosφ(∂/∂φ)] 
= (cosφ/r2)[-sinφ(∂/∂φ) + cosφ(∂2/∂φ2)] 

∴(∂2/∂x2 + ∂2/∂y2)  = (1/r2)(∂2/∂φ2),    V(x,y) = 0 (no external force)

⇒ -(ħ2/2m)(∂2/∂x2 + ∂2/∂y2)Ψ(x,y) + V(x,y)Ψ(x,y) = EΨ(x,y)
⇒ -(ħ2/2m)(1/r2)(d2/dφ2)Ψ(φ) = EΨ(φ)

mr2 = I (moment of inertia), Ψ′′(φ) + (2IE/ħ2)Ψ(φ) = 0
let 2IE/ħ2 = ml

2

Ψ(φ) = Aexp(imlφ),   ml = ±√(2IE)/ħ

Normalization, 

∴ Ψ(φ) = exp(imlφ)/√(2π)



Cyclic boundary condition: Ψ should be single-valued

Ψ(φ + 2π) = Ψ(φ) 
Ψ(φ + 2π) = exp[iml(φ + 2π)]/√(2π)

= [exp(imlφ) exp(iml2π)]/√(2π)
= exp(imlφ)/√(2π) = Ψ(φ) 

∴exp(iml2π) = 1 ⇒ ml = 0, ±1, ±2, ±3,….
(cos(ml2π) + isin(ml2π) = 1)

2IE/ħ2 = ml
2 ⇒ Eml = (mlħ)2/2I, ml = 0, ±1, ±2, ±3,….

cf. Classical Mechanics 
E = p2/2m = (L/r)2/2m = L2/2I, L = rp

Jz = L = mlħ,     ml = 0, ±1, ±2, ±3,….



- de Broglie relation
λ = h/p = h/(Jz/r) = h/(mlħ/r) = h/(mlh/2πr) = 2πr/ml

mlλ = 2πr

- angular momentum (Jz) is quantized: mlħ



- Energy is quantized, Eml = (mlħ)2/2I, ml = 0, ±1, ±2, ±3,….

⏐ ml⏐: doubly degenerate except ml = 0

- Wavefunction, 
Ψml(φ) = exp(imlφ)/√(2π)

= 1/√(2π)[cos(mlφ) + isin(mlφ)] 

real part of Ψ







In polar coordinates   (r: fixed)

∇2 = ∂2/∂r2 + (2/r)∂/∂r + (1/r2)Λ2 Λ2 : legendrian

Λ2 = (1/sin2θ)(∂2/∂φ2) +(1/sinθ)(∂/∂θ)sinθ(∂/∂θ)
R is const ⇒ ∂/∂r = 0, ∂2/∂r2 = 0

Free to move ⇒ V = 0

∇2 = (1/r2)[(∂2/∂θ2) + (cosθ/sinθ)(∂/∂θ) + (1/sin2θ)(∂2/∂φ2)]

-(ħ2/2m)∇2Ψ = EΨ

-(ħ2/2m r2)[(∂2/∂θ2) + (cosθ/sinθ)(∂/∂θ) + (1/sin2θ)(∂2/∂φ2)]Ψ(θ, φ)  = EΨ (θ, φ) 



Ψ(θ, φ)  = Θ(θ) Φ(φ): separation of variables

Φ(∂2/∂θ2)Θ + (cosθ/sinθ)Φ(∂/∂θ)Θ + (Θ/sin2θ)(∂2/∂φ2)Φ = -(2IE/ħ2)ΘΦ
(1/Θ)(∂2/∂θ2)Θ + (1/Θ)(cosθ/sinθ)(∂/∂θ)Θ + (1/Φ)(1/sin2θ)(∂2/∂φ2)Φ = -(2IE/ħ2)

Put (1/Φ)(∂2/∂φ2)Φ = -ml
2, ml: separation constant 

⇒ (i)  d2/dφ2)Φ + ml
2Φ = 0 

(ii) (d2/dθ2)Θ + (cosθ/sinθ)(d/dθ)Θ + [(2IE/ħ2) – (ml
2/sin2θ)]Θ = 0

⇒ (i)  Φ = exp(imlφ)/√(2π), ml = 0, ±1, ±2, ±3,….
(ii)  s = cosθ,  β = 2IE/ħ2

G(s) = Θ(cosθ), dΘ/dθ = - sinθ(dG/ds), 
d2Θ/dθ2 = sin2θ(d2G/ds2) - cosθ(dG/ds), 

∴ (1-s2)(d2G/ds2) – 2s(dG/ds) +  [β- (ml
2/1- s2)] = 0





e.g., Table 9.3 (구판 12.3) 





Yl,ml(θ, φ)







- space quantization

L = [l(l + 1)]1/2ħ, l = 0,1,2,3…
Lz = mlħ, ml = -l, -l+1,…0,1,2,…l

Q. M.: a rotating body may not take up 
an arbitrary orientation

1921. Stern & Gerlach

⇒ Angular momentum is quantized





- Stern-Gelach observed 2 bands of Ag atoms: 
angular momentum l → 2l + 1 orientations 
⇒ to get 2 orientations → l = ½??, l must be integer

⇒suggestion: not due to orbital angular momentum (motion of electron   
around atomic nucleus), but motion of electron about its own axis “spin”

Ag: [Kr]4d105s1

Magnitude of spin angular momentum = [s(s + 1)]1/2ħ, s = 0,1,2,3…
z-axis: msħ, ms = s,            s-1,.…,-s 

Electron: only one value of s is allowed, s = ½
angular momentum 1/2√3ħ = 1/2√3ħ

⇒ Intrinsic property of the electron

(3) Spin



2s + 1 = different orientations

ms = +1/2, α ↑
ms = -1/2,  β ↓

- proton, neutron (s = ½) ⇒ angular momentum, (3/4)1/2ħ: ½ spin  “fermions”
(constitute matter)

- mesons, photon, s = 1 ⇒ angular momentum, (2)1/2ħ: integer spin (including 
0)  “boson” (responsible for the forces that bind fermions together)

c.f. l(angular momentum quantum number), ml(orbital magnetic q. #), s(spin 
angular q. #), ms(spin magnetic q. #) 


