Molecular Spectroscopy 1. rotational & vibrational spectra

Reading: Atkins, Ch. 13 (7판 Ch. 16)

<u>Molecular spectroscopy</u> vs. electronic transition (Ch.14) + Rotational, vibrational Atomic spectroscopy electronic transition

 $E_{elec} >> E_{vib} >> E_{rot}$

Energy of electromagnetic field: oscillating electric & magnetic disturbance

 $E = hv = h c/\lambda$

h; Planck constant (6.6 x 10^{-34} Js) speed of light (c); 3 x 10^8 m/s, wavelength (λ); distance between the neighboring peaks of wave, $1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$ frequency (v, Hz = 1 s⁻¹); number of times per second $\lambda v = c$ wavenumber (cm⁻¹, reciprocal cm), v-bar = v/c = 1/ λ cf) 1 eV ~ 8066 cm⁻¹

파장(λ , nm) = 1240/band gap energy (eV)

Electromagnetic spectrum

Experimental spectroscopy: absorption or emission $E_2 - E_1 = hv$

- Absorption spectroscopy
- Emission spectroscopy

Source of radiation

- far IR: mercury arc
- IR: Nernst glower $(ZrO_2 + Y_2O_3)$
- Visible: Tungsten lamp
- UV: H_2 , D_2 or Xe lamp
- laser
- synchrotron radiation

Dispersing element: separating the frequencies of the radiation

-Prism, diffraction grating, monochromator

<u>**Detectors**</u>: radiation \rightarrow electric current

- photomutiplier tube (PMT), diode (Si, Ge..), charge-coupled device (CCD)..

Sample: cell/window materials

-UV/visible: quartz, glass..

- IR: NaCl, KBr

- Raman spectroscopy

Lower frequency: Stokes radiation Higher frequency: anti-Stokes radiation No frequency change: Rayleigh radiation

Why Laser in Raman?: quite small frequency shift (monochromator needed) low scattered intensity

Intensity of spectral lines

- Transmittance $T = I/I_0$
- Beer-Lambert law $I = I_0 10^{-\varepsilon[J]l}$

[J]: molar concentration, *l*: length,

ε: molar absorption coefficient

(extinction coefficient), Lmol⁻¹ cm⁻¹

or cm²mol⁻¹

- Absorbance, $A = \log[I_0/I]$, or $A = -\log T$ (at a given wavenumber)

 $A = \varepsilon[J]l$ "<u>optical density</u>"

Absorption intensities

$$N_0/N = Ae^{-E0/kT}, N_1/N = Ae^{-E1/kT}$$

 $\rightarrow N_1/N_0 = e^{-(E1-E0)/kT}$

1

Rotation: $E_{rot} = J(J+1) \hbar^2/2I$ $N_J/N_0 \propto (2J+1)e^{-Erot/kT}$ $\begin{array}{l} B_{nm}: \mbox{Einstein coefficient of stimulated absorption (B)} \\ B_{mn}: \mbox{Einstein coefficient of stimulated emission (B')} \quad E_m, N_m \\ A_{mn}: \mbox{Einstein coefficient of spontaneous emission (A)} \end{array}$

Spontaneous emission:
$$-dN_m/dt = +A_{mn}N_m$$

Stimulated emission: $-dN_m/dt = +B_{mn}N_m\rho(v_{mn})$
 ρ : density of radiation E_n, N_n
Stimulated absorption: $dN_n/dt = -dN_m/dt = B_{nm}N_n \rho(v_{mn})$
At equilinrium rate $\uparrow = rate \downarrow$

$$B_{nm}N_n \rho(v_{mn}) = A_{mn}N_m + B_{mn}N_m\rho(v_{mn})$$

 $N_{m}/N_{n} = B_{nm}N_{n} \rho(v_{mn}) / [A_{mn}N_{m} + B_{mn}N_{m}\rho(v_{mn})] = e^{-(Em - En)/kT} = e^{-hvmn/kT}$

$$\rho (v_{mn}) = A_{mn} / (B_{nm} e^{-h v mn/kT} - B_{mn})$$
 (1)

Planck's law

$$\rho (v_{mn}) = (8 \pi h v^{3}/c^{3})(1/e^{-h v mn/kT} - B_{mn})$$
(2)

(1) = (2)
$$B_{mn} = B_{nm} = B$$

 $A/B = A_{mn}/B_{mn} = 8 \pi h \vee 3/c^3$

 $v \uparrow \rightarrow A \uparrow$ (spontaneous emission) \rightarrow laser Lower frequency (rotational & vibrational transitions) \rightarrow A can be ignored Selection rules: transition is forbidden or allowed?

transition dipole moment
$$(\mu_{fi})$$

$$\mu_{fi} = \langle f_{f} | \hat{\mu} | f_{i} \rangle = \int \mathcal{U}_{f}^{*} \hat{\mu} \mathcal{U}_{i} dz$$

$$\hat{\mu} : \text{ electric dipole moment operator}$$

$$\mathcal{U}_{fi}^{*} \neq 0 \Rightarrow \text{ "transition allowed" : selection rule}$$

$$\text{Stimulated absorption (k emission) \\ B = \frac{|\mathcal{M}_{fi}|^{2}}{6 \varepsilon_{h}^{2}} \Rightarrow \text{ intensity of } \propto |\mathcal{U}_{fi}|^{2}$$

$$\text{electronic transition : } \Delta l = \pm l \text{ (angular momentum } q. \#)}$$

$$I_{S \rightarrow 2S} \qquad (s \rightarrow 2p \\ (s) \qquad (s)$$

1

· rotation N = N (x)(no dipole moment) $s^{t} \mid s^{-}$ C = 0 (0)(X) (X) · Vibration (0) $\begin{array}{ccc} C_{0_{2}} & \overleftarrow{\leftarrow} & \overleftarrow{\leftarrow} \\ 0 = C = 0 & (X) \end{array}$ $\vec{\partial} = \vec{c} = \vec{o} (\vec{v})$ (bending) (0)

Linewidths

Why? 1. experimental conditions, 2. Inherent limitations

→ To achieve high resolution, we need to know how to minimize these contributions

÷.

Inherent limitations: <u>Doppler broadening & lifetime broadening</u>

(a) Doppler broadening

- Doppler effect: radiation is shifted in frequency when the source is moving towards or away from the observer

$$\frac{1}{1 + \frac{1}{\sqrt{c}}} = \frac{1}{\sqrt{c}} \frac{1}{\sqrt{c$$

For nonrelativistic speeds
$$(V_x \ll c)$$

 $V_{\text{receding}} \approx \frac{v}{1 + \frac{V_x}{c}}$, $V_{\text{approaching}} \approx \frac{v}{1 - \frac{V_x}{c}}$
 (red shift)
Consider $V_{\text{approaching}} \approx \frac{v_0}{1 - \frac{V_x}{c}} \implies \lambda = \lambda_0 \left(1 - \frac{V_x}{c}\right)$
 $y_0 = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{V_x}{c}$
 $V_x \sim V_x + dV_x$
probability $f(V_x)dV_x = Ne^{-\frac{1}{2}mV_x^2/kT} dV_x$
 $= Ne^{-\frac{1}{2}mc^2x^2/kT} dx$
 $= Fcx dx = N'e^{-\frac{1}{2}mc^2x^2/kT} dx$

 $T \uparrow \rightarrow$ more broad : cold sample is better sharpness

(b) lifetime broadening: quantum mechanical effect

System that is changing with time \rightarrow impossible to specify the energy level

exactly

 $\int E \approx \frac{\pi}{z}, \quad \forall : \text{ lifetime} \quad (: \partial f_{x} \cdot \partial x \ge \frac{\pi}{2})$ Uncertainty broadening

Factors influencing the lifetime of excited states

 \rightarrow Spontaneous emission (coefficient A $\propto V^3$), stimulated emission, collision, deactivation (pressure broadening) $E = hy = hc \widehat{J}, \quad \delta E = hc (\delta \widehat{J})$ lifetime: Z(sec) hc(fr). 2 = h $\delta \tilde{p} \simeq \frac{h}{hcr} = \frac{1}{2\pi cr} = \frac{5 \times 10^{-12} \text{ cm}^{-1}}{7 (\text{sec})} = \frac{5 \cdot 3 \text{ cm}}{7 (\text{ps})}$

 ⊤ ↓ (shorter lifetime) → broader spectral lines
 → working at low pressure (collisional linewidth)
 low frequency transitions → small linewidth

Pure rotation spectra: microwave region

Moment of inertia

I: moment of inertia

 $I=\textstyle\sum m_i r_i^{\,2}$

where r_i is the perpendicular distance of the atom i from the axis of rotation

 \rightarrow depending on molecular structure: masses & molecular geometry

 \rightarrow rotational spectroscopy: information about <u>bond lengths & bond angles</u>

Linear molecules: zero I around the internuclear axis

e.g., I of H_2O around axis

Rigid rotors

Spherical rotors: 3 equal I (e.g., CH_4 , SiH_4 , SF_6) Symmetric rotors: 2 equal I (e.g., NH_3 , CH_3Cl , CH_3CN) Linear rotors: 1 zero I (1 about the molecule axis) (CO_2 , HCl, OCS, HCCH) Asymmetric rotors: three different I (H_2O , H_2CO , CH_3OH)

Rotational energy levels

 $E = J^2/2I$, J: magnitude of the angular momentum (J(J + 1) \hbar^2 , J = 0, 1, 2,...)

For a, b, c axes, $E = E_a + E_b + E_c = J_a^2/2I_a + J_b^2/2I_b + J_c^2/2I_c$

(a) Spherical rotors 3 equal I (e.g., CH₄, SiH₄, SF₆) $E = (J_a^2 + J_b^2 + J_c^2)/2I = J^2/2I$

$$E_J = (J(J + 1)\hbar^2/2I, J = 0, 1, 2,...$$

Rotational constant of the molecule, B

 $hcB = \hbar^2/2I$ so $B = \hbar/4\pi cI$

 $\rightarrow E_J = hcBJ(J + 1), \quad J = 0, 1, 2, \dots$ $\rightarrow \text{ wavenumber term, } F(J) = BJ(J + 1)$ F(J): rotational termF(J) - F(J - 1) = 2BJ

 $I \mathop{\downarrow} \to B \mathop{\uparrow}$

Large molecules: closely spaced rotational energy levels e.g., CCl_4 , I = 4.85 x 10⁻⁴⁵ kgm² \rightarrow B = 0.0577 cm⁻¹

(b) Symmetric rotors

2 equal I & 1 different I (e.g., CH₃Cl, NH₃, C₆H₆): principle axis (I_{II}) & other two (I_⊥) If → oblate (like pancake or C₆H₆) If → prolate (like cigar, CH₃Cl) $E = (J_b^2 + J_c^2)/2I_{\perp} + J_a^2/2I_{II}$ $J^2 = J_a^2 + j_b^2 + J_c^2$ $E = (J^2 - J_a^2)/2I_{\perp} + J_a^2/2I_{II} = J^2/2I_{\perp} + (1/2I_{II} - 1/2I_{\perp})J_a^2$

Quantum mechanics

$$\begin{split} J^2 &= (J(J+1)\hbar^2, \quad J=0,\,1,\,2...,\\ J_a &= K\hbar, \quad K=0,\,\pm 1,\,\ldots \pm J \end{split}$$

$$E_{J,K} = J(J+1)\hbar^2/2I_{\perp} + K^2\hbar^2/2(1/I_{II} - 1/I_{\perp})$$

 $F(J, K) = BJ(J + 1) + (A - B)K^2$ With A = $\hbar/4\pi cI_{II}$ and B = $\hbar/4\pi cI_{\perp}$

$$\begin{split} &K=0, \mbox{ E depends only on } I_{\perp} \\ &K=\pm J, \mbox{ } F(J,\,K)=BJ+AJ^2 \\ \end{split} \end{tabular} e.g., 16.2 \end{split}$$

 $\frac{(c) \text{ Linear rotors}}{K = 0}$

$$\begin{split} E &= J(J+1)\hbar^2/2I \quad J = 0, \ 1, \ 2... \\ F(J, \ K) &= BJ(J+1) \end{split}$$

(d) Degeneracies and the Stark effect E of symmetric rotor depends on J & K J, K \rightarrow M_J quantized, M_J = 0, ±1,..., ±J \rightarrow (2J + 1) degeneracy

Symmetric rotor: $K \neq 0$; 2(2J+1)-fold degenerate (J, K, respectively) K = 0, (2J+1)-fold degenerate

Linear rotor (K = 0): 2J+1 fold degenerate Spherical rotor: 2J+1 fold degenerate

Stark effect: splitting of states by an electric field

Electric field, E

 $E(J, M_J) = hcBJ(J + 1) + a(J, M_J)\mu^2 E^2$ where $a(J, M_J) = [J(J + 1) - 3M_J^2]/[2hcBJ(J + 1)(2J - 1)(2J + 3)]$ μ : permanent electric dipole moment

<u>(e) Centrifugal distortion</u> Rigid rotor by centrifugal force: change I Diatomic molecule $F(J) = BJ(J + 1) - D_J J^2 (J + 1)^2$

 D_J : centrifugal distortion const $D_J = 4B^3/\bar{\nu}^2$

Rotational transitions

B of small molecules $\rightarrow 0.1 \sim 10 \text{ cm}^{-1}$ (microwave region)

(a) Rotational selection rules <u>Gross selection rule</u>: $\mu \neq 0$ (permanent electric dipole moment) \rightarrow for pure rotational spectrum, it must be *polar* Homonuclear diatomic molecules, symmetrical linear molecule (CO₂), spherical rotor \rightarrow rotationally inactive

<u>Specific rotational selection rules</u>: transition dipole moment between rotational states

For linear molecule: $\Delta J = \pm 1$, $\Delta M_J = 0, \pm 1$

 $(\Delta J = -1: \text{ emission}, \Delta J = +1: \text{ absorption})$

 \rightarrow conservation of angular momentum

when a photon, a spin-1 particle, is emitted or absorbed

```
Symmetric rotors: \Delta K = 0, \Delta J = \pm 1
(principal axis: no change)
```

 $F(J, K) = BJ(J + 1) + (A - B)K^2$

Absorption: $J \rightarrow J + 1$; $\overline{v} = 2B(J + 1)$, J = 0, 1, 2... $\rightarrow 2B, 4B, 6B,...$ Separation: 2B

e.g., 16.3

Intensity of rotational spectrum I is proportional to N_J: population at equilibrium $N_J = Ng_J exp(-E_J/kT)/\sum g_J exp(-E_J/kT)$ g₁: degeneracy of level J

```
Linear molecule: g_J = 2J + 1

E_J = hcBJ(J + 1)

N_J \quad N(2J + 1)exp(-hcBJ(J + 1)/kT)

J_{max} \rightarrow N_J/dJ = 2exp(-hcBJ(J + 1)/kT) - [hcB(2J + 1)^2/kT]exp(-hcBJ(J + 1)/kT)

= [2 - hcB(2J + 1)^2/kT]exp(-hcBJ(J + 1)/kT)

J_{max} \sim (kT/2hcB)^{1/2} - \frac{1}{2}

e.g., typical molecule at room T, kT ~ 1000hcB \rightarrow J_{max} \sim 22
```

Rotational Raman spectra

Selection rule: must be anisotropically polarizable

Raman effect: inelastic light scattering

anisotropically (비정방성) polarizable? H₂

Induced dipole moment, $\mu = \alpha E$ α : polarizability

Atom: isotropically polarizable

Spherical rotor: isotropically polarizable (정방성)

 \rightarrow CH₄, SF₆: rotationally Raman inactive, rotationally (microwave) inactive Nonspherical rotors: anisotropically polarizable (depend on the direction of *E*)

- \rightarrow diatomics, linear molecules, symmetric rotors
- \rightarrow rotationally Raman active

e.g., homonuclear diatomic:

rotational inactive, but rotationally Raman active

Selection rule Gross selection rule: anisotropic α Specific selection rule linear rotors: $\Delta J = 0, \pm 2$ Symmetric rotors: $\Delta J = 0, \pm 1, \pm 2; \Delta K = 0$ $\Delta J = 0$: no shift of the scattered photon's frequency (Rayleigh line)

c.f. Why $\Delta J = \pm 2$? i) $\mu_{ind} = \alpha E(t) = \alpha E \cos \omega_i t$, ω_i : angular frequency of incident photon If molecule is rotating at a circular frequency ω_R $\rightarrow \alpha = \alpha_0 + \Delta \alpha \cos 2\omega_R t$, where $\Delta \alpha = \alpha_{II} - \alpha_{\perp}$, α from $\alpha_0 + \Delta \alpha$ to $\alpha_0 - \Delta \alpha$ as the molecule rotates \rightarrow "2"; 1 revolution, polarizability twice

ii) Raman \rightarrow 2 photons involved (spin-1 particle) \rightarrow max. changes in angular momentum quantum number = ± 2

<u>Raman spectrum of a linear rotor</u>: $\Delta J = \pm 2$ $\Delta J = +2$, $J \rightarrow J + 2$, Stokes lines $\overline{\nu}(J \rightarrow J + 2) = \overline{\nu_i} - [B(J + 2)(J + 3) - BJ(J + 1)] = \overline{\nu_i} - 2B(2J + 3)$, J = 0, 1, 2, ...Stokes lines: -6B, -10B, -14B,...

 $\Delta J = -2, J \rightarrow J - 2$, Anti-Stokes lines $\overline{v}(J \rightarrow J - 2) = \overline{v}_i + 2B(2J - 1), J = 2, 3, 4...$

e.g., 16.4

The vibrations of diatomic molecules Molecular vibrations Diatomic molecule H₂

Harmonic oscillator,
$$V = 1/2kx^2$$
, $x = R - R_e$

$$-(\hbar^{2}/2\mu)(d^{2}\Psi/dx^{2}) + (1/2kx^{2})\Psi = E\Psi$$

 $\mu = m_{eff} = m_1 m_2 / (m_1 + m_2)$: reduced or effective mass

$$\begin{split} & E_v = (v + \frac{1}{2})\hbar\omega, \qquad v = 0, 1, 2... \\ & \omega = \sqrt{(k/\mu)}, \, \omega = 2\pi v \rightarrow v = (1/2\pi)\sqrt{(k/\mu)} \end{split}$$

Vibrational term,
$$G(v) = (v + \frac{1}{2})\overline{v}$$
, $E_v = hcG(v)$
 $\overline{v} = (1/2\pi c)\sqrt{(k/\mu)}$

Homonuclear diatomic molecule, $m_1 = m_2$, $\mu = 1/2m$

Selection rule

Gross selection rule: dipole moment $\mu \neq 0$ (dipole moment must change) \rightarrow infrared active Specific vibrational selection rule $\Delta v = +1$: absorption, $\Delta v = -1$: emission $\Delta G_{v+1/2} = G(v + 1) - G(v) = \overline{v}$

At room T, kT/hc = 200 cm⁻¹ \rightarrow IR > 200 cm⁻¹

Anharmonicity

True potential energy? $V(x) = V(0) + (dV/dx)_0 x + \frac{1}{2} (d^2V/dx^2)_0 x^2 + \dots$

One approach to anharmonicity Morse potential energy $V = hcD_e[1 - e^{-a(R - Re)}]^2$ $a = [m_{eff}\omega^2/2hcD_e]^{1/2}, D_e: depth of the potential minimum$

$$\begin{split} H &= T + V, H\Psi = E\Psi \\ &\rightarrow E_v = (v + \frac{1}{2})hV - (v + \frac{1}{2})^2 x_e hV + (v + \frac{1}{2})^3 y_e hV + \dots \\ x_e &= \hbar a^2/2\mu\omega = \bar{V}/4D_e: \text{ anharmonicity constant} \end{split}$$

 $G(v) = (v + \frac{1}{2})\overline{v} - (v + \frac{1}{2})^2 x_e \overline{v}.., \quad v = 0, 1, 2, \dots v_{max}$

Wavenumbers of transitions with $\Delta v = +1$ $\Delta G_{v+1/2} = G(v + 1) - G(v) = \overline{v} - 2(v + 1)x_e\overline{v} + ...$ (or $\Delta E (v \rightarrow v + 1) = hv - 2(v + 1)x_ehv...)$ \rightarrow when $x_e \neq 0$, the transitions move to lower wavenumbers as v increases

Mainly $\Delta v = \pm 1$ (fundamental frequency), however, anharmonicity allows additional weak lines corresponding $\Delta v = \pm 2, \pm 3,...$ ("**overtones**")

1st overtone, G(v + 2) - G(v) = 2v - 2(2v + 3)xev + ...

Selection rule is derived from harmonic oscillator, for an anharmonic oscillator, all values of Δv are allowed, but transitions with $\Delta v > 1$ are weak if the anharmonicity is slight

Vibration-rotation spectra

Each line of high-resolution vib. Spectrum of heteronuclear diatomic molecular consists of large # of closely spaced lines ("band spectra") → rotational transition with vibrational transition

 $E = E_{vib} + E_{rot} + E_{ele}, \quad E_{ele} > E_{vib} > E_{rot}$

IR radiation \rightarrow no electronic transition, vib. transition + rotational transition

Diatomic molecule
$$\begin{split} &E_{v,J} = (v + \frac{1}{2})hv + hcBJ(J + 1) & H.O.\\ &E_{v,J} = (v + \frac{1}{2})hv - (v + \frac{1}{2})2x_ehv + hcBJ(J + 1) & Anharm. \end{split}$$

Vibration-rotation term S(v,J) = G(v) + F(J) Selection rule $\mu \neq 0$ $\Delta v = \pm 1$, $\Delta J = \pm 1, 0$ (total orbital ang. momentum about internuclear axis $\neq 0, \land \neq 0$) e.g., paramagnetic molecule, NO

$$\begin{array}{l} \Delta v = 1 \ (v \rightarrow v + 1) \\ i) \ \Delta J = -1, \ \Delta E = hv - 2BJ, \ \overline{v_p}(J) = S(v+1, J-1) - S(v, J) = \overline{v} - 2BJ \\ \rightarrow hv - 2B, \ hv - 4B.... P-branch \\ ii) \ \Delta J = 0, \ \Delta E = hv, \quad \overline{v_Q}(J) = S(v+1, J) = \overline{v} \qquad Q-branch \\ allowed: NO, \ forbidden: HCl \\ iii) \ \Delta J = +1, \ \Delta E = hv + 2B(J+1), \ \overline{v_R}(J) = S(v+1, J+1) - S(v, J) = \overline{v} + 2B(J+1) \\ R-branch \end{array}$$

Vibrational Raman spectra of diatomic molecule

Gross selection rule: polarizability shoud change as the molecule vibrates Homonuclear and heteronuclear diatomic molecules \rightarrow vibrational Raman active Specific selection rule: $\Delta v = \pm 1$, $\Delta J = 0, \pm 2$ $\Delta v = +1$

- i) $\Delta J = -2$, O-branch
- ii) $\Delta J = 0$, Q-branch
- iii) $\Delta J = +2$, S-branch

	$\tilde{\nu}_0/\mathrm{cm}^{-1}$	θ_V/K	<i>B</i> /cm ⁻¹	θ_R/K	<i>r</i> /pm	$k/(N m^{-1})$	$D/(kJ mol^{-1})$	σ
'H ₂ +	2321.8	3341	29.8	42.9	106	160	255.8	2
'H ₂	4400.39	6332	60.864	87.6	74.138	574.9	432.1	2
²H ₂	3118.46	4487	30.442	43.8	74.154	577.0	439.6	2
'H' ⁹ F	4138.32	5955	20.956	30.2	91.680	965.7	564.4	1
'H35CI	2990.95	4304	10.593	15.2	127.45	516.3	427.7	1
'H ⁸ 'Br	2648.98	3812	8.465	12.2	141.44	411.5	362.7	1
'H ¹²⁷ I	2308.09	3321	6.511	9.37	160.92	313.8	294.9	1
14N2	2358.07	3393	1.9987	2.88	109.76	2293.8	941.7	2
¹⁶ O ₂	1580.36	2274	1.4457	2.08	120.75	1176.8	493.5	2
¹⁹ F ₂	891.8	1283	0.8828	1.27	141.78	445.1	154.4	2
35Cl2	559.71	805	0.2441	0.351	198.75	322.7	239.3	2
¹² C ¹⁶ O	2170.21	3122	1.9313	2.78	112.81	1903.17	1071.8	1
⁷⁹ Br ⁸¹ Br	323.2	465	0.0809	10.116	283.3	245.9	190.2	1

Table 16.2 Properties of diatomic molecules

Data: AIP

The vibrations of polyatomic molecules

Diatomic molecule: one mode of vibration \rightarrow bond stretch Polyatomic molecules: several modes

N atoms → degree of freedom for vibration (p. 522, Justification 16.9) f_v linear 3N -5 (total: 3N, 3 translation, 2 rotation) nonlinear 3N - 6 (total: 3N, 3 translation, 3 rotation)

 CO_2 (linear molecule), $f_v = 3 \times 3 - 5 = 4$ modes for vibration

Symmetric stretch, $V_1 = 1388 \text{ cm}^{-1}$ (IR inactive)

Antisymmetric stretch, $V_3 = 2349 \text{ cm}^{-1}$

Bending, $V_2 = 667 \text{ cm}^{-1}$ (degenerate)

V(bending) < V(stretch)

$$G_p(v) = (v + \frac{1}{2})V_q, \quad V_q = (1/2\pi c)\sqrt{(k_q/m_q)}$$

 H_2O , $f_v = 3 \times 3 - 6 = 3 \text{ modes}$

Gross selection rule for IR: change of dipole moment e.g., symmetric stretch of CO_2 : no dipole moment change \rightarrow IR inactive antisymmetric stretch, bending modes \rightarrow IR active

Specific selection rule $\Delta v_q = \pm 1$ in harmonic approximation

Molecules can be identified from characteristic frequencies and intensities

Table 16.3 Typical vibrational wavenumbers, v/cm⁻¹

Data: LJ. Bellamy, The infrared spectra of complex molecules and Advances in infrared group frequencies. Chapman and Hall.

Vibrational Raman spectra of polyatomic molecules

Vibrational modes are Raman active if changing polarizability e.g., symmetric stretch of CO_2 : Raman active

Exclusion rule: if the molecule has a centre of symmetry, then no modes can be both IR and Raman active

Depolarization ratio, p

The ratio of intensities of the scattered light with polarization perpendicular and parallel to the plane of polarization of the incident radiation

$$\rho = I_{\perp}/I_{II}$$

Measuring ρ : polarizing filter If emergent light is not polarized: $\rho \sim 1$ $\rho \geq 0.75$: depolarized, $\rho < 0$: polarized