—1 Introductlon

o — A-M_;_

For efficient pomt -to-point transmission of power and information the source
energy must be dlrcctetl or guided. In this chapter we study transverse electromagnetic
(TEM) waves guided by transmission lines. The TEM mode of guided waves is one

4 in which E and H are perpendicular to each other and both are transverse to the
dlrectlon of propagation along the guiding line. We discussed the propagatlon of

(a) Parallel-plate (b) Two-wire transmission line,  (¢) Coaxial transmission line.
transmission line.

FIGURE 9-1
Common types of transmission lines.

9-2 Transverse Electromagnetic Wave along a Parallel-Plate

Transmission Line  ( facchy,  disfectric)

Let us consider a y-polarized TEM wave propagating in the + z-direction along a
uniform parallel-plate transmission line. Figure 9-2 shows the cross-sectional dimen-
sions of such a I%ne and the chosen coordinate system. For time-harmonic fields the
wave equation to be satisfied in the sourceless dielectric region becomes the homo-
geneous Helmholtz’s equation, Eq. (8-46). In the present case the appropriate phasor
solution for the wave propagating in the + z-direction is

E=aE =aEs, " (9-1a)
The associated H field is, from Eq. (8-31),
E
ﬁ) = _,_. v Ch H=aH, = —a —e 7, (9-1b)
(d - 2’7 where y and #n are the propagation constant and the intrinsic impedance, respectively,

of the dielectric medium. Fringe fields at the edges of the plates are neglected. As-
suming perfectly conducting plates and a lossless dielectric, we have, from Chapter 8,

y = JB = joJue (9-2)
and
= & (9-3)
€

FIGURE 9-2
Parallel-plate transmission line.
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The boundary conditions to be satisfied at the interfaces of the dielectric and the

and

ay.D=ps¢'

any=Js,

At y = 0 (lower plate), a, = a,:

perfectly conducting planes are, from Egs. (7-68a, b, ¢, and d), as follows:
At both y=0and y = d:

which are obviously satisfied because E, = E, = 0 and H,=0.

At y = d (upper plate), a, = —a,;

E, =0 (9-4)

H,=0, (9-5)

or ps[ = GE), = eEoe_jﬂz; (9—63)

E .

or Jy=—a,H =a —2e i (9-7a)

or Psu = —€E, = —eEye 07, (9-6b)
E .

ofr . =aH ==a e (9-7b)

n

Equations (9-6) and (9-7) indicate that surface charges and surface currents on the
conducting planes vary sinusoidally with z, as do E, and H,. This is illustrated sche-
matically in Fig. 9-3.

Field phasors E and H in Egs. (9-1a) and (9-1b) satisfy the two Maxwell’s curl

equations:
VX E=—jouH (9-8)
and
V x H = jweE. 9-9)
Since E = a,E, and H = a H,, Egs. (9-8) and (9-9) become
- L
wEa € B
1 e 17 i LS —— = jouH (9-10)
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and

an.. .

72— =_}'L!)€Ey. (9-11)
Ordinary derivatives appear above because phasors E, and H are functions of z only.

Integrating Eq. (9-10) over y from 0 to d, we have

d pa ) d
st el AEBmn
J or

:E;e

01#‘%*4 Q/(Z = ja)‘uJ su(z)d = jw (# %) [J su(z)w]

- _ 9-12
T o=-5¢e’ % = foLi) st
e where "—*""d
V@)= — [ E,dy= —Ead (#()
? it ur% is the potential difference or voltage between the upper and lower plates,

I(z) = Jo(2)w &) | >
is the total current flowing in the +z direction in the upper plate (w o plate width), - -
and

{5 PNy - s A'*: ol e D (9-13)
EERe -

is the inductance per unit length of the parallel-plate transmission line. The depen-
dence of phasors ¥(z) and I(z) on z is noted explicitly in Eq. (9-12) for emphasis.
Similarly, we integrate Eq. (9—11) over x from 0 to w to obtain

(—f; fow H,dx = jwe fow E, dx

’ - or
= ol ﬁZ- j -
— o o/ 2
Tw@=-= j,,J,m j _ joCV(2),

where ﬁf/’ "
f=wlus
1%

7=l e © 1)

is the capacitance per unit length of the parallel-plate transmission line.
Equations (9 12) and (9 14) constitute a pair of time-harmonic transmission-
line equations for phasors V(z) and 1(z). They may be combined to yield second-order
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differential equations for V(z) and for I(z):

2

- ng) = —w?’LCV(2), (9-16a)
dz
2

da;—(f) = —w?LCI(2). (9-16b)

The solutions of Eqs. (9-16a) and (9-16b) are, for waves propagating in the +z-
direction,

V(z) = Ve iF¢ (9-17a)
and _
I(2) = I,e™ %7, (9-17b)
where the phase constant
B=wyLC = w\/g.; (rad/m) (9-18)

is the same as that given in Eq. (9—-2). The relation between V; and I, can be found
by using either Eq. (9—-12) or Eq. (9-14):

_Ye _V_ (L
CH I, AT 2, S

which becomes, in view of the results of Egs. (9—-13) and (9-15),

Zo==— [-=—n @ (9-20)

The quantity Z, is the impedance at any location that looks toward an infinitely

long (no reflections) transmission line. It is called the characteristic impedance of the

line. The ratio of V(z) and I(z) at any point on a finite line of any length terminated

in Z, is Z,.! For a parallel-plate transmission line with perfectly conducting plates

of width w and separated by a lossless dielectric slab of thickness d, the characteristic

impedance Z, is (d/w) times the intrinsic impedance n of the dielectric medium.
The velocity of propagation along the line is

SR L (m/s), ©-21)

B ot aiiin

which is the same as the phase velocity of a TEM plane wave in the dielectric medium.

' This statement will be proved in Section 9 4 (sce Eq. 9 107).



\ : ) -
" ' ; s , @
g DATE AGE

J{?’ / é‘gv pMd//é/Q#pML TMWAJPA 677 ZA)}&F

" M e
Q/%i 7 Aff&t’mp}cdﬂ Qf /) (E'.ac{ &L {E‘,,{ i Q\.g,) B o ._‘__“5] (/o‘n/ cp.q/tfc:]‘ap)

3<”?&#° ““““

s (.Ez.?i &4 Tz TG o ST TSR S

S5 A : ME
o et g =@, s i als)

...... | ;;? B+ k,,,,,,Ea.(?).,.,.t,,?,,, E2 X4k
Gt B Edgp=e, E2YTK

Ez= (d oo ky + pes F;) e’

— :2 -t ME; T /Me/

R £ e
‘ o L% G ( Me frelkd mush de By

U e Bofsun L Cfam btndny condifins )




R TR T =

= ACane 2

B Bt oo Ea g PR
s de x Wiy Sy = B ____.__H___.’C“—)e (4/@#‘))
J : 7¢— s

B de

i e

o e 2 omy e EIWD
2E

2% I) T
2z

=

0z "
2

27 s I(Z;"__: o T yez> («f/ ﬁfq‘/\é ”b’,fﬂJf)

L_\Zﬂ.A_,‘ ( ZA; - ‘_g—\\‘

= {fﬁiw‘w@”ﬂ')j I@ = -4 V(fng),//
Ju"ﬁk e

R = Cf:‘/}_)@f; and @'é\/’é‘ﬂ “ nppn SRS

e sy (P o




fﬂoﬂi‘ in & A

g T
i tye/  TWface mpedarcs

.JJC‘- ;/? el ,«;;er,m/r,,,;ﬂ f -

L

N

'? /5/¢° ”mé{-f 7*)”— E/‘/ LSRUR— I}kec pf/v m;& TE/“; '

Luft Fz o a}c&nwﬂ; ’ref)f f»ve@(( ___________________________

zbéy.mcodl Inferpasceygation o R=@IR
SH de<<, fm




@)

WAZJWJJJ‘WLA'WP_ E?“‘-ﬂe't"”” "’[/Z'f}' f”“"‘-’ée’/(—/b'@‘— 1L

T P2V (Z D
€274 RAiCZA + Lt Ly )j_f_a@ ol TR
N B Y@ A) b VACEY
G T = GUED + g -2

9-2.2 MICROSTRIP LINES |

The development of solid-state microwave devices and systems has led to the wide-
spread use of a form of parallel-plate transmission lines called microstrip lines or
simply striplines. A stripline usually consists of a dielectric substrate sitting on a
grounded conducting plane with a thin narrow metal strip on top of the substrate, as
shown in Fig. 9-4(a). Since the advent of printed-circuit techniques, striplines can be
easily fabricated and integrated with other circuit components. However, because the
results that we have derived in this section were based on the assumption of two wide

v Cah “‘—/{"’! f/ﬂ\/tc; (Cb,v"L K /4 .A-.!-/A- v c;fL) o kaj\_cd,de(’
7 s A i

Grounded et B “‘*‘4;&’
Metal strip Metal strip fc.onduc.unH plane / Aepa @(‘CJ-/
: [ IIIIIlIIIIIIIIIIIIIIIII'!IIII L )
Dielectric
Dielectric substrate substrate |
\Grnumlcd Grounded FIGURE 9-4
conducting plane conducting plane Two types of microstrip

(u) (b) 7’}9-}'/4.7’1 f,_w lines.

9—-3 General Transmission-Line Equations (otapaon ﬂr)? L )
d

We will now derive the equations that govern general two-conductor uniform trans-
?Eﬂ%wwu————-—k tire, and coaxial lines. Transmission
ines differ from ordinary electric networks in one essential feature. Whereas the
physical dimensions of electric networks are very much smaller than the operating
wavelength, transmission lines are usually a considerable fraction of a wavelength
and may even be many wavelengths long. The circuit elements in an ordinary electric
network can be considered discrete and as such may be described by lumped param-
eters. It is assumed that currents flowing in lumped-circuit elements do not vary spa-
tially over the elements, and that no standing waves exist. A transmission line, on
the other hand, is a distributed-parameter network and must be described by circuit
parameters that are distributed throughout its length. Except under matched con-
ditions, standing waves exist in a transmission line.

Consider a differential length Az of a transmission line that is described by the
following four parameters:

R, resistance per unit length (both conductors), in|Q/m.
L, inductance per unit length (both conductors), in H/m.
* .+ G, conductance per unit length, in S/m.

C, capacitance per unit length, in F/m. Asciome :
Note that R and L are series elements and G and C are shunt elements. Figure 9-5
shows the equivalent electric circuit of such a line segment. The quantities oz, 1) and
t(z + Az, t) denote the instantancous voltages at z and = + Az, respectively. Similarly,
i(z, ) and i(z + Az, 1) denote the instantancous currents at = and z + Az, respectively.
Applying Kirchhofl's voltage law, we obtain

di(z, t)

v(z, 1) — RAzi(z, t) — LAz - oz + Az, 1) =0, (9 30)
( |
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Pssum = |

i(z, 1) N iz + Az, 2

R Az LAz

+
JQAZ I
vz, 1) GAzS Wz + Az, D
_i l FIGURE 9-5

I ! Equivalent circuit of a differential length Az of a

g two-conductor transmission line.
A}»f@? Ak fF W/u-y)\ Py Sion s
Uiz, 4) - R Az A-C'E/f) faag 280D U(z+aZ, A= o
which leads to ot G-z20)
oz + Az, t) — v(z, 1) di(z, t)
74 Az ot

= Ri(z, 1) + L —== (9-30a)

In the limit as Az — 0, Eq. (9-30a) becomes

a b . a 3
- ”g‘; t)=R:( t)+ L ‘(;t ! PDE (9-31)

Similarly, applying Kirchhoff’s current law to the node N in Fig. 9-5, we have

ov(z + Az, t)

i(z, £) — GAzv(z + Az, t) — CAz o

—i(z+ Az,t) = 0. (9-32)

On dividing by Az and letting Az approach zero, Eq. (9-32) becomes

di(z, 1) ov(z, 1) .
——5— =Gy + C—— PbE (9-33)

Equations (9- 31) and (9-33) are a pair of first-order partial differential equations in
u(z t) and i(z, t). \They are the general transmission-line equations.'

* For harmonic time dependence the use of phasors simplifies the transmission-
line equations to ordinary differential equations. For a cosine reference we write

iz, 1) = Re[ V(z)e™"], (9-34a)
i(z, 1) = Re[ I(z)e"], (9-34b)
where V(z) and I(z) are functions of the space coordinate z only and both may be

complex. Substitution of Eqs. (9-34a) and (9-34b) in Eqgs. (9-31) and (9-33) yiclds

' Sometimes referred to as the telegraphist’s equations or tele grapher's equations.
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522 10 Waveguides and Cavity Resonators

FIGURE 10-1
A uniform waveguide with an arbitrary
cross section.

factor
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As an cxample, for a cosine reference we may write the instantancous expression for
the E field in Cartesian coordinates as

E(x, y, z; t) = # [ E%(x, y)e 9], (10 2)

where E°(x, y) is a two-dimensional vector phasor that depends only on the cross-
sectional coordinates. The instantaneous expression for the H field can be written in
a similar way. Hence, in using a phasor representation in equations relating ficld
quantities we may replace partial derivatives with respect to ¢ and z simply by prod-
ucts with (jw) and (—7), respectively; the common factor eV ~?? can be dropped.
We consider a straight waveguide in the form of a dielectric-filled metal tube
having an arbitrary cross section and lying along the z-axis, as shown in Fig. 10-1.
According to Egs. (7-105) and (7-106), the electric and magnetic field intensities in
the charge-free dielectric region inside satisfy the following homogeneous vector
Helmholtz’s equations:
VE + k*E=0 (10-3)
and
V:H + k*H = 0, (10-4)

where E and H are three-dimensional vector phasors, and k is the wavenumber:
k = w+/e. (10-5)

The three-dimensional Laplacian operator V2 may be broken into two parts:
V2 ., for the cross-sectional coordinates and V?Z for the longitudinal coordinate. For

uiuz

waveguides with a rectangular cross section we use Cartesian coordinates:

i FE

VZE = (V3 + V)E=(V2 + - |E

J | ( Xy + ,) ( Xy + 622) (1076) :
1 = VLE + y°E. .
] Combination of Egs. (10-3) and (10-6) gives ;
i ¢
i VZE + (y* + k*)E = 0. (10-7)

; i
' l
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Similarly, from Eq. (10—4) we have
VZH + (y* + k¥H)H = 0. (10-8)

We note that each of Eqgs. (10-7) and (10-8) is really three second-order partial
differential equations, one for each component of E and H. The exact solution of
these component equations depends on the cross-sectional geometry and the bound-
ary conditions that a particular field component must satisfy at conductor-dielectric
interfaces. We note further that by writing V72, for the transversal operator V2, Egs.
(10-7) and (10—8) become the governing equations for waveguides with a circular
cross section.

Of course, the various components of E and H are not all independent, and it
is not necessary to solve all six second-order partial differential equations for the six
components of E and H. Let us examine the interrelationships among the six com-
ponents in Cartesian coordinates by expanding the two source-free curl equations,
Egs. (7—-104a) and (7-104b):

FromV x E = —jouH: From V x H = jweE:
E(io + yE = —jouH? (10-9a) EHO 0 = jweE? (10—10a)
B “io = —joupH®  (10-9b) —yHO — a{fi\_g = joeE®  (10-10b)
E:;S - ii? —jouH? (10-9¢) a;i? — 5;19 = jweE] (10-10c)

Note that partial derivatives with respect to z have been replaced by multiplications
by (—7y). All the component field quantities in the equations above are phasors that
depend only on x and y, the common e ** factor for z-dependence having been
omitted. By manipulating these equations we can express the transverse field com-
ponents HY, HY, and EY, and E? in terms of the two longitudinal components E?
and H?. For instance, Eqs. (10-9a) and (10-10b) can be combined to eliminate E?
and obtain H? in terms of E? and H°. We have

5 ES
HY = — ‘” —ij‘ ) (10 11)

o w“ M
H = ( + jwe ‘, ) (10-12)
) ax |

o
E® =

"L“ .

— =
3 J 3

X
I ’h‘_’ HY
+jfr;,u(n"'), (10-13)
) (10 14)
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9-3 General Transmission-Line Equations 439

the following ordinary differential equations for phasors V(z) and I(2):

D T sl (9-35a)
dz
_d% = (G + joC)V(2). (9-35b)

Equations (9-35a) and (9-35b) are time-harmonic transmission-line equations, which
reduce to Eqgs. (9-12) and (9-14) under lossless conditions (R = 0, G = 0).

9-3.1 WAVE CHARACTERISTICS ON AN INFINITE TRANSMISSION LINE

The coupled time-harmonic transmission-line equations, Eqs. (9-35a) and (9-35b),
can be combined to solve for V(z) and I(z). We obtain

dv
dzz(z) =92V (2) (9-36a)
and
d2I
dz(ZZ) = 7*1(z), (9-36b)
where
Y=o+ jB = (R + joL)G + joC)  (m™?Y) (9-37)

is the propagation constant whose real and imaginary parts, o and f, are the
attenuation constant (Np/m) and phase constant (rad/m) of the line, respectively.
The nomenclature here is similar to that for plane-wave propagation in lossy media
as defingd in Section 8-3. These quantities are not really constants because, in gen-
eral, they depend on @ in a complicated way.

The solutions of Egs. (9—36a) and (9-36b) are

Viz)=V*2)+ V (2)
= Vg e ®+ Vs,
1) = 1'(z) + I (2)

= J e g o

(9-38a)

(9-38b)

where the plus and minus superscripts denote waves traveling in the +z- and —z-
directions, respectively. Wave amplitudes (V, 1) and (V, 1) are related by Eqs.
(9-35a) and (9--35b), and it is easy to verify (Problem P.9 5) that

- v Ve ;
o R SRR S s S




440 9 Theory and Applications of Transmission Lines

For an infinite line (actually a semi-infinite line with the source at the left end)
the terms containing the e’* factor must vanish. There are no reflected waves; only
the waves traveling in the + z-direction exist. We have

Viz) = Vi(z) = Vie 7, (9-40a)
I2)=1"(2) = Ile~ ™ (9-40b)

The ratio of the voltage and the current at any z for an infinitely long line is inde-
pendent of z and is called the characteristic impedance of the line.

R + joL y R + joL .
Z = = = i e
0 . G WBwser  © e

Note that y and Z, are characteristic properties of a transmission line whether or
not the line is infinitely long. They depend on R, L, G, C, and w—not on the length
of the line. An infinite line simply implies that there are no reflected waves.

There is a close analogy between the general governing equations and the wave
characteristics of a transmission line and those of uniform plane waves in a lossy
medium. This analogy will be discussed in the following example.

s EXAMPLE 9-2  Demonstrate the analogy between the wave characteristics on a
transmission line and uniform plane waves in a lossy medium.

Solution In a lossy medium with a complex permittivity €, = € — je”’ and a com-
plex permeability u = ' — ju” the Maxwell’s curl equations (7-104a) and (7-104b)
become
Vx E= —jo(u — ju")H, (9-42a)
V x H = jw(e’ — je")E. (9-42b)

If we assume a uniform plane wave characterized by an E, that varies only with z,
Eq. (9-42a) reduces to (see Eq. 8—12b)

£ &}, 2
p A 2 dE (z) R
- | el =3 ac " H
/X E 7;%32 = 5, = JoW —juH, ks
; 7 J2 = (wu” + jou')H,.
). @ (7]

Similarly, we obtain from Eq. (9-42b) the following relation:

dH (z)

o (we” + jwe')E,. (9 43b)
(

Comparing Eqs. (9-43a) and (9 -43b) with Egs. (9-35a) and (9- 35b), respectively, we
recognize immediately the analogy of the governing cquations for E_ and H, of a
uniform plane wave and those for ¥ and I on a transmission line.

il{C_Z_> = (&1"/“*’]_—) (2 (?—.?J‘A)
-7
D fey mE O
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Equations (9-43a) and (9-43b) can be combined to give

J"V[?) = Y Viz> T-76~ d’E (2)

122 = y*E {2) (9—-44a)
and
d2H (2)
dinZ) = rI(Z) @_361) dz? = TzHy(z)’ (9-44b)

which are entirely similar to Egs. (9-36a) and (9-36b). The propagation constant of
the uniform plane wave is

Y=+ f? J Q{-r/;wL)C‘ﬂjwc: B3Py =a+jp= V(op” + jou)(we'" + joe), (9-45).

which should be compared with Eq. (9-37) for the transmission line. The intrinsic
impedance of the lossy medium (the wave impedance of the plane wave traveling in
the + z-direction) is (see Eq. 8-30)

Vz) _(R+jal
- PR ad L P e TR WY s .S (9-46)
I@ q—-r/‘ud €' + je

which is analogous to the expression for the characteristic impedance of a trans-
mission line in Eq. (9—41).
Because of the above analogies, many of the results obtained for normal incidence
of uniform plane waves can be adapted to transmission-line problems, and vice versa. .
==

\

The general expressions for the characteristic impedance in Eq. (9-41) and the
propagation constant in Eq. (9-37) are relatively complicated. The following three
limiting cases have special significance.

1. Lossless Line (R =0,G = 0).
a) Propagation constant:

vy = a + jf = jo/LC; (9-47)
o =0, (9-48)
g = aLC (a linear function of w). (9-49)

b) Phase velocity:

&) 1
i e e (constant). (9-50)

BT gk

¢) Characteristic impedance:

’ : L
Zo=Ro+jXg= [=; (9-51)
C ;
1
Ry = \ﬂ (constant), (9-52)

-‘Y o= 0‘ (9"53)

ST R AN N S e sy
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2. Low-Loss Line (R « wL, G « wC). The low-loss conditions are more easily sat-
isfied at very high frequencies.

a) Propagation constant:

R 1/2 i 1/2
y=oc+jﬁ=jco\/LC(1 +,_) (1 +_—)
JjoL

JjoC

;jw\/ﬁ(l + .—RZ)(l + Zc%) (9-54)
omic £ (1:2]

2

p = w+/LC (approximately a linear function of w). (9-56)
b) Phase velocity:

U, =— > —— (approximately constant). (9-57)

¢) Characteristic impedance:

) L R 1/2 G =1/2
= '%(7—_‘_/) ZO=RO+JX0=\/g(1 +]Q)—L) (1+R)

(9-58) ‘

o 1+1 R G
ot 2io\L C
I
i (9-59
Ry |- )

L1 R G

3. Distortionless Line (R/L = G/C). If the condition
R &
Lo
" is satisfied, the expressions for both y and Z,, simplify.

(9-61)

a) Propagation constant:

RC

(9-62)
= \/g (R + jwL);
a =R \/-S (9-63)

B=w.yLEC (a linear function of w). (9-64)
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b) Phase velocity:

w
U, =— = —— constant). 9-65
»= 8~ Jic ( ) (9-65)

¢) Characteristic impedance:

’ Kégol. = fL
Zo=Ro+jX,= /(‘RC/L)+ij —\E, (9-66)
R, = \/g (constant), (9-67)

Thus, except for a nonvanishing attenuation constant, the characteristics of a distor-
tionless line are the same as those of a lossless line—namely, a constant phase velocity
(u, =1 /~/LC) and a constant real characteristic impedance (Z, = R, = /L/C).

A constant phase velocity is a direct consequence of the linear dependence of the
phase constant f on w. Since a signal usually consists of a band of frequencies, it is
essential that the different frequency components travel along a transmission line at
the same velocity in order to avoid distortion. This condition is satisfied by a lossless
line and is approximated by a line with very low losses. For a lossy line, wave
amplitudes will be attentuated, and distortion will result when different frequency

ﬁ = i @ / components attenuate differently, even when they travel with the same velocity. The
t C,' " /) condition specified in Eq. (9-61) leads to both a constant « and a constant u,—thus
the name distortionless line.

The phase constant of a lossy transmission line is determined by expanding the
expression for y in Eq. (9-37). In general, the phase constant is not a linear function
of w; thus it will lead to a u,, which depends on frequency. As the different frequency
components of a signal propagate along the line with different velocities, the signal
suffers dispersion. A general, lossy, transmission line is therefore dispersive, as is a
lossy dielectric.

= EXAMPLE 9-3 It is found that the attenuation on a 50 (Q) distortionless trans-
A mi‘ssion line is 0.01 (dB/m). The line has a capacitance of 0.1 (nF/m).

a) Find the resistance, inductance, and conductance per meter of the line.
b) Find the velocity of wave propagation.

¢) Determine the percentage to which the amplitude of a voltage traveling wave
decreases in | (km) and in 5 (km).

Solution

a) For a distortionless line,

o= 00 JB/”'
= (7) Mp/m —

Seo A 745")}”)-'— o f 268
b fom
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9-3.2 TRANSMISSION-LINE PARAMETERS — oschoss or HecrKors conducthss

The electrical properties of a transmission line at a given frequency are completely

« characterized by its four distributed parameters R, L, G, and C. These parameters
for a parallel-plate transmission line are listed in Table 9-1. We will now obtain
them for two-wire and coaxial transmission lines.

Our basic premise is that the conductivity of the conductors in a transmission
line is usually so high that the effect of the serics resistance on the computation of
the propagation constant is negligible, the implication being that the waves on the
line are approximately TEM. We may write, in dropping R from Eq. (9-37),

V= oz/‘F:: J@-ﬁ-j‘o[_) (?-r/'“d)? )v:jw\/LC(l +j¢f(')”2' /f(, R=0 9-69)
(G

From Eq. (8-44) we know that the propagation constant for a TEM wave in a
medium with constitutive parameters (u, €, o) is

Cfara- space 1/2
{ / ) RSP (1 ¥ jwie ) / . Lofq-/: dyfyu-ﬂ»@_m)
But — ’f Rzo

BR° . (9-71)
C €

in accordance with Efy. (5-81); hence comparison of Egs. (9-69) and (9-70) yields

LC = e, | Afpremimathion 9-72
7 2 JZ» Core y(ﬁr:o e

Equation (9-72) is a very useful relation, because if L is known for a line with
a given medium, C can be determined, and vice versa. Knowing C, we can find G
from Eq. (9-71). Series resistance R is determined by introducing a small axial E, as
a slight perturbation of the TEM wave and by finding the ohmic power dissipated
in a unit length of the line, as was done in Subsection 9-2.1.

Equation (9-72), of course, also holds for a lossless line. The velocity of wave

propagation on a lossless transmission line, u, = 1/\/LC, therefore, is equal to the

velocity of propagation, 1/\/,;, of unguided plane wave in the dielectric of the
line. This fact has been pointed out in connection with Eq. (9-21) for parallel-plate
lines.

1. Two-wire transmission line. The capacitance per unit length of a two-wire trans-
mission line, whose wires have a radius a and are separated by a distance D, has
been found in Eq. (4—47). We have

e

From Egs. (9-72) and (9-71) we obtain

f
RSN D MG\
L e -;Ce* Ao 2% o~ L= % cosh™! (2—) (H/m) |45 Auo (9-74)

a

- _2- A n
AL 25 D and /%CV)‘S) 27 i
e~ &
7c “) o T AR T (9-75)*
g-/f-’-f) cosh ™' (D/2a)

Yeosh ' (D/2a) = In (D/a) il (D/2a)* » 1.
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To determine R, we go back to Eq. (9-28) and express the ohmic power
dissipated per unit length of both wires in terms of P.- Assuming the current
Js (A/m) to flow in a very thin surface layer, the current in each wire is | — 2nal,,
and

1 R
P, = 2nap, = 3 §* (27;;) (W/m). (9-76)

Hence the series resistance per unit length for both wires is

R = 2(£) = L /% (€2/m). (9-77)
2na na (o ,

In deriving Egs. (9-76) and (9-77), we have assumed the surface current J, to be
uniform over the circumference of both wires. This is an approximation, inasmuch
as the proximity of the two wires tends to make the surface current nonuniform.

2. Coaxial transmission line. The external inductance per unit length of a coaxial
transmission line with a center conductor of radius a and an outer conductor of
inner radius b has been found in Eq. (6—140): ‘9_/

__———/d. /Uo A g,rn o
7= T e 5.0 oli- L?  (/m) /*Jfr AUJ"" 9-78)
CK—/%‘Q ‘f I>>a or 5 <</ 5,
From Eq. (9-72) we obtain
2
- (z; y (F/m), (9-79)
and from Eq. (9-71),
-t 9-80
3 A“J—' d‘to g% AN (7_//2) _]n (b/a) m)s ( i )

v

. Where o is the equivalent conductivity of the lossy dielectric. If one prefers, o
could be replaced by we” as in Eq. (7-112).

To determine R, we again return to Eq. (9-27), where J,; on the surface of
the center conductor is different from J_, on the inner surface of the outer con-
ductor. We must have

I =2nal; = 2nhJ,. (9 81)

The power dissipated in a unit length of the center and outer conductors are,
respectively,

oo R
P, = 2nap,; = 3 ’_(zn};)‘ (9-82)
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TABLE 9-2
Distributed Parameters of Two-Wire and Coaxial
Transmission Lines
Parameter Two-Wire Line Coaxial Line Unit
R, R, /1 . 1
R r o (5 + E) Q/m
L K cosh~? (2) L 5 H/m
i 2a P A
- no 2no
& cosh- ' (D/2a) In (b/a) St
, TE 2me
Eton « cosh-T(D/2a)  In(b/a Fifn
’i7f— Note: R, = /nfuca.; cosh™" (D/2a) = In (D/a) if (D/2a)* > 1. Internal

inductance is not included.

G.3p) £(9-2)
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9-3.3 ATTENUATION CONSTANT FROM POWER RELATIONS

The attenuation constant of a traveling wave on a transmission line is the real part
of the propagation constant; it can be determined from the basic definition in Eq.
(9-37): 1.

& = Rely) = Re[(R + joL)(G + joC)]. (9-85)

The attenuation‘ onstant can also be found from a power relationship. The
phasor voltage and phasor current distributions on an infinitely long transmission
line (no reflections) rE y be written as (Eqgs. (9-40a) and (9 -40b) with the plus super-
script dropped for simplicity):

g V(z) = Ve P2, (9-86a)

74 .
I(z) = 22 e @tibz (9-86b)
0

The time-avérage pm’ver prdpagated along the iinc at any z is
PED3R[VI*A)] € why 7

| . 8
| = 3ZoP

9-87
Roe™ 2=, :

The law of conservaticn of energy requires that the rate of decrease of P(z) with dis-
tance along the line equals the time-average power loss P, per unit length. Thus,

s W ; | ‘ E

Z =R+aL)L | 0 -} -

jz @ i ) -. (__;_;%@) & nZ(ZZ) = P2) | @bere f(2) Eo;w‘*-?r}/ Q'J’)?
= :,_L =<Q""'j“"4) 4 |/) (D 2xP(z),

Z
360,
fr(gm wh-iéh)w obtain the following rormualﬂf”"’”" &7

&= A L | L= P2
N 2P(z2)

life > @) con da oheon dirs Ty Py Hectem 3y Closer &

s EXAMPLE 9-4 H

(Np/m). (9-88)

a) Use Eq. (9-88) to }ﬁnd the attenuation constant of a lossy transmission line with
distributed parameters R, L, G, and C.

b) Specialize the rcstIt in part (a) to obtain the attenuation constants of a low-loss
line and of a distartionless line.

Solution i ‘

a) For a lossy‘transl‘rhission line the time-average power loss per unit length is
| P,(2) = }[I2)R + [V(2)|*G]

= Vo 2y, - 2az (9-89)
Substitution of Eﬁ;s (9-87) and (9-89) in Eq. (9-88) gives
| a=—t-(R+G|Zo)  (Np/m). (9-90)
| i 2R0

b) For a low-loss line, Zo = R, = +/L/C, Eq. (9-90) becomes

1/ R
=—|— R
I “‘2(R0+G °)
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FIGURE 9-6 : ' :
Finite transmission line terminated with load impedance Z, .

Given the characteristic y and Z, of the line and its length /, there are four
unknowns V¢, Vg, I, and I; in Egs. (9-93a) and (9-93b). These four unknowns
are not all independent because they are constrained by the relations at z = 0 and
at z = /. Both V(z) and I(z) can be expressed either in terms of ¥; and I, at the input
end (Problem P.9-12), or in terms of the conditions at the load end. Consider the

latter case.
Let z = ¢ in Egs. (9-93a) and (9-93b). We have

_)z

l/(2) = yte L e 4 Cz. /"%X(ﬁ”‘*)) Ve 4 Ve, (9-96a)
g0 ¢ 2, 17 by I = ;—" iV % e, (9-96b)
0 0
4 =
!’3- & Ve o and V;, we have
-+ =
o I, ‘H?)) oo S L 7 e, (9-97a)
@ = __4_ G-/ Vo ol =L Z)e ™ (9-97b)

(.{ } o }}h Substituting Eq. (9-95) in Egs. (9-97a) and (9-97b), and using the results in Egs.
: *‘:/ (9-93a) and (9-93b), we obtain
/0)70,& an e

1
V(z) = _L [(Z, + Zo)e'e™ 9 4 (Z; — Zo)e_w—z)], (9-98a)

Ko =5 [&; io)el" 2 (& — Zple 7 9], (9-98b)
220
Since / and z appear together in the combination (# — z), it is expedient to introduce
a new variable z’ = ¢ — z, which is the distance measured backward from the load.
Equations (9-98a) and (9-98b) then become

1 : :

V(z) 2’—2[: HE T (i e ], (9-99a)
1 ’ -

12) = 2t~ [(Z0 + Zo)e™ — (2, — Zole™ ™). (9-99b)
2Ly
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We note here that although the same symbols V and I are used in Egs. (9-99a) and
(9-99b) as in Eqgs. (9-98a) and (9-98b), the dependence of V(z') and I(z') on Z’ is
different from the dependence of V(z) and I(z) on z.

The use of hyperbolic functions simplifies the equations above. Recalling the

relations
e +e "™ =2coshy? god e —e "™ =2 sinh y7,

we may write Egs. (9-99a) and (9-99b) as
-7 4)—1;—"- [@+2) {Xi (Z-Z)e ij =

V(z') = I,(Z, cosh yz' + Z, sinh yz'), (9-100a)
1 ¥z’ =2’y _ | 1z _ Z, sinh yz’' + Z, cosh yz'), 9-100b
(7'771)52%—“2['%)& "(ZL‘Zo)e J () Z (Z, 1£4 0 yZ’) ( )

which can be used to find the voltage and current at any point along a transmission
line in terms of I, Z,, y, and Z,,.

The ratio V(2')/1(z') is the impedance when we look toward the load end of the
line at a distance z’ from the load.

V(z Z h yz’' + Z, sinh yz’
Y=z, h I A (9-101)
1(z') Z, sinh yz’' + Z, cosh yz
or
Zy + Z, tanh yz’
Ze) =& Q). -102
@) 0ZO+ZL tanh yz’ ) -

At the source end of the line, z’ = /, the generator looking into the line sees an input
impedance Z,.

Z, + Z, tanh y/

Q). 9-103
dae - Zo ¥+ Z. tanh 7 © ( )

As far as the conditions at the generator are concerned, the terminated finite trans-
- mission line can be replaced by Z;, as shown in Fig. 9-7. The input voltage V; and
input current I; in Fig. 9-6 are found easily from the equivalent circuit in Fig. 9-7.

FIGURE 9-7
Equivalent circuit for finite transmission line in Figurc 9- 6
at generator end.
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They are
zZ,
G e 2 G0
g i
v,
li=o—5 (9-104b)
g9 i

Of course, the voltage and current at any other location on line cannot be determined
by using the equivalent circuit in Fig. 9-7.
The average power delivered by the generator to the input terminals of the line is

(Pay)i = %@e[llill*]z=0, z'=¢- . (9-105)
The average power delivered to the load is

(Pav)L = %'%e[VLIf]z={, z’=0
1% |2
2z

(9-106)

1
S LR,

For a lossless line, conservation of power requires that (P,,); = (P,,)..

A particularly important special case is when a line is terminated with its charac-
teristic impedance—that is, when Z; = Z,,. The input impedance, Z; in Eq. (9-103),
is seen to be equal to Z,. As a matter of fact, the impedance of the line looking
toward the load at any distance z' from the load is, from Eq. (9-102),

‘ Z+ B Fanh
<7 -/o2) 2Z, < WA )’Z/) =Z@) = Z(z) = Z, flor Z, = Z 4} (9-107)
The voltage and current equations in Egs. (9-98a) and (9-98b) reduce to
G0z 2) e Pia-2)6" P = vy =t zeee = v 4 z=2  ©-108
G-754 ) b5 [<ZL+Z, N eb‘( -2) (Z-2) tb’(ﬂ/z)} )= e")e *=1e " (9-108b)

Equations (9-108a) and (9-108b) correspond to the pair of voltage and current equa-
tions—Eqs. (9-40a) and (9-40b)—representing waves traveling in + z-direction, and
there are no reflected waves. Hence, when a finite transmission line is terminated with its
own characteristic impedance (when a finite transmission line is matched), the voltage
and current distributions on the line are exactly the same as though the line has been

extendeélu:o mﬁ% S Ya>= |t fo)i . Qg <)
i + =
e o J[ { ze)= ot ¢ L Khrmz Gl
F- . . .

s X AMPI )—5 A slgnal generator having an internal resistance 1 () and an open-
circuit voltage v,(r) = 0.3 cos 2n10% (V) is connected to a 50 () lossless transmission
line. The line is 4 (m) long, and the velocity of wave propagation on the line is 2.5 x
10® (m/s). For a matched load, find (a) the instantancous expressions for the voltage
and current at an arbitrary location on the line, (b) the instantancous expressions
for the voltage and current at the load, and (c) the average power transmitted to the

load.
1.

(Cf) Mo\j—c'{zo/ Ooadidem n (p,} 9~ ) Z T?
</D“"'); =Lt & [v.&*)] (}/(74/)) 1{; &
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Solution

a) In order to find the voltage and current at an arbitrary location on the line, it is
first necessary to obtain those at the input end (z = 0, z’ = /). The given quan-
tities are as follows:

V,=03/0° (V), a phasor with a cosine reference,
Z,=R,=1 (Q),
Zo =Ry =50 (Q),
o=2r x 10° (rad/s),
u, =25 x 10® (m/s),
/=4 (m)
Since the line is terminated with a matched load, Z; = Z, = 50 (Q). The voltage

and current at the input terminals can be evaluated from the equivalent circuit
in Fig. 9-7. From Egs. (9-104a) and (9-104b) we have

x 0.3/0° = 0.294/0° (V),

g

0.3/0° :
;= P e 0.0059/0° (A).

Since only forward-traveling waves exist on a matched line, we use Egs.
(9-86a) and (9-86b) for the voltage and current, respectively, at an arbitrary
location. For the given line, « = 0 and

w 2n x 108
B = "Mty s T 0.87 (rad/m).

Thus,
V(z) = 0.294¢10-87z (V)

I(z) = 0.0059¢70-8%= (A),

These are phasors. The corresponding instantaneous expressions are, from Egs.
(9-34a) and (9-34b),

v(z, t) = Re[0.294¢12710%~0.822)]
= 0.294 cos (27108t — 0.87nz) (V),
i(z, t) = R[0.0059¢(2710% ~0.8x2)]
= 0.0059 cos (2710% — 0.87nz) (A).
b) At the load, z =/ = 4 (m),
v(4, 1) = 0.294 cos (2n10% — 3.21) (V),
i(4, 1) = 0.0059 cos (2m10% — 3.2m) (A).
¢) The average powcr transmitted to the load on a lossless line is equal to that at
the input terminals.
(P = (Py); = 34 V(z)I*(2)]
= 3(0.294 x 0.0059) = 8.7 x 10" * (W) = 0.87 (mW). —
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9-4.1 TRANSMISSION LINES AS CIRCUIT ELEMENTS

Not only can transmission lines be used as wave-guiding structures for transferring
power and information from one point to another, but at ultrahigh frequencies—
UHF: frequency from 300 (MHz) to 3 (GHz), wavelength from 1 (m) to 0.1 (m)—they
may serve as circuit elements. At these frequencies, ordinary lumped-circuit elements
are difficult to make, and stray fields become important. Sections of transmission
lines can be designed to give an inductive or capacitive impedance and are used to
match an arbitrary load to the internal impedance of a generator for maximum power
transfer. The required length of such lines as circuit elements becomes practical in
the UHF range. At frequencies much lower than 300 (MHz) the required lines tend
to be too long, whereas at frequencies higher than 3 (GHz) the physical dimensions
become inconveniently small, and it would be advantageous to use waveguide
components.

In most cases, transmission-line segments can be considered lossless: y = jp,
Zy, = Ry, and tanh y/ = tanh (jB/) = j tan p¢. The formula in Eq. (9-103) for the
input impedance Z; of a lossless line of length / terminated in Z; becomes

Z, + jR, tan Bf

¥
PR+

(Q). (9-109)

(Lossless line)

Comparison of Eq. (9-109) with Eq. (8—171) again confirms the similarity between
normal incidence of a uniform plane wave on a plane interface and wave propagation
along a terminated transmission line.

We now consider several important special cases.

1. Open-circuit termination (Z,, - o). We have, from Eq. (9-109),
Z=jX;= — t;:;{ = —jR, cot 7. (9-110)
Equation (9-110) shows that the input impedance of an open-circuited lossless
line is purely reactive. The line can, however, be either capacitive or inductive
because the function cot £ can be either positive or negative, depending on the
* value of B¢ (=2n//4). Figure 9-8 is a plot of X;,, = — R, cot B versus /. We see
that X;, can assume all values from — oo to + co.
When the length of an open-circuited line is very short in comparison with
a wavelength, 7 « 1, we can obtain a very simple formula for its capacitive reac-
tance by noting that tan i/ = fi/. From Eq. (9 110) we have

R L/C I
Z,=jXp= —j—=—j \// W ey (9-111)
pt w\/LC¢ wCe

which is the impedance of a capacitance of C/ farads.

In practice, it is not possible to obtain an infinite load impedance at the end
of a transmission line, especially at high frequencies, because of coupling to near-
by objects and because of radiation from the open end.




Xio = —Rg cot 3¢

S

FIGURE 9-8 Hoss s ?J"‘f‘)
Input reactance of gpen-circuited)transmission line.

2. Short-circuit termination (Z; = 0). In this case, Eq. (9-109) reduces to
Z;s=jX;; =jR, tan /. (9-112)
Since tan ¢ can range from — oo to + oo, the input impedance of a short-circuited
lossless line can also be either purely inductive or purely capacitive, depending
on the value of f7. Figure 9-9 is a graph of X, versus /. We note that Eq.(9-112)
has exactly the same form as that—Eq. (8—172)—of the wave impedance of the
total field at a distance # from a perfectly conducting plane boundary.
Comparing Figs. 9-8 and 9-9, we see that in the range where X io 1S Capacitive
X5 is inductive, and vice versa. The input reactances of open-circuited and short-
circuited lossless transmission lines are the same if their lengths differ by an odd
multiple of 1/4.
When the length of a short-circuited line is very short in comparison with a
wavelength, ¢ « 1, Eq. (9-112) becomes approximately

L
Zis =ins g]Roﬂ/ =_] E w-\ / LC/ =]wL/, (9*113)

i ! : . ¢ uJ"J& MA(?‘BL"IO—»
which is the impedance of an inductance of L/ henries. ’L”J :

;51} v .
=
s | I
< : E(Inductive) {
Il |
e : | |
= IA I Lsx '
L A B Z. go A= Zeom
0 t ' S Tl : > 7
: % i 3/ a
! : : % =0 s é T
: | : (Z‘f;'tQ
[ : (Capacitive) FIGURE 9-9
|

Input reactance of ¢

transmission line.
(,ZG-CF,ZU‘J)
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3. Quarter-wave section (¢ = 1/4, f¢ = mn/2). When the length of a line is an odd
multiple of 4/4,/ =(2n— 1)A/4,(n=1,2,3,...),

T

2n A

tan f¢ = tan [(Zn — l)gil - + 00,

and Eq. (9-109) becomes

Z-—Rg

i (Quarter-wave line). (9-114)
A :

Hence, a quarter-wave lossless line transforms the load impedance to the input
terminals as its inverse multiplied by the square of the characteristic resistance.
It acts as an impedance inverter and is often referred to as a quarter-wave trans-
Jormer. An open-circuited, quarter-wave line appears as a short circuit at the
input terminals, and a short-circuited quarter-wave line appears as an open cir-
cuit. Actually, if the series resistance of the line itself is not neglected, the input
impedance of a short-circuited, quarter-wave line is an impedance of a very high
value similar to that of a parallel resonant circuit. It is interesting to compare
Eq. (9-114) with the formula for quarter-wave impedance transformation with
multiple dielectrics, Eq. (8—182a).

4. Half-wave section (/ = /2, p£ = m). When the length of a line is an integral mul-
tipe ot L2 =nifln=123..)

2n (nl
Pl = iy <7> = nr,

tan £ = 0,
and Eq. (9-109) reduces to

Z,=Z (Half-wave line). (9-115)

Equation (9-115) states that a half-wave lossless line transfers the load impe-
dance to the input terminals without change. From Eq. (9-103) we observe that
a half-wave line with loss does not have this property unless Z, = Z,.

By measuring the input impedance of a line section under open- and short-circuit
conditions, we can determine the characteristic impedance and the propagation con-
stant of the line. The following expressions follow directly from Eq. (9 - 103).

Open-circuited line, Z, — : Z,, = Z, coth ¢/, (9-116)

F { Short-circuited line, Z, = 0: L, = &, tanh w8 9-117)
2w

Z + Z, Aeah YL

4 2 1L ) L 48
Z, + 7 Ak YK @/3)
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From Eqgs. (9-116) and (9-117) we have

ZO = \/ZioZis (Q) (9_118)

and

1 .4
y=ztanh'1 Z o) (9-119)

Equations (9-118) and (9-119) apply whether or not the line is lossy.

mmmmm EXAMPLE 9-6 The open-circuit and short-circuit impedances measured at the input
terminals of a lossless transmission line of length 1.5 (m), which is less than a quarter
wavelength, are —j54.6 (Q2) and j103 (Q), respectively. (a) Find Z, and y of the line.
(b) Without changing the operating frequency, find the input impedance of a short-
circuited line that is twice the given length. (c) How long should the short-circuited
line be in order for it to appear as an open circuit at the input terminals?

Solution The given quantities are
Zpy=—j546, Z,=j103, (=15
a) Using Eqgs. (9-118) and (9-119), we find

Zo =/—j54.6(j103) =75 (Q)

1 -y 19 J - ;
= / =t 1.373 = jO. 3
Y G tanh o T w an 373 =j0.628 (rad/m)

b) For a short-circuited line twice as long, # = 3.0 (m),
7 = j0.628 x 3.0 =;j1.884 (rad).
The input impedance is, from Eq. (9-117),
Z;; =75 tanh (j1.884) = j75 tan 108°
=j75(—3.08) = —j231 (Q).

Note that Z; for the 3 (m) line is now a capacitive reactance, whereas that for
. the 1.5 (m) line in part (a) is an inductive reactance. We may conclude from Fig.
9-9 that 1.5 (m) < /4 < 3.0 (m).

¢) In order for a short-circuited line to appear as an open circuit at the input termi-
nals, it should be an odd multiple of a quarter-wavelength long:

1o AR

B 0828

Hence the required line length is

v

=10 (m).

/ /1+( l);”
=-—4+Mm—-1)z
2

=25+4+5n—-1) (m), =123 e
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So far in this subsection we have considered only open- and short-circuited loss-
less lines as circuit elements. We have seen in Figs. 9-8 and 9-9 that, depending on
the length of the line, the input impedance of an open- or short-circuited lossless line
can be either purely inductive or purely capacitive. Let us now examine the input
impedance of a lossy line with a short-circuit termination. When the line length is a
multiple of 4/2, the input impedance will not vanish as in Fig. 9-9. Instead, we have,
from Eq. (9-117),

sinh (a + jp)/

Zis e ZO tanh ’y( = ZO Cosh (a +jﬁ)[

/ ; ; (9-120)
_, sinh aZ cos B/ + j cosh af sin p/
® cosh a cos B + j sinh o sin B¢
For £ = nl/2, B¢ = nm, sin B¢ = 0, Eq. (9-120) reduces to M}'I i
A A
A;,(L((n,o/ . : Z;s = Zytanh of = Z(af), at Sangl = >(9 121)
2 /Q &L | where we have assumed a low-loss line: o/ « 1 and tanh o/ = a/. The quantity Z,,

in Eq. (9-121) is small but not zero. At Z = ni/2 we have the condition of a series-
resonant circuit.

When the length of a shorted lossy line is an odd multiple of /4, the input
impedance will not go to infinity as indicated in Fig. 9-9. For ¢ = ni/4, f¢ = nm/2
(n = odd), cos £ = 0, and Eq. (9-120) becomes

ey fax. |2,
- e ( 4 ;f:,[r,(-f)(g e

which is large but not infinite. We have the condition of a parallel-resonant circuit.
It is a frequency-selective circuit, and we can determine the quality factor, or Q, of
such a circuit by first finding its half-power bandwidth, or simply the bandwidth.
The bandwidth of a parallel-resonant circuit is the frequency range Af = f, — f,
faround the resonant frequency f,, where f, = f, + Af/2 and f, = f, — Af/2 are half-

power frequencies at which the voltage across the parallel circuit is 1/ \/f or 70.7%
of its maximum value at f;, (assuming a constant-current source). Hence the associated
® s ,{i» power, which is proportional to |Z,|* and is maximum at f;, is one-half of its value
]02-')[/ . at f, and f,. . ‘
Let f = fo + &f, where df is a small frequency shift from the resonant frequency.
We have

po 2, 2+,
llp llp
(9-123)

sf
:nn+nn<(j> i
fo

I

(9-125)

cos p£ = —sin | — o\, _nm §L -
7 f 2) [,,L <¢5’>‘jﬂ, 2% e

sin f§i¢ =
Jo

Max. 12| of £5F£
when 4= < )7 (2= odd )(5 cesfh=0)
‘m“,§ = .J—7Cf

/1 s




9-4 Wave Characteristics on Finite Transmission Lines 459

where we have assumed (n7/2)(f/f,) < 1. Substituting Egs. (9-123), (9-124), and
@ (9-125) in Eq. (9-120), noting that a/ « 1, and retaining only small terms of the first
Q- order, we obtain

Zo (9-126)
al + | <g>
2 \fo
Z 2
1Z|* = Zo (9-127)

(@)* + [’;—n (%):IZ

At f = fo, Of =0, |Z,* is a maximum and equals |22 = [Z 2 /o) Thsk
A 1

IZislxznax 2 nm 5f ok
RETO)

When 6f = +Af/2, we have the half-p frequencies f, and f;, at which the ratio

(9-128)

in Eq. (9-128) equals 4, or A {So
A g ﬂ(ﬂ =_ﬂ_<_Ai)=1 = odd 9-129
L=(2 0 he " o aboid

Therefore, the Q of the parallel-resonant circuit (a shorted lossy line having a length
equal to an odd multiple of 1/4) is

N (9-130)

Q—M“m

Using the expressions of « and B for a low-loss line in Egs. (9-55) and (9-56), we
obtain
oL 1

Q=R+GUC=RWMJ+MMQI

* For a well-insulated line, GL/C « R, and Eq. (9-131) reduces to the familiar expres-
sion for the Q of a parallel-resonant circuit:
l L
Ll D= f."R_. 9-132)

(9-131)

In a similar manner an analysis can be made for the resonant behavior of an open-
Sories circuited low-loss transmission linc whose length is an odd multiple of /4 (serics
A};p)ama—- resonance) or a multiple of 4/2 (pflmllcl resonance). (Sece Problem P9 21)
el C7A=~ _Qﬁqu,cm e M?ﬂ?b@kl)
e EXAMPLE 9-7  The measured attenuation of an air-dielectric coaxial transmission
line at 400 (MHz) is 0.01 (dB/m). Determine the Q and the half-power bandwidth of
a quarter-wavelength section of the line with a short-circuit termination.

£

%

SRR
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Solution At f' =4 x 10® (Hz),

¢ '3x10°
A _f = W = 0.75 (m),
2n 2n
= —— e 8
B T =075 =838 (rad/m),
0.01
o = 0.01 (dB/m) = 369 (Np/m).
Therefore,
B 8.38 x 8.69

0=~ 2Ix001 %

which is much higher than the Q obtainable from any lumped-element parallel-
resonant circuit at 400 (MHz). The half-power bandwidth is
fo 4 x10°

A'=0= 361

=0.11 x 10° (Hz)

=0.11 (MHz), or110 (kHz). s

9-4.2 LINES WITH RESISTIVE TERMINATION

When a transmission line is terminated in a load impedance Z,; different from the
characteristic impedance Z,, both an incident wave (from the generator) and a re-
flected wave (from the load) exist. Equation (9-99a) gives the phasor expression for
the voltage at any distance z' = / — z from the load end. Note that in Eq. (9-99a),
the term with e’ represents the incident voltage wave and the term with e™’*' rep-

: resents the reflected voltage wave. We may write
I ; Z,—Z ,
B =—=(Z, + Z )| | + 2% g2
2 Z,+Z,
il I (9-133a)
= —2E(zL + Zo)e'" [1 + Te™ 2%,
" where
Z,—Z : ; ;
= ZL ;—20 = |F elfr (Dimensionless) (9-134)
L 0

is the ratio of the complex amplitudes of the reflected and incident voltage waves at
the load (=" = 0) and is called the voltage reflection coefficient of the load impedance
Z,.. Itis of the same form as the definition of the reflection coeflicient in Eq. (8 140)
for a planc wave incident normally on a plane interface between two dicleetric media.
It is, in general, a complex quantity with a magnitude || < 1. The current equation

4 —-ﬂ/
e = £ 3 [arz) e o2 <)
it i

b R e TN

(-774)




:R, -:)a[—_', Viz) = 12(ZL+R)eJﬂz[l+re-12,8z]
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corresponding to V(z') in Eq. (9—133a) is, from Eq. (9-99b),

)= (Z, + Zg)e'™ [1 — Te 7], (9-133b)
220

The current reflection coefficient defined as the ratio of the complex amplitudes
of the reflected and incident current waves, I, /I, is different from the voltage re-
flection coefficient. As a matter of fact, the former is the negative of the latter, inasmuch
as Ig/I§ = —V5/Vg, as is evident from Eq. (9-94). In what follows we shall
refer only to the voltage reflection coefficient.

For a lossless transmission line, y = jfB, Egs. (9—133a) and (9-133b) become

I (9-135a)
= ~2~(ZL + Ro)e#[1 + |[|ei®r—2627]
and
I(z) = ;TLO (Zy + Rp)e#=[1 — |I|e/®r —2627], (9—-135b)

The voltage and current phasors on a lossless line are more easily visualized from
Eqgs. (9-100a) and (9-100b) by setting y = jf and Vi = I, Z, . Noting that cosh j# =
cos 0, and sinh j@ = j sin 0, we obtain

V(z') = Vi cos Bz’ + jI R, sin Bz, (9-136a)
..
I(zy=1,cos Bz’ +j R—L sin Bz’ (9-136b)
0

(Lossless line)

If the terminating impedance is purely resistive, Z, = R, V| = I R,, the voltage and
current magnitudes are given by

[V(2)| = V,\/cos? Bz’ + (Ro/Ry)? sin? Bz, (9-137a)
[1(z')] = I +/cos? Bz’ + (R./R,)? sin? Bz’, (9-137b)
where R, = \/L/C. Plots of |V(z')| and [I(z)| as functions of z’ are standing waves
with their maxima and minima occurring at fixed locations along the line.
Analogously to the planc-wave case in Eq. (8 147), we define the ratio of the

maximum to the minimum voltages along a finite, terminated line as the standing-wave
ratio (SWR), §:

| mn| e ]+ Jr,
ll’mml =y |r|

Grless Jinee

(Dimensionless). (9-138)




|
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\
The inverse re{ation of Eq. (9-138) is

r, ZL_ o Z»u s 1
7, +Z, | T} = SoT (Dimensionless). (9-139)
= [+ { ’7‘ It is clear from Egs. (9-138) and (9-139) that on a lossless transmission line
(=17l r=0, S=1 when Z; = Z, (Matched load);

= —1, S - o when Z, = 0 (Short circuit);
I'=+1, S - when Z; — oo (Open circuit).

Because of the| wide range of 8, it is customary to express it on a logarithmic scale:

I‘#) 20 log,, S in (dB). Standing-wave ratio S defined in terms of I max|/[Imin| Tesults in the

= Lﬂﬂ/ same expression as that defined in terms of |Vinaxl/|Vaaia| in Eq. (9-138). A high
,ﬁ‘rj o standing-wave ratio on a line is undesirable because it results in a large power loss.
7-) X Examination of Eqs. (9-135a) and (9-135b) reveals that |Vnax| and |, occur

‘Q ~lr! 3 LR, together when |

7[ Or — 282y, = —2nm, o) 1, 2 S0E (9-140)
I‘_(Z»”b

\ G-13 J.) On the other hand, [V,,;,| and [Imax| OCCUr together when

,f/um‘ | 6 —2Bz,=—Q2n+1n, n=0,1,2,.... (9-141)

For resistive terminations on a lossless line, Z, =R, Z, = R,, and Eq. (9-134)
simplifies to
. R, — R,

P
F——

- R :
The voltage reflection coefficient is therefore purely real. Two cases are possible.

(Resistive load). (9-142)

L. Ry > Ry: In this case, I' is positive real and O =0. -~
2. R <Rt I m;q;‘,em and bp=-r

__EI Kz tor R > Ry
H(z")l for R < Ry

___[”(Z')l for R > Ry
1Mz for R < Ry

St ) N2 N4

FIGURE 9-10
Voltage and current standing waves on resistance-terminated lossless lines.

‘C [V(z")| for open-circuited line.
1(z")| for shori-circuited line.
_____ CU(Z' ) for open-circuited line.

[V(z" )| for short-circuited line.,

' - / \/
A KV A/2 A4

~

FIGURE 9-11
Voltage and current standing waves on open- and short-circuited lossless lines.




mmmmmm EXAMPLE 9-8 The standing-wave ratio S on a transmission line is an easily mea-
surable quantity. (a) Show how the value of a terminating resistance on a lossless line
of known characteristic impedance R, can be determined by measuring S. (b) What

is the impedance of the line looking toward the load at a distance equal to one quarter
of the operating wavelength?

Solution

a) Since the terminating impedance is purely resistive, Z, = R, , we can determine
whether R, is greater than R, (if there are voltage maxima at z' = 0, 1/2, 4, etc.)
or whether R, is less than R, (if there are voltage minima at 2/ = 0, 1/2, 4, etc.).
This can be easily ascertained by measurements.

First, if R, > Ry, 0r = 0. Both |V,,,,| and |I,;,| occur at fz' = 0; and [Vaain
and |I,,,| occur at fz' = n/2. We have, from Egs. (9-136a) and (9-136b),

VD= @ fe s LRG2 [l b Vol =0 R

Ry
1) = 12.5""/?3/":] %x;vﬂz’ R,

|Imin| = IL’ |Imax| — IL

_ Ro
(? "/'?6' a)j) Thus,
'Vmaxl S |I1Tlﬁx| = S=ﬁ
|Vmin| |Iminl Ro
or
RL - SRO (9—145)

Second, if Ry < Ry, O = —n. Both |V, and |I,,,| occur at Bz’ = 0; and
|Vinax| and |I0| occur at Bz’ = /2. We have

e RU A
|Vmin| e VL’ ’Vmax| - VL R_]_,,
i
lImaxJ == IL’ |Imin| i jl.L «Ro.
Therefore,
|Vmax| X2 Ilmax, 4 S=£Q_
Vainl Wil R,
or
e R, = };". (9-146)

b) The operating wavelength, 4, can be determined from twice the distance between
two neighboring voltage (or current) maxima or minima. At z' = }/4, Bz’ = n/2,
cos 8z = 0, and sin iz’ = |. Equations (9 - 136a) and (9 -136b) become

Vi) = §1, R,

; s
1G4 =) p-
0

(Question: What is the significance of the j in these equations?) The ratio of V(4i/4)
to 1(4/4) is the input impedance of a quarter-wavelength, resistively terminated,
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lossless line.

, V(4/4)
Z{z =A4) =R, = 10/3)
R3
= R,
This result is anticipated because of the impedance-transformation property of a
quarter-wave line given in Eq. (9-114). ==

9-4.3 LINES WITH ARBITRARY TERMINATION C /@o,gc;fu; )

In the preceding subsection we noted that the standing wave on a resistivel y terminated
lossless transmission line is such that a voltage maximum (a current minimum) occurs
at the termination where 2’ = 0 if R, > R,, and a voltage minimum (a current maxi-
mum) occurs there if R, < R,. What will happen if the terminating impedance is not
a pure resistance? It is intuitively correct to expect that a voltage maximum or mini-
mum will not occur at the termination and that both will be shifted away from the
termination. In this subsection we will show that information on the direction and
amount of this shift can be used to determine the terminating impedance.

Let the terminating (or load) impedance be Z; = R} + jX,, and assume the volt-
age standing wave on the line to look like that depicted in Fig. 9-12. We note that
neither a voltage maximum nor a voltage minimum appears at the load at z/ = 0. If °
we let the standing wave continue, say, by an extra distance Zm> 1t Will reach a mini-
mum. The voltage minimum is where it should be if the original terminating impe-
dance Z, is replaced by a line section of length /m terminated by a pure resistance Roy < A

=~
\ -
| \ Fie £ Z,v"Jka;fszj,
} \ 4 5 ) Glo
| % Ro t_j 2 Hon f"/(
| %
| 74
s L :
i o B AR ke and =l
|
< a |
i |
| |
Zm =0 |' /
T
T
S L RR APy
| <
s Bl = FIGURE 9-12
& 2= 0 Voltage standing wave on a line terminated by an
. arbitrary impedance, and equivalent line section
| L ol with pure resistive load.

'Z;”+_X% 8 % \me (?“/;‘/) QF—}‘FZ,;:”—CZ?H'-.QK.

whos— Q= ).7\//9
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R,, < Ry, as shown in the figure. The voltage distribution on the line to the left of
the actual termination (where z’ > 0) is not changed by this replacement.

The fact that any complex impedance can be obtained as the input impedance
of a section of lossless line terminated in a resistive load can be seen from Eq. (9-109).
Using R,, for Z, and ¢, for ¢, we have

. R,, + jR, tan £,
@ T Ry + jR,, tan ¢, ‘ =40
AN fp;
The real and 1magmar3f’E parts of Eq. (9-147) form two equations, from which the
two unknowns, R, and Z,,, can be solved (see Problem P.9-28).
The load impedance Z, can be determined experimentally by measuring the
standing-wave ratio S and the distance z,, in Fig. 9-12. (Remember that z,, + 7, =
A/2.) The procedure is as follows:

1. Find [T from S. Use |I| = T = ; from Eq. (9-139). ( Vi niarcu}nj o A
2. Find 6 from z,,. Use 8y = 28z,, — n for n = 0 from(Eq. (9 141) lf’i’-ﬂ, —-—(177#)713/
3. Find Z,, which is the ratio of Egs. (9—-135a) and (9-135b) at z’ R U
1+ |1"|e""r
[‘7 = f’/ Q /7@_/)%):% Z, =Ry +jX; = Ro |1—~|ejgr. (9-148)

Ze t Zo The value of R,, that, if terminated on a line of length Z,, will yield an input
=2 impedance Z; can be found easily from Eq (9-147). Since R,, < Ry, R,, = R/S. ﬂam(ﬁﬂd)
o= R The procedure leading to Eq. (9-148) is used to determme VA% frorn a measure-
ment of S and of z,,, the distance from the termination to the first voltage minimum.
Of course, the distance from the termination to a voltage maximum, zj,, could be
used instead of z,,. In that case, Eq. (9-140) should be used to find 0 in Step 2
above.

mesmmsm EXAMPLE 9-9 The standing-wave ratio on a lossless 50 (€2) transmission line ter-
minated in an unknown load impedance is found to be 3.0. The distance between suc-
cessive voltage minima is 20 (cm), and the first minimum is located at 5 (cm) from
the load. Determine (a) the reflection coefficient I', and (b) the load impedance Z, .
In addition, find (c) the equivalent length and terminating resistance of a line such
that the input impedance is equal to Z, .

Solution

a) The distance between successive voltage minima is half a wavelength.

2
i=2%D0=04 fm), §- : i 0’; — 57 (rad/m).

Step 1: We find the magnitude of the reflection coefficient, ||, from the standing-
wave ratio § = 3.

5=%1 3=1
W T e

21eets




\]4-,-—- HHHHH —  Z = S——— Y - —--;T
z= 2=4
=1 2=0
1
@*/5”_,?4 ) V(z') = ?L [Z, + Zg)e™ +(Z, — Zp)e ], (9-99a)
G~12:4) i ,
= g, e 2T = (B =2 T (9-99b)
?L+ Eo

—

¢) Now we find R,, and /,, in Fig. 9-12. We may usc Eq‘. (9 147),
R,, + j50 tan i/,
e 50(50 +me tan l[;/’,,,)'
and solve the simultaneous equations obtained from the real and imaginary parts
for R,, and pZ,. Actually, we know z, + &, = 4/2 and R,, = R,/S. Hence,'
A
2

4 =%—7,=02-005=0.15 (m)

and
R, = %9 =167 (Q). ‘

| |
9-4.4 TRANSMISSION-LINE CIRCUITS ‘
|
Our discussions on the properties of transmission lines so far have been restricted
primarily to the effects of the load on the input impedance and on the characteristics
of voltage and current waves. No attention has been paid to the generator at the
“other end,” which is the source of the waves. Just as the constraint (the boundary
condition), Vi = I, Z,, which the voltage ¥V, and the current I; must satisfy at the
load end (z = ¢,z = 0), a constraint exists at the generator end where z =0 and
2/ = ¢. Let a voltage generator ¥, with an internal impedance Z, represent the source
connected to a finite transmission line of length ¢ that is terminated in a load im-
pedance Z,, as shown in Fig. 9-6. The additional constraint at z = 0 will enable the
voltage and current anywhere on the line to be expressed in terms of the source
characteristics (V,, Z,), the line characteristics (3, Zo, ¢), and the load impedance (Z,).

The constraint at z = 0 is _
Vi=V,—1LZ, (9-149)

But, from Egs. (9-133a) and (9-133b),

af 2'= 4 I,

Vi=5(Z + Z)e"[1 + Te™ 2] (9-150a)
and
I
o ——(Z, +Zget |l —Te "1k (9-150b)
2Z,

t Another set of solutions to part (¢) is &, =&, — /4 = 0.05 (m) and R, = SR, = 150 (©). Do you see why?
2 /
Row 7 Ro =2 Lo + 2y = /}/;c

9/7.___0 = A ﬂoi(_}?—] :Iéa,jl

-1
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Substitution of Egs. (9-150a) and (9- 150b) in Eq. (9- 149) enables us to find

IL " 5 é() l
Ay A L) = T 9-
e Te= 2] o
where
P=coil
M=t 20 52
" Z,+ Z, (9-152)

is the voltage reflection coefficient at the generator end. Using Eq. (9-151) in Egs.
(9-133a) and (9-133b), we obtain

Mgz_ (f}z‘%—-‘(ﬂ“}-’-—) e Zng . | + [e=2v#

Aq;nf.;ia 92:. f;{utioﬁJ () = m e m?z—?, ‘ (9-153a)
Sa s fler U dak,

Similarly,
condihcens af detd E s
erafor cnd fooel e b el T=Ta by 3
/”’d/ ST (1 —T,Te 2" =1
eénd_c

Equations (9-153a) and (9-153b) are analytical phasor expressions for the volt-
age and current at any point on a finite line fed by a sinusoidal voltage source V.
These are rather complicated expressions, but their significance can be interpreted
in the following way. Let us concentrate our attention on the voltage equation
(9-153a); obviously, the interpretation of the current equation (9-153b) is quite
similar. We expand Eq. (9-153a) as follows:

ZoV. :
V() ==—2"%_¢~7%(1 4+ Te~2")(1 — "

Zo+ Z,
ol o A ] it
=— = _p t-l+re 2yz 1+rr 2‘,’{+l—‘21—'2 4yf O
Zy+ 2, : . s e (9-154)
s S
= U z Te 7 ¥z I (Te 2 vz r
ZO+Zg[e + (Te ™ ")e + P le )" 3 24 7]
=Vi+Vi+Vi+Vi4+->
where
V.Z
+ — g<0 —yz = —yz oL 54
1 &Zo+Zg e M€ (9-154a)
Vi = I(Vye )™, (9-154b)
V3 =T TVye e, (9-154¢)
The quantity
Tl
/R, (9-155)

"2+ Z,
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z=10
=0

(b)

FIGURE 9-13
A transmission-line circuit and traveling waves.

is the complex amplitude of the voltage wave initially sent down the transmission
line from the generator. It is obtained directly from the simple circuit shown in Fig.
9-13(a). The phasor V{ in Eq. (9—154a) represents the initial wave traveling in the
+ z-direction. Before this wave reaches the load impedance Z,, it sees Z, of the line
as if the line were infinitely long.

When the first wave V' = V,,e % reaches Z, at z =/, it is reflected because of
mismatch, resulting in a wave V] with a complex amplitude I'(Vye™ ") traveling in
the —z-direction. As the wave V| returns to the generator at-z = 0, it is again re- -
flected for Z, # Z,, giving rise to a second wave V3 with a complex amplitude
I'y(T'Vye™ ") traveling in + z-direction. This process continues indefinitely with re-
flections at both ends, and the resulting standing wave V(') is the sum of all the
waves traveling in both directions. This is illustrated schematically in Fig. 9—13(b).
In practice, y = a + jf has a real part, and the attenuation effect of e~* diminishes
the amplitude of a reflected wave each time the wave transverses the length of the
line.

When the line is terminated with a matched load, Z, =Z,, T =0, only V/
exists, and it stops at the matched load with no reflections. If Zy#Zybut Z, =2,
(if the internal impedance of the generator is matched to the line), then I" # 0 and
I'; = 0. As a consequence, both V| and V7 exist, and V3, V5 and all higher-order
reflections vanish.

-

mmmmm= EXAMPLE 9-10 A 100 (MHz) generator with ¥, = 10/0° (V) and internal resistance
50 () is connected to a lossless 50 (Q) air line that is 3.6 (m) long and terminated
in a 25 + j25 (Q) load. Find (a) V(z) at a location z from the generator, (b) V; at the
input terminals and V| at the load, (c) the voltage standing-wave ratio on the line,
and (d) the average power delivered to the load.

Solution  Referring to Fig. 9-6, the given quantities are

V,=10/0° (V), Z,=50 (@), f=10° (Hz)
Ro=50 (), Z, =25+,25=3536/45" (@), /=36 (m).

¢
~

e
|
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Thus,
w 27108 2n

il
Zi—Zy, 342580 25425 3536/135°

(rad/m), Bt =24n (rad),

P = %Z ~@5+/29+50  15+/25 79.1/18.4°
= 0.447/116.6° = 0.447/0.648x,
r,=0.
a) From Eq. (9-153a) we have
2% s - j2pe -2
V(z)_Zo+de [1+Te ]
S0(10) _ 323 . E )
= nz, 1 ; 47 (0.648 —4.8)n ,jdnz/3
i - [1 4+ 0.447¢ ey

= 5[e—j2n2/3 R 0.4478".(22/3_0'152)"] (V)
We see that, because I') = 0, V(z) is the superposition of only two traveling waves,
Vi and V7, as defined in Eq. (9-154).
b) At the input terminals,
V; = V(0) = 5(1 + 0.447¢~70-132m)
= 5(1.396 — j0.207)
=7.06/—8.43° (V).

Vi = V(3.6) = 5[e™994* 4+ 0.447¢/9-248+]

= 5(0.627 — j0.637) = 4.47/ —45.5° (V).

¢) The voltage standing-wave ratio (VSWR) is
14| 140447

1— | 1-—0447

d) The average power delivered to the load is
1V ]? 1 /447
ey Pu=3l7 R=—(m

At the load,

S = 2.62.

g Al

)2 x 25 =0.200 (W)

It is interesting to compare this result with the case of a matched load when
Zi=2Zy =50+ jO{€2). In that case, ' = 0,

V.
Mi=I=2=5

and a maximum average power is delivered to the load:

e
IR, 2x 56

Maximum P,, = 025 (W),
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FIGURE 9-14

A d-csource applied to a lineterminated in characteristic remt'tnce R, through a series
resistance R,.
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VO_? _L“ A d-c source applied to a terminated lossless line
z=0 z2=1 at t = 0 (general case).

has the same shape with a magnitude I{ given in Eq. (9-157). When the voltage
and current waves reach the termination at z = /, there are no reflected waves be-
cause I' = 0. A steady state is established, and the entire line is charged to a voltage
equal to V{.
(Qﬁ\f{_ I) If both the series resistance R, and the load resistance R, are not equal to R,
Z = kL¢ g, as in Fig. 9-15, the situation is more complicated. When the switch is closed at t = 0,
the d-c source sends a voltage wave of magnitude

) + ~Z .|l ) i RO
e ez, =Vt A A-2] g S I 9-158
oL }f<7_' £ );( I/ad}/{m : * Ry + R, 5 ( )
in the + z-direction with a velocity u = 1/y/LC as before because the V; wave has
no knowledge of the length of the line or the nature of the load at the other end; it -
proceeds as if the line were infinitely long. At t = T = //u this wave reaches the load
k1D end z = /. Since R; # R,, a reflected wave will travel in the —z-direction with a
magnltude —
TERXL2T T et )= I/*/A(;hz L) Vi=Tvi, (9-159)
deL X< T) 4 T VA £Jc) o @ | é\:gﬁﬁm G-1£456))
A A =Tt ach+27ic ) = (9-160)
RV ~ ¥ -2 TR,
w(o,0)= I =g, I’_mmthe%oad resistance R;. This reflected wave arrives at
E St 53 = T the input end at t = 2T, where it is reflected by R, # R,. A new voltage wave having
A€o, ),_ L a magnitude V; then travels down the line, where
?(V,ﬁ V=R I Vi =T,V =T,[\Vi. 9-161)
V-V =R1I. : S - <Q£2)
} r,=-t—-= or foom (g 162
= G-4s9), Gil) F Bt By i) o

is the reflection coeflicient of the series resistance R,. This process will go on inde-
finitely with waves traveling back and forth, being reflected at cach end at t+ = nT
=120 30000

Two points are worth noting here. First, some of the reflected waves traveling
in cither direction may have a negative amplitude, since ', or ', (or both) may be
negative. Second, except for an open circuit or a short circuit, I' and T, are less
than unity. Thus the magnitude of the successive reflected waves becomes smaller

I Mem bard S ladcon 2.
< :

rC2 40 = fchweNie ) A’ 2 TG Jup o
ey = {fcj+z.f§) ;CA-ZF')}/\/ q‘

A \_‘._.y o
NS DT
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and smaller, leading to a convergent process. The progression of the transient voltage
waves on the lossless line in Fig. 9-15 for R, = 3R, (I', = 3)and R, = 2R, (r,=34is
illustrated in Figs. 9-16(a), 9-16(b), and 9-16(c) for three different tlme intervals. The
corresponding current waves are given in Figs. 9-16(d), 9—16(e), and 9—16(f), which
are self-explanatory. The voltage and current at any particular location on the line in
any particular time interval are just the algebraic sums (V{ + V{ + VI + V7 +..)
and (I + 17 + I3 + 15 +...), respectively.

[tisinteresting to check the ultimate value of the voltage across the load, ¥V, = V(¢),
as ¢ increases indefinitely. We have

W=Vi+Vi+Vi+Vs+V]+Vy4---
=VfL(1+FL+FQFL+FQT§+F§FI{+F§FE+...)
=V{[A+ T + 23+ )+ Tyt + I,Iy + T2IE +-- 9]

=V [(1 = 1r r ) b (1 —rlE rL)] R
g (11_+rl"IE ) ({::R )R

For the present case, Vi = V,/3, Iy = 3. and I, = 1/3, Eq. (9-163) gives

V=3V =3 (9-163a)
- +
-Q,m,iﬂwl)’ ’ Iz_ = =L ,—fV’ e~
R R A
V(:) A V(:) A V(Z) A
V+
Ph——.
of 9o ... I [ o N ki
! vi+ vy
e
o L l >
0 ¢ 0 r 0 (
@@0<1<T (b) T<t<2T () 2T< 1< 3T
Vit = V3 Vi =V 2=Vl Vi =V = V,/18
1) 4 1) ‘r )4
1y 1t - 1
- Iy S — ]
1 ) ki TR
0 T ¢ 9 g3
ho<r<T (@) T<1<2T (N 2T <1< 3T
1Y = V\'IRy = V3R, Iy = =V /Ry = = Vy/6Ry I3 = VIR = Vy/18R,

FIGURE 9-16
Transient voltage and current waves on transmission line in Fig. 9-15 for R, = 3R,
and R, = 2R,,.

- +
/{/"}‘Z—: E-::K. _E-_—_./QO a = R,
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9-5.1 REFLECTION DIAGRAMS

Voltage
Time Range Voltage Discontinuity
O0<t<t(t, =2z/u 0 0
tlst<t2(f2=2T—f1) V;- Vr attl
fzsr<t3(t3=2T+f|) Vr(l +l"1_) FLV; at i,

L <t<t,(t,=4T -1,)
ta St <ts(ts=4T + 1))

Vil +T, + r,r)
Vil + Ty + I,y + I,rd)

v ate,
r,T2vi ate,

T
A
P, FIGURE 9-17 - h I
hi-= T Voltage reflection diagram for transmission-line circuit in
0z I Fig. 9-15. _
V(Z, !‘.) ‘P
Vi Ro
G Vi
VI + T + T _l'___..'.'m_':: ravit Reo "f‘/?
Vr(] L ) I'L) ____________
e —— e s
Vi ]; i kz ko /Z i RL - fQo
<+ ’
0 zll Yy » 2 /% Re k,_ + R
(a) Wz, 44) versus z;
1 1 =
rL = _2_‘ rs = -3—, V?. = V0l3.
iz 4 i
i rrevi rirpvy ‘
L e et PR e i iy Fodoooo o
FLVI+T 'T' P t
Vo3 LIV
vi
4 | il e A i
0 f T hTh 3T 14 4T l5 e
: R
(b) Wz, versus r; Wz,, =) @_) o V('(» ©0) e !/°
o o
FIGURE 9-18 . gf Re
Transient voltage on lossless transmission line for Ry =3R, and R, = 2R,
¥ o
& (! Iz).0) 4
rs .__..}.,5| - "
Wl  ~p Vo/3Ro - Ay reririt r2rg
U=y T e B e Bt
| e e
! i 3T e ¥
34l |
] e | L a
ty __531 0n Vi h 2Tty ST t: aTts =
1
Z:ZT--- | ~5 s n=_.r= TI I = Vo/3Rg. I(z). @) = V/5R,,
P2| / B b I(ﬂ m) [/(f)m)
! r FIGURE 9-20 AT e T
I I Transient current on lossless transmission line for R, = 3R, and R, = 2R,,
ol e FIGURE 9-19
Ir—= 3 Current reflection diagram for transmission-line circuit in
0 2 ? Fig. 9-15.




s EXAMPLE 9-11

A rectangular pulse of an amplitude 15 (V) and a duration 1 (us) is

applied through a series resistance of 25 (Q) to the input t'erminals gf a .50 (Q) lossless
coaxial transmission line. The line is 400 (m) long and is short-circuited at thc.far
end. Determine the voltage response at the midpoint of the line asa fuction (.)f time
up to 8 (us). The dielectric constant of the insulating material in the cable is 2.25.

Vs'” o
R,=
15(V) R e R T FIGURE 9-22
Vel | A pulse applied to a short-circuited
0 l(us) ! p ﬁ 200 (m) 400 (m) line.
15V) - 25-50 1
R, + Re 5 25+ 50 3
v,(t) = W[U(@) — Ut — 1079)],
¢ 3 x 108
U= = =2 x 10® (m/s),
Ve 225
£ 400
T =—-—— = -6 —_— 2
u 2 x 108 2 X 10 (S) (lus)
15R 15 x 50
Vi= = =10 (V).
L "R+ R, 30+25 V)
1 FIGURE 9-23
0 _»z(m) Yoltage reflection diagram for Example
200 400 9-11.
vV, A
@) -+ Vi
o | I
1 L .
0 1 2 3 4 5 é &1 8 >t (us)
Vp &
SRRV R IR WO S DL s (WIS
(b) 0 1'+ -8 ] > 1 (us)
Vi T
—+ vins
A
S 10
S a3 oy
€ = 0 » 1 (us)
g-103} ’ 2 3 g 6 b ad®
& o
FIGURE 9-24

Voltage responses at the midpoint of the short-circuited line in Fig. 9-22

(Example 9-11).




9-5.3 INITIALLY CHARGED LINE

In our discussion of transients on transmission lines we have assumed that the lines
themselves have no initial voltages or currents when an external source is applied.
Actually, any disturbance or change in a transmission-line circuit will start transients
along the line even without an external source if initial voltages and/or currents exist.
We examine in this subsection a situation involving an initially charged line and
develop a method of analysis.

Consider the following example.

ammm EXAMPLE 9-12 A lossless, air-dielectric, open-circuited transmission line of charac-

teristic resistance R, and length 7 is initially charged to a voltage V,. Att = 0 the line
is connected to a resistance R. Determine the voltage across and the current in R as
functions of time. Assume that R = R,,.

When the switch is closed, a voltage wave of amplitude V{ will be sent down
the line in the + z-direction, where
R V.
V+ 3 ————0 = —4-9-
; R + R, Vo 2
At t = //c, the V{ wave reaches the open end, having reduced the voltage along the
wholet line from ¥, to V,/2. At the open end, " = 1, and a reflected V| wave is sent
back in the — z-direction with ¥ = V{ = —V,/2. This reflected wave returns to the
sending end at t = 2¢/c, reducing the voltage on the line to zero.
From Fig. 9-25(d),

where Ip= —1,,
Vi ¥V,
I, mlfe-ta—=—2 for O2t<¥
1 St 3 R, /c.
In > B
s e
R Vo RO

(a)

I I
- o R 1
% FT_ +— -
Line Vo Line VrSR Line
(b) = : (d)
. Aoy et doenH S 4
Vel A HIR Ao Arangi<ats
Vo/2 Vo/2Ry
> [ — [
0 2f/c 0 24/c
() (N
FIGURE 9-25

Transient problem of an open-circuited, initially charged line, R = R, (Example
9--12).
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Att = //c, I{ reaches the open end, and the reflected I 1 must make the total current
there zero. Hence,

I;= —Irzﬁ*—s

which reaches the sending end at t = 2/ /c and reduces both I, and I, to zero. Since
R = Ry, there is no further reflection, and the transient state ends. As shown in Figs.
9-25(e) and 9-25(f), both ¥; and I, are a pulse of duration 2¢/c. We then have a
way of generating a pulse by discharging a charged open-circuited transmission line,
the width of the pulse being adjustable by changing 7. e

9-5.4 LINE WITH REACTIVE LOAD

When the termination on a transmission line is a resistance different from the char-
acteristic resistance, an incident voltage or current wave will produce a reflected wave
of the same time dependence. The ratio of the amplitudes of the reflected and incident
waves is a constant, which is defined as the reflection coefficient. If, however, the
termination is a reactive element such as an inductance or a capacitance, the reflected
wave will no longer have the same time dependence (no longer be of the same shape)
as the incident wave. The use of a constant reflection coefficient is not feasible in
such cases, and it is necessary to solve a differential equation at the termination in
order to study the transient behavior. We shall consider the effect on the reflected.
wave of an inductive termination and a capacitive termination separately in this
subsection.

Figure 9-26(a) shows a lossless line with a characteristic resistance Ry, terminated
at z =/ with an inductance L,. A d-c voltage Vo 1s applied to the line at z =0
through a series resistance R,. When the switch is closed at ¢ — 0, a voltage wave

w? of an amplitude
V

Va2 <
1 =5 (9-167)
travels toward the load. Upon reaching the load at ¢ = Z/u =T, a reflected wave
V(1) is produced because of mismatch. It is the relation betwe . (t) and V;
that we wish to find. At z = /, the following relations hold fo@ i T

S —— o

4 = —
Lown 47/ Condid iom: v = Vi + Vi), sma. (9-168)
"
oo AU &I ap
L
R,
V+ . Ry
o
z=0 z=A
() Transmission-line circuit with inductive termination (b) Equivalent circuit for the load end, t 2 T
FIGURE 9-26

Transient calculations for a lossless line with an inductive termination.

</V0ﬂlg> %/ﬁkﬂ./ LR Ce('n"n,o)L USe ;{—La. mc:?jJ a/ /Z
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VLA = Fet-MeytgRidr = Y™+ 1d @ -1

T4 :fjf‘c%—,i\jfci)—;(%«ﬁ)} i) = p-LVi — Vi) (9-169)

A = r—,_,«‘ e % o (1) = Ly, di}':t)- (9-170)
Eliminating V' (t) from Egs. (9-168) and (9-169), we obtain

v () = 2V{ — Roi(2). 9-171)

It is seen that Eq. (9-171) describes the application of Kirchhoff’s voltage law to the
circuit in Fig. 9-26(b), which is then the equivalent circuit at the load end for ¢t > T.
In view of Eq. (9-170), Eq, (9-171) leads to a first-order differential equation with
constant coefficients:

diy(t -
Ly % + Roi() =2Vy, t=>T. (9-172)
The solution of Eq. (9-172) is
2vt
il e L = BBt T 9-173)
0

which correctly gives ii(T) = 0 and i;(c0) = 2V{/R,. The voltage across the induc-
tive load is
diy (1)

()= Ly —==2V] e"¢" D%, > 9-174)

The amplitude of the reflected wave, V[ (t), can be found from Eq. (9-168):

Vi) =v(t)—Vy
=2Vi[e"@"PRLL _1] (ST,

This reflected wave travels in the —z-direction. The voltage at any point z = z, along
the line is V' before the reflected wave from the load end reaches that point,(t — T) <
(¢ — z,)/u, and equals V{ + V[ (t — T) after that.

In Figs. 9-27(a), 9-27(b), and 9-27(c) are plotted i, (1), v, (1), and V(1) at z = ¢
using Eqs. (9-173), (9-174), and (9-175). The voltage distribution along the
line for T < t; < 2T is shown in Fig. 9-27(d). Obviously, the transient behavior on a
transmission line with a reactive termination is more complicated than that with a
resistive termination.

(9-175)

Vi na

+
Vi ____k
» !

2VEHIR,
3 /___ 0
T \
> V===
0 i
(a) (©)
v, D) vz, 1) 4
T Wi ————
= 4 = T'= {f=z2\}u,
vi ort; = 2T — z;/u
|
>t .
0 T 0 4| £
(b) (d)
FIGURE 9-27

Transient responses of a lossless line with an inductive termination.




We follow a similar procedure in examining the transient behavior of a lossless
line wilh a capacitive termination, shown in Fig. 9--28(a). The same Eqgs. (9-167),
(9 -168).(9 169),and (9-171) apply at z = ¢, but Eq. (9 170) relating the load current
i(t) and load voltage v, (1) must now be changed to

- d
= i i =Cy —”;fi)- 9 176)"
Q47D VL) = 2~ Ro AL B

The differential equation to be solved at the load end is, by substituting Eq. (9-176)
in Eq. (9-171),

doilt) 1 2
C; - R, vi(t) = R, ¥i, #27T, 6-177)

where V{ = V,/2, as given in Eq. (9-167). The solution of Eq. (9-177) is
ULl B RS ] M - 7 (9-178)

The current in the load capacitance is obtained from Eq. (9-176):

: )
ift)=—=e 0" TV/RCL ;> T (9-179)
R,
(3 =0
i Ry iL
o
T ot
Ry R . * !
V- i Gt =2vt CLsvy
L N e g 3 b
z=0 zZ=4 Z2=4
(@) Transmission-line circuit with capacitive termination. (b) Equivalent circuit for the load end, 1 2 7T

FIGURE 9-28
Transient calculations

Using Eq. (9-178) in Eq. (9-168), we find the amplitude of the reflected wave as a
function of t:

) -t = vop = Vi[ —e ¢~TWRCL] > T, (9-180)
Vi n4

0 T
(a) ©)
i (0, 1 'y Wz, 1) 4
e e
2V{ /Ry [——— v+ I t = T= (- z)lu,
1
|orty =2T - z)/u
>t ' >z
0 T 0 Zy P
() (@
FIGURE 9-29

Transient responses of a lossless line with a capacitive termination.

In this section we have discussed the transient behavior of only lossless transmis-
sion lines. For lossy lines, both the voltage and the current waves traveling in either
direction will be attenuated as they proceed. This situation mtrod_uces additional
complication in numerical computation, but the basic concept remains the same.
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2. Draw a straight line from O through P, to P; where the “wavelengths toward
generator” reading is 0.364.

3. Draw a |['|-circle centered at O with radius OP,.

4. Move P; along the perimeter by 0.20 “wavelengths toward generator” to
P at 0.364 + 0.20 = 0.564 or 0.064.

5. Join Pj and O by a straight line, intersecting the |I'|-circle at P;.

6. Mark on line OP; a point P, such that OP,/OP; = e~ 2* = 0.89.

7. At P;, read z; = 0.64 + j0.27. Hence,

Z; = 75(0.64 + j0.27) = 48.0 + j203 (Q). —

9-7 Transmission-Line Impedance Matching

Transmission lines are used for the transmission of power and information. For radio-
frequency power transmission it is highly desirable that as much power as possible is
transmitted from the generator to the load and as little power as possible is lost on
the line itself. This will require that the load be matched to the characteristic imped-
ance of the line so that the standing-wave ratio on the line is as close to unity as
possible. For information transmission it is essential that the lines be matched because
reflections from mismatched loads and junctions will result in echoes and will distort
the information-carrying signal. In this section we discuss several methods for im- ,
pedance-matching on lossless transmission lines. We note parenthetically that the
methods we develop will be of little consequence to power transmission by 60 (Hz)
lines inasmuch as these lines are generally very short in comparison to the 5 (Mm)
wavelength and the line losses are appreciable. Sixty-hertz power-line circuits are
usually analyzed in terms of equivalent lumped electrical networks.

=
i\
R

9-7.1 IMPEDANCE MATCHING BY QUARTER-WAVE TRANSFORMER

A simple method for matching a resistive load R, to a lossless transmission line of
a characteristic impedance R, is to insert a quarter-wave transformer with a charac-
teristic impedance R}, such that

R
ZX = = T é:k 5 = +/RoR,. (9-194)
L- . o : ; :
Since the IenéQt?l of the quarter-wave line depends on wavelength, this matching
U/ method is frequency-sensitive, as are all the other methods to be discussed.
;_ZA. = Ko

e EXAMPLE 9-17 A signal generator is to feed equal power through a lossless air
transmission line with a characteristic impedance 50 (Q) (o two separate resistive
loads, 64 (2) and 25 (Q). Quarter-wave transformers are used to match the loads to
the 50 (€) linc, as shown in Fig. 9 36. (a) Determine the required characteristic im-
pedances of the quarter-wave lines. (b) Find the standing-wave ratios on the matching
line sections.
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2

A4
f/ Riy = 64 (@)
Ry
Ro = 50(Q)
Ro2
‘\ Ri2=25(9Q)
N4 FIGURE 9-36
\l Impedance matching by quarter-
wave lines (Example 9-17).
Solution

a) To feed equal power to the two loads, the input resistance at the junction with
the main line looking toward each load must be equal to 2R,. R;; = R;;, =
2R, = 100 (Q):

o1 = VR Ry, = /100 x 64 = 80 (Q),

b2 = VRizRy, = /100 x 25 =50 (Q). ;
b) Under matched conditions there are no standing waves on the main transmis-
sion line (S = 1). The standing-wave ratios on the two matching line sections

are as follows. i 2 SR ) 4
Matching section No. 1: L

Ry, — Rp; 64— 80

iy = R, ik, Bam HL
L i
Matching section No. 2:
— R =
o
1+ | i
32=lilrj=:ig;§=l.99. —

Ordinarily, the main transmission line and the matching line sections are essen-
tially lossless. In that case, both R, and R}, are purely real, and Eq. (9 194) will have
no solution if R, is replaced by a complex Z,. Hence quarter-wave transformers are
not useful for matching a complex load impedance to a low-loss line.

In the following subsection we will discuss a method for matching an arbitrary
load impedance to a line by using a single open- or short-circuited line section (a
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9-7.2 SINGLE-STUB MATCHING ( )écjj/@% )

We now tackle the problem of matching a load impedance Z L. to a lossless line that
has a characteristic impedance R, by placing a single short-circuited stub in parallel
with the line, as shown in Fig. 9-39. This is the single-stub method for impedance
matching. We need to determine the length of the stub, /, and the distance from the
load, d, such that the impedance of the parallel combination to the right of points
B-B’ equals R,. Short-circuited stubs are usually used in preference to open-cir-
cuited stubs because an infinite terminating impedance is more difficult to realize
than a zero terminating impedance for reasons of radiation from an open end and
coupling effects with neighboring objects. Moreover, a short-circuited stub of an ad-
justable length and a constant characteristic resistance is much easier to construct
than an open-circuited one. Of course, the difference in the required length for an
open-circuited stub and that for a short-circuited stub is an odd multiple of a quarter-
wavelength.

The parallel combination of a line terminated in Z, and a stub at points B-B’
in Fig. 9-39 suggest that it is advantageous to analyze the matching requirements
in terms of admittances. The basic requirement is

Yi= YB+ Ys
1 (9-197)
= Y = —
R

In terms of normalized admittances, Eq. (9-197) becomes
1=y 4y, (9-198)

where yp = R, Yy is for the load section and y, = R, Y, is for the short-circuited stub.
However, since the input admittance of a short-circuited stub is purely susceptive, y,
is purely imaginary. As a consequence, Eq. (9-198) can be satisfied only if

AB ?'209
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Impedance matching by single-stub method.
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.= —lbs, 9-200

where by can be either positive or negative. Our objectives, then, are to find the

length d such that the admittance, yz, of the load section looking to the right_of ter-
minals B—B' has a unity real part and to find the length /5 of the stub required to

cancel the imaginary part.

/] /i 3
9-7.3 DOUBLE-STUB MATCHING  ( Kécr X%T)

The method of impedance matching by means of a single stub described in the pre-
ceding subsection can be used to match any arbitrary, nonzero, finite load impedance
to the characteristic resistance of a line. However, the single-stub method requires
that the stub be attached to the main line at a specific point, which varies as the
load impedance or the operating frequency is changed. This requirement often pre-
sents practical difficulties because the specified junction point may occur at an un-
desirable location from a mechanical viewpoint. Furthermore, it is very difficult to
build a variable-length coaxial line with a constant characteristic impedance. In such
cases an alternative method for impedance-matching is to use two short-circuited
stubs attached to the main line at fixed positions, as shown in Fig. 9-41, Here, the
distance d, is fixed and arbitrarily chosen (such as /16, /8, 34/16, 34/8, etc.), and
the lengths of the two stub tuners are adjusted to match a given load impedance Z;
to the main line. This scheme is the double-stub method for impedance matching.

In the arrangement in Fig. 9-41 a stub of length £, is connected directly in
parallel with the load impedance Z; at terminals A-A’, and a second stub of length
/ is attached at terminals B-B’ at a fixed distance d, away. For impedance matching
with a main line that has a characteristic resistance Ry, we demand the total input
admittance at terminals B-B’, looking toward the load, to equal the characteristic
conductance of the line; that is, '

Y=Y+ Y
9-210
ey 6-210
RO

In terms of normalized admittances, Eq. (9-210) becomes

1 =yp+ V5. (9-211)
do SR
8 ;
Ji—> \—')’B yas—"
Ry Vst
B/
Ro

FIGURE 9-41
Impedance matching by double-stub method.

Now, since the input admittance y,z of a short-circuited stub is purely imaginary,
Eq. (9-211) can be satisfied only if

ys =1+ jbg (9-212)
and
¥ss = —jbg. (9-213)

Note that these requirements are exactly the same as those for single-stub matching.
|
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